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Search 
Computer Science cpsc322, Lecture 2 

(Textbook Chpt 3.0-3.4) 

 

May, 10, 2012 



Colored Cards 

• You need to have 4 colored index cards 

• Come and get them from me if you still don’t have them 

 

 

 

 

 

 

• You will use these as voting cards 

• Cheap low tech variant of clickers 

Please bring them to class every time 

 
 

2 CPSC 322, Lecture 2 



“Deterministic agent” means an agent that 

None of the above 

Has perfect knowledge of its environment 

Both of the above 

Has perfect knowledge of the effect that its 

actions can have on the environment 
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Modules we'll cover in this course: R&Rsys 

Environment 

Problem 

Query 

Planning 

Deterministic Stochastic 

Search 

Arc 
Consistency 

Search 

Search 
Value Iteration 

Var. Elimination 

Constraint 
Satisfaction 

Logics 

STRIPS 

Belief Nets 

Vars +  
Constraints 

Decision Nets 

Markov Processes 

Var. Elimination 

Static 

Sequential 

Representation 

Reasoning 

Technique 
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Lecture Overview 

• Simple Agent and Examples 

• Search Space Graph 

• Search Procedure 

• Criteria to compare Search Strategies 

 

 • Simple (Uninformed) Search Strategies 

• Depth First and Breadth First 

• Uninformed Iterative Deepening (IDS) 

• Search with Costs 
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Simple Planning Agent 

Deterministic, goal-driven agent 

• Agent is in a start state 

• Agent is given a goal (subset of possible states) 

• Environment changes only when the agent acts 

• Agent perfectly knows: 

•  what actions can be applied in any given state 

•  the state it is going to end up in when an 

action is applied in a given state 

 

 
• The sequence of actions and their appropriate 

ordering is the solution 
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Three examples 

1. A delivery robot planning the route it will take in a 
bldg. to get from one room to another 

 

 

2. Solving an 8-puzzle 

 

 

3. Vacuum cleaner world 
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Example1: Delivery Robot 
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Example 2: 8-Puzzle? 

 

 

 

Possible start state Goal state 



Eight Puzzle 

 
States: each state specifies which number/blank occupies each 

of the 9 tiles 

     HOW MANY STATES ?  
 

Operators: blank moves left, right, up down 
 

Goal: configuration with numbers in right sequence 
 

9! 89  99 29 
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Eight Puzzle 

 
States: each state specifies which number/blank occupies each 

of the 9 tiles 

     HOW MANY STATES ?  
 

Operators: blank moves left, right, up down 
 

Goal: configuration with numbers in right sequence 
 

9! 
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Example: vacuum world 

Possible start state Possible goal state 

• States 

• Two rooms: r1, r2 

• Each room can be 
either dirty or not 

• Vacuuming agent can 
be in either in r1 or r2 
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Example: vacuum world 

Possible start state Goal state 



Suppose we have the same problem with k rooms. 

The number of states is…. 

2 * kk 

k3 

k * 2k 

k * 2k 

….. 
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Suppose we have the same problem with k rooms. 

The number of states is…. 

k * 2k 

….. 
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Lecture Overview 

• Simple Agent and Examples 

• Search Space Graph 

• Search Procedure 

• Criteria to compare Search Strategies 

 

 • Simple (Uninformed) Search Strategies 

• Depth First and Breadth First 

• Uninformed Iterative Deepening (IDS) 

• Search with Costs 
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How can we find a solution? 

• How can we find a sequence of actions and their 

appropriate ordering that lead to the goal? 

• Define underlying search space graph where 

nodes are states and edges are actions. 

b4 

o107 o109 o111 

r109 r107 r111 

o113 r113 
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Search space for 8puzzle 
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Vacuum world: Search space graph 

states? Where it is dirty and robot location  

actions? Left, Right, Suck 

Possible goal test? no dirt at all locations  



CPSC 322, Lecture 2 Slide 21 

Lecture Overview 

• Simple Agent and Examples 

• Search Space Graph 

• Search Procedure 

• Criteria to compare Search Strategies 

 

 • Simple (Uninformed) Search Strategies 

• Depth First and Breadth First 

• Uninformed Iterative Deepening (IDS) 

• Search with Costs 
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Search: Abstract Definition 
 

 

 How to search 

• Start at the start state 

• Consider the effect of taking different actions 

starting from states that have been encountered 

in the search so far 

• Stop when a goal state is encountered 

 

To make this more formal, we'll need review the 

formal definition of a graph... 
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A graph consists of a set N of nodes and a set A of ordered 

pairs of nodes, called arcs. 
 

Node n2 is a neighbor of n1 if there is an arc from n1 to n2. That 

is, if  n1, n2   A. 
 

A path is a sequence of nodes n0,  n1,  n2  ,.., nk such that  ni-1, 
ni   A. 

 

A cycle is a non-empty path such that the start node is the 

same as the end node 
 

A directed acyclic graph (DAG) is a graph with no cycles 
 

Given a start node and goal nodes, a solution is a path from a 

start node to a goal node.  

Search Graph 
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Examples for graph formal def. 

a 

b c d e 

f g h i j k l n 
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Examples of solution 

• Start state b4, goal r113 

• Solution <b4, o107, o109, o113, r113>  

•   

 

 

b4 

o107 o109 o111 

r109 r107 r111 

o113 r113 
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Generic search algorithm: given a graph, start node, 

and goal node(s), incrementally explore paths 

from the start node(s). 
 

Maintain a frontier of paths from the start node that 

have been explored. 
 

As search proceeds, the frontier expands into the 

unexplored nodes until (hopefully!) a goal node is 

encountered. 
 

The way in which the frontier is expanded defines 

the search strategy. 

 

 

Graph Searching 
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Input: a graph, a start node, Boolean procedure goal(n) that 

tests if n is a goal node 

frontier:= [<s>: s is a start node];  

While frontier is not empty: 

      select and remove path  <no,….,nk> from frontier;  
      If goal(nk)  
              return <no,….,nk>;  

For every neighbor n of nk 

        add <no,….,nk, n> to frontier; 
end 

Generic Search Algorithm 
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Problem Solving by Graph Searching  

Ends of frontier 
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The forward branching factor of a node is the 

number of arcs going out of the node 

 

The backward branching factor of a node is the 

number of arcs going into the node 

 

If the forward branching factor of any node is b 

and the graph is a tree, how many nodes are 

n steps away from a node? 

 

 

Branching Factor 

nb nb bn n/b 
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• Search is a key computational mechanism in 

many AI agents  

• We will study the basic principles of search on the 

simple deterministic planning agent model 

Generic search approach:  

• define a search space graph,  

• start from current state,  

• incrementally explore paths from current state until goal 

state is reached. 
 

The way in which the frontier is expanded defines 

the search strategy. 

 

 

Summary Generic Search Approach 
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Searching: Graph Search Algorithm with three bugs  
 

 

 

 Input:  a graph,  

  a start node, 

  Boolean procedure goal(n) that tests if n is a goal node. 

frontier := { g: g  is a goal node }; 

while frontier   is not empty: 

 select  and remove path n0, n1, …, nk from frontier; 

 if goal(nk) 

  return nk ; 

 for every neighbor n  of nk 

  add     n0,  n1,  …,  nk      to frontier; 

end while 

 
• The goal   function defines what is a solution. 

• The neighbor   relationship defines the graph. 

• Which path  is selected from the frontier defines the 

search strategy. 
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Lecture Overview 

• Simple Agent and Examples 

• Search Space Graph 

• Search Procedure 

• Criteria to compare Search Strategies 

 

 • Simple (Uninformed) Search Strategies 

• Depth First and Breadth First 

• Uninformed Iterative Deepening (IDS) 

• Search with Costs 
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Comparing Searching Algorithms: will it find a 

solution? the best one? 

 

 

Def. (complete): A search algorithm is complete if, 

whenever at least one solution exists, the algorithm 

is guaranteed to find a solution within a finite 

amount of time. 
 

Def. (optimal): A search algorithm is optimal if, when 

it finds a solution , it is the best solution 



CPSC 322, Lecture 2 Slide 34 

Comparing Searching Algorithms: Complexity 

 

 

Def. (time complexity) 

The time complexity of a search algorithm is an expression for 

the worst-case amount of time it will take to run,  

• expressed in terms of the maximum path length m and the 

maximum branching factor b. 

Def. (space complexity) : The space complexity of a search 

algorithm is an expression for the worst-case amount of 

memory that the algorithm will use (number of nodes),  

• Also expressed in terms of m and b. 
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Learning Goals for today’s Part1 

• Identify real world examples that make use 

of deterministic, goal-driven planning 

agents  

• Assess the size of the search space of a 

given search problem.  

• Implement the generic solution to a search 

problem.  



CPSC 322, Lecture 2 Slide 36 

Lecture Overview 

• Simple Agent and Examples 

• Search Space Graph 

• Search Procedure 

• Criteria to compare Search Strategies 

 

 • Simple (Uninformed) Search Strategies 

• Depth First and Breadth First 

• Uninformed Iterative Deepening (IDS) 

• Search with Costs 
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Depth-first Search: DFS 
 

 

 

• Depth-first search treats the frontier as a stack 

• It always selects one of the last elements added 

to the frontier. 

Example: 

• the frontier is [p1, p2, …, pr] 

• neighbors of last node of p1 (its end) are {n1, …, nk} 

• What happens? 
• p1 is selected, and its end is tested for being a goal. 

• New paths are created attaching {n1, …, nk} to p1 

• These “replace” p1 at the beginning of the frontier. 

• Thus, the frontier is now [(p1, n1), …, (p1, nk), p2, …, pr] . 

• NOTE: p2 is only selected when all paths extending p1 have been 

explored. 
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Depth-first search: Illustrative Graph --- Depth-first Search Frontier 



 Analysis of DFS 

Def. : A search algorithm is complete  if whenever there is at 

least one  solution, the algorithm is guaranteed to find it 

within a finite   amount of time. 

 

Is DFS complete? No 

 

• If there are cycles in the graph, DFS may get “stuck” in one of them 

• see this in AISpace  by loading “Cyclic Graph Examples” or by 

adding a cycle to “Simple Tree”  

• e.g., click on “Create” tab, create a new edge from N7 to N1, go back 

to “Solve” and see what happens  
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 Analysis of DFS 

40 

Is DFS optimal? Yes No 

Def.: A search algorithm is optimal if  when it finds a solution, it 

is the best one (e.g., the shortest) 

• E.g., goal nodes: red boxes 
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 Analysis of DFS 

41 

Is DFS optimal? No 

Def.: A search algorithm is optimal if when it finds a solution, it 

is the best one (e.g., the shortest) 

• It can “stumble” on longer solution 

paths before it gets to shorter ones.  

• E.g., goal nodes: red boxes 

 

 

 

• see this in AISpace  by loading “Extended Tree Graph” and set N6 as a goal 

• e.g., click on “Create” tab, right-click on N6  and select “set as a goal node” 
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 Analysis of DFS 

42 

• What is DFS’s time complexity, in terms of m and b ? 

• E.g., single goal node -> red box 

Def.:  The time complexity  of a search algorithm is  

         the worst-case amount of time it will take to run,  

         expressed in terms of  

- maximum path length m  

- maximum forward branching factor b. 

O(b+m) O(bm) O(bm) O(mb) 
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43 

• What is DFS’s time complexity, in terms of m and b ? 

• In the worst case, must examine 

every node in the tree 

• E.g., single goal node ->  red box 

 

Def.:  The time complexity  of a search algorithm is  

         the worst-case amount of time it will take to run,  

         expressed in terms of  

- maximum path length m  

- maximum forward branching factor b. 

O(bm) 
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 Analysis of DFS 

44 

Def.: The space complexity of a search algorithm is the    

worst-case amount of memory that the algorithm will use   

     (i.e., the maximal number of nodes on the frontier),  

     expressed in terms of  

- maximum path length m  

- maximum forward branching factor b. 

 

O(b+m) O(bm) O(bm) O(mb) 

• What is DFS’s space complexity, in terms of m and b ? 

 

 

 

 

See how this  

works in  
CPSC 322, Lecture 2 
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Def.: The space complexity of a search algorithm is the  

         worst-case amount of memory that the algorithm will use   

     (i.e., the maximum number of nodes on the frontier),  

     expressed in terms of  

- maximum path length m  

- maximum forward branching factor b. 

 

O(bm) 

• What is DFS’s space complexity, in terms 

of m and b ? 

 

- for every node in the path currently explored, DFS 

maintains a path to its unexplored siblings in the 

search tree  

- Alternative paths that DFS needs to explore    

- The longest possible path is m, with a maximum of 

b-1 alterative paths per node                 

 

See how this  

works in  CPSC 322, Lecture 2 

http://www.aispace.org/mainTools.shtml
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Analysis of DFS: Summary 
 

 

 

• Is DFS complete?  NO 

• Depth-first search isn't guaranteed to halt on graphs with cycles. 

• However, DFS is complete for finite acyclic graphs.  

• Is DFS optimal? NO 

• It can “stumble” on longer solution paths before it gets to 

shorter ones.  

• What is the time complexity, if the maximum path length is m 

and the maximum branching factor is b ? 

• O(bm) :  must examine every node in the tree. 

• Search is unconstrained by the goal until it happens to stumble on the 

goal. 

• What is the space complexity? 

• O(bm) 

• the longest possible path is m, and for every node in that path must 

maintain a fringe of size b. 
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Appropriate 

• Space is restricted (complex state representation e.g., 

robotics) 

• There are many solutions, perhaps with long path lengths, 

particularly for the case in which all paths lead to a 

solution 

Depth-first Search: When it is appropriate? 

Inappropriate 

• Cycles 

• There are shallow solutions 
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Why  DFS need to be studied and understood? 
 

 

 
• It is simple enough to allow you to learn the basic 

aspects of searching (When compared with 

breadth first) 

 

 

• It is the basis for a number of more sophisticated / 

useful search algorithms 



CPSC 322, Lecture 2 Slide 49 

Breadth-first Search: BFS 
 

 

 

• Breadth-first search treats the frontier as a queue 

• it always selects one of the earliest elements added to the frontier. 

 

Example: 

• the frontier is [p1,p2, …, pr] 

• neighbors of  the last node of p1 are {n1, …, nk}  

• What happens? 

• p1 is selected, and its end tested for being a path to the goal.  

• New paths are created attaching {n1, …, nk} to p1 

• These follow pr at the end of the frontier. 

• Thus, the frontier is now [p2, …, pr, (p1, n1), …, (p1, nk)]. 

• p2 is selected next. 
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Illustrative Graph - Breadth-first Search 

 

 

 



 Analysis of BFS 

51 

Def. : A search algorithm is complete  if whenever there is at 

least one solution, the  algorithm is guaranteed to find it 

within a finite  amount of time. 

 

Is BFS complete? Yes No 
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 Analysis of BFS 

52 

Is BFS optimal? Yes No 

Def.: A search algorithm is optimal if 

        when it finds a solution, it is the best one 

• E.g., two  goal nodes: red 

boxes 
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 Analysis of BFS 

53 

• What is BFS’s time complexity, in terms of m and b ? 

• E.g., single goal node: red box 

Def.:  The time complexity  of a search algorithm is  

         the worst-case amount of time it will take to run,  

         expressed in terms of  

- maximum path length m  

- maximum forward branching factor b. 

O(b+m) O(bm) O(bm) O(mb) 
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 Analysis of BFS 

54 

Def.: The space complexity of a search algorithm is the  

         worst case amount of memory that the algorithm will use   

     (i.e., the maximal number of nodes on the frontier),  

     expressed in terms of  

- maximum path length m  

- maximum forward branching factor b. 

 

O(b+m) O(bm) O(bm) O(mb) 

• What is BFS’s space complexity, in terms of m and b ? 

 

 

 

- How many nodes at depth m? 

 

CPSC 322, Lecture 2 
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Analysis of Breadth-First Search 
 

 

 

• Is BFS complete? 

• Yes 

 

• In fact, BFS is guaranteed to find the path that involves the fewest 

arcs (why?) 

• What is the time complexity, if the maximum path length is 

m and the maximum branching factor is b? 

• The time complexity is ?           ? must examine every node in the 

tree. 

• The order in which we examine nodes (BFS or DFS) makes no 

difference to the worst case: search is unconstrained by the goal. 

• What is the space complexity? 

• Space complexity is ?                ? 
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Using Breadth-first Search 
 

 

 

• When is BFS appropriate? 

• space is not a problem 

• it's necessary to find the solution with the fewest arcs 

• although all solutions may not be shallow, at least some 

are 

• When is BFS inappropriate? 

• space is limited 

• all solutions tend to be located deep in the tree 

• the branching factor is very large 
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What have we done so far? 
 

 

 

AI agents can be very complex and sophisticated 

Let’s start from a very simple one, the deterministic, 

goal-driven agent for which: the sequence of 

actions and their appropriate ordering is the 

solution 

GOAL: study search, a set of basic methods 

underlying many intelligent agents 

We have looked at two search strategies DFS and BFS: 

• To understand key properties of a search strategy 

• They represent the basis for more sophisticated 

(heuristic / intelligent) search 
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Recap: Comparison of DFS and BFS 

 

 

 Complete Optimal Time Space 

DFS 

BFS 
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Lecture Overview 

• Simple Agent and Examples 

• Search Space Graph 

• Search Procedure 

• Criteria to compare Search Strategies 

 

 • Simple (Uninformed) Search Strategies 

• Depth First and Breadth First 

• Uninformed Iterative Deepening (IDS) 

• Search with Costs 
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Iterative Deepening (sec 3.6.3) 

How can we achieve an acceptable (linear) space 

complexity maintaining completeness and optimality? 
 
 

 

Key Idea: let’s re-compute elements of the frontier rather 

than saving them. 
 

Complete Optimal Time Space 

DFS 

BFS 
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Iterative Deepening in Essence 

 

• Look with DFS for solutions at depth 1, then 2, then 3, 

etc. 
 

• If a solution cannot be found at depth D, look for a 

solution at depth D + 1.  

 

• You need a depth-bounded depth-first searcher. 
 

• Given a bound B you simply assume that paths of length 

B cannot be expanded…. 
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depth = 1 
 

 

depth = 2 

 

 

 

 

depth = 3 

. . . 



(Time) Complexity of Iterative Deepening 
Complexity of solution at depth m with branching factor b 

 
Total # of paths 

at that level 

#times created by 

BFS (or DFS) 
#times created 

by IDS 
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(Time) Complexity of Iterative Deepening 
Complexity of solution at depth m with branching factor b 

 
Total # of paths generated 

bm + 2 bm-1 + 3 bm-2 + ..+ mb =  

bm (1+ 2 b-1 + 3 b-2 + ..+m b1-m )≤ 
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



Further Analysis of Iterative Deepening DFS (IDS) 

• Space complexity 

 

 

• DFS scheme, only explore one branch at a time 

 

• Complete? 

 

• Only paths up to depth m, doesn't  explore longer paths 

– cannot get trapped in infinite cycles, gets to a solution 

first 

• Optimal?  

 
66 

O(bm) 

Yes 

Yes 

O(bm) 
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Lecture Overview 

• Simple Agent and Examples 

• Search Space Graph 

• Search Procedure 

• Criteria to compare Search Strategies 

 

 • Simple (Uninformed) Search Strategies 

• Depth First and Breadth First 

• Uninformed Iterative Deepening (IDS) 

• Search with Costs 
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Example: Romania 
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Search with Costs 

Sometimes there are costs associated with arcs. 

Definition (cost of a path) 

The cost of a path is the sum of the costs of its arcs: 

 

 

 

 

Definition (optimal algorithm) 

A search algorithm is optimal if it is complete, and only returns 

cost-minimizing solutions. 

In this setting we often don't just want to find just any solution 

• we usually want to find the solution that minimizes cost 

  ),cost(,,cost
1

10 

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Lowest-Cost-First Search 
 

 

 

• At each stage, lowest-cost-first search selects a path on the 

frontier with lowest cost. 

• The frontier is a priority queue ordered by path cost 

• We say ``a path'' because there may be ties 

 

• Example of  one step for LCFS:  

• the frontier is [p2, 5, p3, 7 , p1, 11, ]  

• p2 is the lowest-cost node in the frontier 

• “neighbors” of p2 are {p9, 10, p10, 15} 

• What happens? 

• p2 is selected, and tested for being a goal. 

• Neighbors of p2 are inserted into the frontier 

• Thus, the frontier is now [p3, 7 , p9, 10, p1, 11,  p10, 15]. 

• ?         ? is selected next. 

• Etc. etc. 



• When arc costs are equal LCFS is equivalent to.. 

None of the above 

DFS 

IDS 

BFS 
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Analysis of Lowest-Cost Search (1) 
 

 

 
• Is LCFS complete? 

• not in general: for instance, a cycle with zero or negative 

arc costs could be followed forever. 

• yes, as long as arc costs are strictly positive 

 

 

• Is LCFS optimal? 

0 

see how this works in AIspace: 
• e.g, add arc with cost -20 to the simple search graph from N4 to S 

YES NO IT DEPENDS 

Slide 72 CPSC 322, Lecture 2 
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Analysis of Lowest-Cost Search (1) 
 

 

 
• Is LCFS complete? 

• not in general: a cycle with zero or negative arc costs 

could be followed forever. 

• yes, as long as arc costs are strictly positive 

 

 

• Is LCFS optimal? 

• Not in general.  Why not? 

• Arc costs could be negative: a path that initially looks 

high-cost could end up getting a ``refund''. 

• However, LCFS is optimal if arc costs are guaranteed 

to be non-negative. 
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Analysis of Lowest-Cost Search 
 

 

 
• What is the time complexity, if the maximum path length is 

m and the maximum branching factor is b? 

• The time complexity is O(bm): must examine every 

node in the tree. 

• Knowing costs doesn't help here.  

 

 

• What is the space complexity? 

• Space complexity is O(bm): we must store the whole 

frontier in memory. 



• Apply basic properties of search algorithms: 

completeness, optimality, time and space 

complexity of search algorithms.  
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Learning Goals for Search  (up to today) 

Complete Optimal Time Space 

DFS 

BFS 
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Beyond uninformed search….  

• So far the selection of the next path to 

examine (and possibly expand) is based on 

…. 
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Next Class 

• Heuristic Search  

• Other Search Strategies 

textbook.:  3.6 intro 

3.6.1 

3.7.1, 3.7.4 

• Assignment 1 out today 

• Start working on the practice exercises 



• Select the most appropriate search algorithms for 

specific problems.  

• BFS vs DFS vs IDS vs BidirS-  

• LCFS vs. BFS –  

• A* vs. B&B vs IDA* vs MBA* 

 

• Define/read/write/trace/debug different 

search algorithms   

• With / Without cost 

• Informed / Uninformed 
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Learning Goals for Search (cont’)  

(up to today) 
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Lecture Overview 

• Recap 

• Criteria to compare Search Strategies 

• Simple (Uninformed) Search 

Strategies 

• Depth First 

• Breadth First 



• Apply basic properties of search algorithms: 

completeness, optimality, time and space 

complexity of search algorithms.  

 

 

 

• Select the most appropriate search algorithms for 

specific problems.  

• BFS vs DFS vs IDS vs BidirS-  

• LCFS vs. BFS –  

• A* vs. B&B vs IDA* vs MBA* 
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Learning Goals for today’s class 
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Lecture Overview 

 

• Recap DFS vs BFS 

 

• Uninformed Iterative Deepening (IDS) 

 

• Search with Costs 
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Recap: Graph Search Algorithm  
 

 

 

In what aspects DFS and BFS differ when we look at the 

generic graph search algorithm?  

 

 

Input: a graph, a start node, Boolean procedure goal(n) that tests if n is a 

goal node 

frontier:= [<s>: s is a start node];  

While frontier  is not empty: 

      select and remove path  <no,….,nk> from frontier;  

      If goal(nk)  

              return <no,….,nk>;  

For every neighbor n of nk 

        add <no,….,nk, n> to frontier; 

end 


