
CPSC 322, Lecture 2 Slide 1

Search
Computer Science cpsc322, Lecture 2

(Textbook Chpt 3.0-3.4)

May, 10, 2012

Colored Cards

• You need to have 4 colored index cards

• Come and get them from me if you still don’t have them

• You will use these as voting cards

• Cheap low tech variant of clickers

Please bring them to class every time

2 CPSC 322, Lecture 2

“Deterministic agent” means an agent that

None of the above

Has perfect knowledge of its environment

Both of the above

Has perfect knowledge of the effect that its

actions can have on the environment

Slide 3 CPSC 322, Lecture 2

“Deterministic agent” means an agent that

None of the above

Has perfect knowledge of its environment

Both of the above

Has perfect knowledge of the effect that its

actions can have on the environment

Slide 4 CPSC 322, Lecture 2

CPSC 322, Lecture 2 Slide 5

Modules we'll cover in this course: R&Rsys

Environment

Problem

Query

Planning

Deterministic Stochastic

Search

Arc
Consistency

Search

Search
Value Iteration

Var. Elimination

Constraint
Satisfaction

Logics

STRIPS

Belief Nets

Vars +
Constraints

Decision Nets

Markov Processes

Var. Elimination

Static

Sequential

Representation

Reasoning

Technique

CPSC 322, Lecture 2 Slide 6

Lecture Overview

• Simple Agent and Examples

• Search Space Graph

• Search Procedure

• Criteria to compare Search Strategies

 • Simple (Uninformed) Search Strategies

• Depth First and Breadth First

• Uninformed Iterative Deepening (IDS)

• Search with Costs

CPSC 322, Lecture 2 Slide 7

Simple Planning Agent

Deterministic, goal-driven agent

• Agent is in a start state

• Agent is given a goal (subset of possible states)

• Environment changes only when the agent acts

• Agent perfectly knows:

• what actions can be applied in any given state

• the state it is going to end up in when an

action is applied in a given state

• The sequence of actions and their appropriate

ordering is the solution

CPSC 322, Lecture 2 Slide 8

Three examples

1. A delivery robot planning the route it will take in a
bldg. to get from one room to another

2. Solving an 8-puzzle

3. Vacuum cleaner world

CPSC 322, Lecture 2 Slide 9

Example1: Delivery Robot

CPSC 322, Lecture 2 Slide 10

Example 2: 8-Puzzle?

Possible start state Goal state

Eight Puzzle

States: each state specifies which number/blank occupies each

of the 9 tiles

 HOW MANY STATES ?

Operators: blank moves left, right, up down

Goal: configuration with numbers in right sequence

9! 89 99 29

Slide 11 CPSC 322, Lecture 2

Eight Puzzle

States: each state specifies which number/blank occupies each

of the 9 tiles

 HOW MANY STATES ?

Operators: blank moves left, right, up down

Goal: configuration with numbers in right sequence

9!

Slide 12 CPSC 322, Lecture 2

CPSC 322, Lecture 2 Slide 13

Example: vacuum world

Possible start state Possible goal state

• States

• Two rooms: r1, r2

• Each room can be
either dirty or not

• Vacuuming agent can
be in either in r1 or r2

CPSC 322, Lecture 2 Slide 14

Example: vacuum world

Possible start state Goal state

Suppose we have the same problem with k rooms.

The number of states is….

2 * kk

k3

k * 2k

k * 2k

…..

Slide 15 CPSC 322, Lecture 2

Suppose we have the same problem with k rooms.

The number of states is….

k * 2k

…..

Slide 16 CPSC 322, Lecture 2

CPSC 322, Lecture 2 Slide 17

Lecture Overview

• Simple Agent and Examples

• Search Space Graph

• Search Procedure

• Criteria to compare Search Strategies

 • Simple (Uninformed) Search Strategies

• Depth First and Breadth First

• Uninformed Iterative Deepening (IDS)

• Search with Costs

CPSC 322, Lecture 2 Slide 18

How can we find a solution?

• How can we find a sequence of actions and their

appropriate ordering that lead to the goal?

• Define underlying search space graph where

nodes are states and edges are actions.

b4

o107 o109 o111

r109 r107 r111

o113 r113

CPSC 322, Lecture 2 Slide 19

Search space for 8puzzle

CPSC 322, Lecture 2 Slide 20

Vacuum world: Search space graph

states? Where it is dirty and robot location

actions? Left, Right, Suck

Possible goal test? no dirt at all locations

CPSC 322, Lecture 2 Slide 21

Lecture Overview

• Simple Agent and Examples

• Search Space Graph

• Search Procedure

• Criteria to compare Search Strategies

 • Simple (Uninformed) Search Strategies

• Depth First and Breadth First

• Uninformed Iterative Deepening (IDS)

• Search with Costs

CPSC 322, Lecture 2 Slide 22

Search: Abstract Definition

 How to search

• Start at the start state

• Consider the effect of taking different actions

starting from states that have been encountered

in the search so far

• Stop when a goal state is encountered

To make this more formal, we'll need review the

formal definition of a graph...

CPSC 322, Lecture 2 Slide 23

A graph consists of a set N of nodes and a set A of ordered

pairs of nodes, called arcs.

Node n2 is a neighbor of n1 if there is an arc from n1 to n2. That

is, if  n1, n2   A.

A path is a sequence of nodes n0, n1, n2 ,.., nk such that  ni-1,
ni   A.

A cycle is a non-empty path such that the start node is the

same as the end node

A directed acyclic graph (DAG) is a graph with no cycles

Given a start node and goal nodes, a solution is a path from a

start node to a goal node.

Search Graph

CPSC 322, Lecture 2 Slide 24

Examples for graph formal def.

a

b c d e

f g h i j k l n

CPSC 322, Lecture 2 Slide 25

Examples of solution

• Start state b4, goal r113

• Solution <b4, o107, o109, o113, r113>

•

b4

o107 o109 o111

r109 r107 r111

o113 r113

CPSC 322, Lecture 2 Slide 26

Generic search algorithm: given a graph, start node,

and goal node(s), incrementally explore paths

from the start node(s).

Maintain a frontier of paths from the start node that

have been explored.

As search proceeds, the frontier expands into the

unexplored nodes until (hopefully!) a goal node is

encountered.

The way in which the frontier is expanded defines

the search strategy.

Graph Searching

CPSC 322, Lecture 2 Slide 27

Input: a graph, a start node, Boolean procedure goal(n) that

tests if n is a goal node

frontier:= [<s>: s is a start node];

While frontier is not empty:

 select and remove path <no,….,nk> from frontier;
 If goal(nk)
 return <no,….,nk>;

For every neighbor n of nk

 add <no,….,nk, n> to frontier;
end

Generic Search Algorithm

CPSC 322, Lecture 2 Slide 28

Problem Solving by Graph Searching

Ends of frontier

CPSC 322, Lecture 2 Slide 29

The forward branching factor of a node is the

number of arcs going out of the node

The backward branching factor of a node is the

number of arcs going into the node

If the forward branching factor of any node is b

and the graph is a tree, how many nodes are

n steps away from a node?

Branching Factor

nb nb bn n/b

CPSC 322, Lecture 2 Slide 30

• Search is a key computational mechanism in

many AI agents

• We will study the basic principles of search on the

simple deterministic planning agent model

Generic search approach:

• define a search space graph,

• start from current state,

• incrementally explore paths from current state until goal

state is reached.

The way in which the frontier is expanded defines

the search strategy.

Summary Generic Search Approach

CPSC 322, Lecture 2 Slide 31

Searching: Graph Search Algorithm with three bugs 

 Input: a graph,

 a start node,

 Boolean procedure goal(n) that tests if n is a goal node.

frontier := { g: g is a goal node };

while frontier is not empty:

 select and remove path n0, n1, …, nk from frontier;

 if goal(nk)

 return nk ;

 for every neighbor n of nk

 add  n0, n1, …, nk  to frontier;

end while

• The goal function defines what is a solution.

• The neighbor relationship defines the graph.

• Which path is selected from the frontier defines the

search strategy.

CPSC 322, Lecture 2 Slide 32

Lecture Overview

• Simple Agent and Examples

• Search Space Graph

• Search Procedure

• Criteria to compare Search Strategies

 • Simple (Uninformed) Search Strategies

• Depth First and Breadth First

• Uninformed Iterative Deepening (IDS)

• Search with Costs

CPSC 322, Lecture 2 Slide 33

Comparing Searching Algorithms: will it find a

solution? the best one?

Def. (complete): A search algorithm is complete if,

whenever at least one solution exists, the algorithm

is guaranteed to find a solution within a finite

amount of time.

Def. (optimal): A search algorithm is optimal if, when

it finds a solution , it is the best solution

CPSC 322, Lecture 2 Slide 34

Comparing Searching Algorithms: Complexity

Def. (time complexity)

The time complexity of a search algorithm is an expression for

the worst-case amount of time it will take to run,

• expressed in terms of the maximum path length m and the

maximum branching factor b.

Def. (space complexity) : The space complexity of a search

algorithm is an expression for the worst-case amount of

memory that the algorithm will use (number of nodes),

• Also expressed in terms of m and b.

CPSC 322, Lecture 2 Slide 35

Learning Goals for today’s Part1

• Identify real world examples that make use

of deterministic, goal-driven planning

agents

• Assess the size of the search space of a

given search problem.

• Implement the generic solution to a search

problem.

CPSC 322, Lecture 2 Slide 36

Lecture Overview

• Simple Agent and Examples

• Search Space Graph

• Search Procedure

• Criteria to compare Search Strategies

 • Simple (Uninformed) Search Strategies

• Depth First and Breadth First

• Uninformed Iterative Deepening (IDS)

• Search with Costs

CPSC 322, Lecture 2 Slide 37

Depth-first Search: DFS

• Depth-first search treats the frontier as a stack

• It always selects one of the last elements added

to the frontier.

Example:

• the frontier is [p1, p2, …, pr]

• neighbors of last node of p1 (its end) are {n1, …, nk}

• What happens?
• p1 is selected, and its end is tested for being a goal.

• New paths are created attaching {n1, …, nk} to p1

• These “replace” p1 at the beginning of the frontier.

• Thus, the frontier is now [(p1, n1), …, (p1, nk), p2, …, pr] .

• NOTE: p2 is only selected when all paths extending p1 have been

explored.

CPSC 322, Lecture 2 Slide 38

Depth-first search: Illustrative Graph --- Depth-first Search Frontier

 Analysis of DFS

Def. : A search algorithm is complete if whenever there is at

least one solution, the algorithm is guaranteed to find it

within a finite amount of time.

Is DFS complete? No

• If there are cycles in the graph, DFS may get “stuck” in one of them

• see this in AISpace by loading “Cyclic Graph Examples” or by

adding a cycle to “Simple Tree”

• e.g., click on “Create” tab, create a new edge from N7 to N1, go back

to “Solve” and see what happens
Slide 39 CPSC 322, Lecture 2

 Analysis of DFS

40

Is DFS optimal? Yes No

Def.: A search algorithm is optimal if when it finds a solution, it

is the best one (e.g., the shortest)

• E.g., goal nodes: red boxes

CPSC 322, Lecture 2

 Analysis of DFS

41

Is DFS optimal? No

Def.: A search algorithm is optimal if when it finds a solution, it

is the best one (e.g., the shortest)

• It can “stumble” on longer solution

paths before it gets to shorter ones.

• E.g., goal nodes: red boxes

• see this in AISpace by loading “Extended Tree Graph” and set N6 as a goal

• e.g., click on “Create” tab, right-click on N6 and select “set as a goal node”

CPSC 322, Lecture 2

 Analysis of DFS

42

• What is DFS’s time complexity, in terms of m and b ?

• E.g., single goal node -> red box

Def.: The time complexity of a search algorithm is

 the worst-case amount of time it will take to run,

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m) O(bm) O(bm) O(mb)

CPSC 322, Lecture 2

 Analysis of DFS

43

• What is DFS’s time complexity, in terms of m and b ?

• In the worst case, must examine

every node in the tree

• E.g., single goal node -> red box

Def.: The time complexity of a search algorithm is

 the worst-case amount of time it will take to run,

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(bm)

CPSC 322, Lecture 2

 Analysis of DFS

44

Def.: The space complexity of a search algorithm is the

worst-case amount of memory that the algorithm will use

 (i.e., the maximal number of nodes on the frontier),

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m) O(bm) O(bm) O(mb)

• What is DFS’s space complexity, in terms of m and b ?

See how this

works in
CPSC 322, Lecture 2

http://www.aispace.org/mainTools.shtml

 Analysis of DFS

45

Def.: The space complexity of a search algorithm is the

 worst-case amount of memory that the algorithm will use

 (i.e., the maximum number of nodes on the frontier),

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(bm)

• What is DFS’s space complexity, in terms

of m and b ?

- for every node in the path currently explored, DFS

maintains a path to its unexplored siblings in the

search tree

- Alternative paths that DFS needs to explore

- The longest possible path is m, with a maximum of

b-1 alterative paths per node

See how this

works in CPSC 322, Lecture 2

http://www.aispace.org/mainTools.shtml

CPSC 322, Lecture 2 Slide 46

Analysis of DFS: Summary

• Is DFS complete? NO

• Depth-first search isn't guaranteed to halt on graphs with cycles.

• However, DFS is complete for finite acyclic graphs.

• Is DFS optimal? NO

• It can “stumble” on longer solution paths before it gets to

shorter ones.

• What is the time complexity, if the maximum path length is m

and the maximum branching factor is b ?

• O(bm) : must examine every node in the tree.

• Search is unconstrained by the goal until it happens to stumble on the

goal.

• What is the space complexity?

• O(bm)

• the longest possible path is m, and for every node in that path must

maintain a fringe of size b.

CPSC 322, Lecture 2 Slide 47

Appropriate

• Space is restricted (complex state representation e.g.,

robotics)

• There are many solutions, perhaps with long path lengths,

particularly for the case in which all paths lead to a

solution

Depth-first Search: When it is appropriate?

Inappropriate

• Cycles

• There are shallow solutions

CPSC 322, Lecture 2 Slide 48

Why DFS need to be studied and understood?

• It is simple enough to allow you to learn the basic

aspects of searching (When compared with

breadth first)

• It is the basis for a number of more sophisticated /

useful search algorithms

CPSC 322, Lecture 2 Slide 49

Breadth-first Search: BFS

• Breadth-first search treats the frontier as a queue

• it always selects one of the earliest elements added to the frontier.

Example:

• the frontier is [p1,p2, …, pr]

• neighbors of the last node of p1 are {n1, …, nk}

• What happens?

• p1 is selected, and its end tested for being a path to the goal.

• New paths are created attaching {n1, …, nk} to p1

• These follow pr at the end of the frontier.

• Thus, the frontier is now [p2, …, pr, (p1, n1), …, (p1, nk)].

• p2 is selected next.

CPSC 322, Lecture 2 Slide 50

Illustrative Graph - Breadth-first Search

 Analysis of BFS

51

Def. : A search algorithm is complete if whenever there is at

least one solution, the algorithm is guaranteed to find it

within a finite amount of time.

Is BFS complete? Yes No

CPSC 322, Lecture 2

 Analysis of BFS

52

Is BFS optimal? Yes No

Def.: A search algorithm is optimal if

 when it finds a solution, it is the best one

• E.g., two goal nodes: red

boxes

CPSC 322, Lecture 2

 Analysis of BFS

53

• What is BFS’s time complexity, in terms of m and b ?

• E.g., single goal node: red box

Def.: The time complexity of a search algorithm is

 the worst-case amount of time it will take to run,

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m) O(bm) O(bm) O(mb)

CPSC 322, Lecture 2

 Analysis of BFS

54

Def.: The space complexity of a search algorithm is the

 worst case amount of memory that the algorithm will use

 (i.e., the maximal number of nodes on the frontier),

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m) O(bm) O(bm) O(mb)

• What is BFS’s space complexity, in terms of m and b ?

- How many nodes at depth m?

CPSC 322, Lecture 2

CPSC 322, Lecture 2 Slide 55

Analysis of Breadth-First Search

• Is BFS complete?

• Yes

• In fact, BFS is guaranteed to find the path that involves the fewest

arcs (why?)

• What is the time complexity, if the maximum path length is

m and the maximum branching factor is b?

• The time complexity is ? ? must examine every node in the

tree.

• The order in which we examine nodes (BFS or DFS) makes no

difference to the worst case: search is unconstrained by the goal.

• What is the space complexity?

• Space complexity is ? ?

CPSC 322, Lecture 2 Slide 56

Using Breadth-first Search

• When is BFS appropriate?

• space is not a problem

• it's necessary to find the solution with the fewest arcs

• although all solutions may not be shallow, at least some

are

• When is BFS inappropriate?

• space is limited

• all solutions tend to be located deep in the tree

• the branching factor is very large

CPSC 322, Lecture 2 Slide 58

What have we done so far?

AI agents can be very complex and sophisticated

Let’s start from a very simple one, the deterministic,

goal-driven agent for which: the sequence of

actions and their appropriate ordering is the

solution

GOAL: study search, a set of basic methods

underlying many intelligent agents

We have looked at two search strategies DFS and BFS:

• To understand key properties of a search strategy

• They represent the basis for more sophisticated

(heuristic / intelligent) search

CPSC 322, Lecture 2 Slide 59

Recap: Comparison of DFS and BFS

 Complete Optimal Time Space

DFS

BFS

CPSC 322, Lecture 2 Slide 60

Lecture Overview

• Simple Agent and Examples

• Search Space Graph

• Search Procedure

• Criteria to compare Search Strategies

 • Simple (Uninformed) Search Strategies

• Depth First and Breadth First

• Uninformed Iterative Deepening (IDS)

• Search with Costs

CPSC 322, Lecture 2 Slide 61

Iterative Deepening (sec 3.6.3)

How can we achieve an acceptable (linear) space

complexity maintaining completeness and optimality?

Key Idea: let’s re-compute elements of the frontier rather

than saving them.

Complete Optimal Time Space

DFS

BFS

CPSC 322, Lecture 2 Slide 62

Iterative Deepening in Essence

• Look with DFS for solutions at depth 1, then 2, then 3,

etc.

• If a solution cannot be found at depth D, look for a

solution at depth D + 1.

• You need a depth-bounded depth-first searcher.

• Given a bound B you simply assume that paths of length

B cannot be expanded….

CPSC 322, Lecture 2 Slide 63

depth = 1

depth = 2

depth = 3

. . .

(Time) Complexity of Iterative Deepening
Complexity of solution at depth m with branching factor b

Total # of paths

at that level

#times created by

BFS (or DFS)
#times created

by IDS

Slide 64 CPSC 322, Lecture 2

CPSC 322, Lecture 2 Slide 65

(Time) Complexity of Iterative Deepening
Complexity of solution at depth m with branching factor b

Total # of paths generated

bm + 2 bm-1 + 3 bm-2 + ..+ mb =

bm (1+ 2 b-1 + 3 b-2 + ..+m b1-m)≤

)(
1

)(

2

1

1 mm

i

im bO
b

b
bibb 


















Further Analysis of Iterative Deepening DFS (IDS)

• Space complexity

• DFS scheme, only explore one branch at a time

• Complete?

• Only paths up to depth m, doesn't explore longer paths

– cannot get trapped in infinite cycles, gets to a solution

first

• Optimal?

66

O(bm)

Yes

Yes

O(bm)

CPSC 322, Lecture 2

CPSC 322, Lecture 2 Slide 67

Lecture Overview

• Simple Agent and Examples

• Search Space Graph

• Search Procedure

• Criteria to compare Search Strategies

 • Simple (Uninformed) Search Strategies

• Depth First and Breadth First

• Uninformed Iterative Deepening (IDS)

• Search with Costs

CPSC 322, Lecture 2 Slide 68

Example: Romania

CPSC 322, Lecture 2 Slide 69

Search with Costs

Sometimes there are costs associated with arcs.

Definition (cost of a path)

The cost of a path is the sum of the costs of its arcs:

Definition (optimal algorithm)

A search algorithm is optimal if it is complete, and only returns

cost-minimizing solutions.

In this setting we often don't just want to find just any solution

• we usually want to find the solution that minimizes cost

 ),cost(,,cost
1

10 



k

i

iik nnnn 

CPSC 322, Lecture 2 Slide 70

Lowest-Cost-First Search

• At each stage, lowest-cost-first search selects a path on the

frontier with lowest cost.

• The frontier is a priority queue ordered by path cost

• We say ``a path'' because there may be ties

• Example of one step for LCFS:

• the frontier is [p2, 5, p3, 7 , p1, 11,]

• p2 is the lowest-cost node in the frontier

• “neighbors” of p2 are {p9, 10, p10, 15}

• What happens?

• p2 is selected, and tested for being a goal.

• Neighbors of p2 are inserted into the frontier

• Thus, the frontier is now [p3, 7 , p9, 10, p1, 11,  p10, 15].

• ? ? is selected next.

• Etc. etc.

• When arc costs are equal LCFS is equivalent to..

None of the above

DFS

IDS

BFS

Slide 71 CPSC 322, Lecture 2

Analysis of Lowest-Cost Search (1)

• Is LCFS complete?

• not in general: for instance, a cycle with zero or negative

arc costs could be followed forever.

• yes, as long as arc costs are strictly positive

• Is LCFS optimal?

0 

see how this works in AIspace:
• e.g, add arc with cost -20 to the simple search graph from N4 to S

YES NO IT DEPENDS

Slide 72 CPSC 322, Lecture 2

CPSC 322, Lecture 2 Slide 73

Analysis of Lowest-Cost Search (1)

• Is LCFS complete?

• not in general: a cycle with zero or negative arc costs

could be followed forever.

• yes, as long as arc costs are strictly positive

• Is LCFS optimal?

• Not in general. Why not?

• Arc costs could be negative: a path that initially looks

high-cost could end up getting a ``refund''.

• However, LCFS is optimal if arc costs are guaranteed

to be non-negative.

CPSC 322, Lecture 2 Slide 74

Analysis of Lowest-Cost Search

• What is the time complexity, if the maximum path length is

m and the maximum branching factor is b?

• The time complexity is O(bm): must examine every

node in the tree.

• Knowing costs doesn't help here.

• What is the space complexity?

• Space complexity is O(bm): we must store the whole

frontier in memory.

• Apply basic properties of search algorithms:

completeness, optimality, time and space

complexity of search algorithms.

CPSC 322, Lecture 2 Slide 75

Learning Goals for Search (up to today)

Complete Optimal Time Space

DFS

BFS

CPSC 322, Lecture 2 Slide 76

Beyond uninformed search….

• So far the selection of the next path to

examine (and possibly expand) is based on

….

CPSC 322, Lecture 2 Slide 77

Next Class

• Heuristic Search

• Other Search Strategies

textbook.: 3.6 intro

3.6.1

3.7.1, 3.7.4

• Assignment 1 out today

• Start working on the practice exercises

• Select the most appropriate search algorithms for

specific problems.

• BFS vs DFS vs IDS vs BidirS-

• LCFS vs. BFS –

• A* vs. B&B vs IDA* vs MBA*

• Define/read/write/trace/debug different

search algorithms

• With / Without cost

• Informed / Uninformed
CPSC 322, Lecture 2 Slide 78

Learning Goals for Search (cont’)

(up to today)

CPSC 322, Lecture 2 Slide 79

Lecture Overview

• Recap

• Criteria to compare Search Strategies

• Simple (Uninformed) Search

Strategies

• Depth First

• Breadth First

• Apply basic properties of search algorithms:

completeness, optimality, time and space

complexity of search algorithms.

• Select the most appropriate search algorithms for

specific problems.

• BFS vs DFS vs IDS vs BidirS-

• LCFS vs. BFS –

• A* vs. B&B vs IDA* vs MBA*
CPSC 322, Lecture 2 Slide 80

Learning Goals for today’s class

CPSC 322, Lecture 2 Slide 81

Lecture Overview

• Recap DFS vs BFS

• Uninformed Iterative Deepening (IDS)

• Search with Costs

CPSC 322, Lecture 2 Slide 82

Recap: Graph Search Algorithm

In what aspects DFS and BFS differ when we look at the

generic graph search algorithm?

Input: a graph, a start node, Boolean procedure goal(n) that tests if n is a

goal node

frontier:= [<s>: s is a start node];

While frontier is not empty:

 select and remove path <no,….,nk> from frontier;

 If goal(nk)

 return <no,….,nk>;

For every neighbor n of nk

 add <no,….,nk, n> to frontier;

end

