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Colored Cards

* You need to have 4 colored index cards
« Come and get them from me if you still don’t have them

* You will use these as voting cards
* Cheap low tech variant of clickers

Please bring them to class every time
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“Deterministic agent” means an agent that

Has perfect knowledge of its environment

Has perfect knowledge of the effect that its
actions can have on the environment

Both of the above
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“Deterministic agent” means an agent that

Has perfect knowledge of its environment

Has perfect knowledge of the effect that its
actions can have on the environment

=) [ Both of the above

None of the above
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Lecture Overview

Simple Agent and Examples

Search Space Graph

Search Procedure

Criteria to compare Search Strategies

Simple (Uninformed) Search Strategies
* Depth First and Breadth First

Uninformed lterative Deepening (IDS)
Search with Costs
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Simple Planning Agent

Deterministic, goal-driven agent
« Agentis in a start state
* Agent is given a goal (subset of possible states)
* Environment changes only when the agent acts
* Agent perfectly knows:
» what actions can be applied in any given state

 the state it is going to end up in when an
action is applied in a given state

* The sequence of actions and their appropriate
ordering is the solution
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Three examples

. A delivery robot planning the route it will take in a
bldg. to get from one room to another

. Solving an 8-puzzle

. Vacuum cleaner world
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Example1: Delivery Robot
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Example 2: 8-Puzzle?

Possible start state Goal state
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Eight Puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

States: each state specifies which number/blank occupies each

of the 9 tiles
HOW MANY STATES? 89 29 9% |\ Ol

Operators:
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Eight Puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

States: each state specifies which number/blank occupies each
of the 9 tiles
HOW MANY STATES ? Ol

Operators: blank moves left, right, up down

Goal: configuration withaumbers Jn.Hght sequence Siide 12



Example: vacuum world

« States
. Two rooms: r1, r2

. Each room can be
either dirty or not

«  Vacuuming agent can
be in eitherinr1 orr2

2 —

gR | AR

Possible start state Possible goal state
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Example: vacuum world (j/
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F[ [ ]

Suppose we have the same problem with Arooms.
The number of states is....

k3
k * 2k

k * 2K
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F[ [ ]

Suppose we have the same problem with Arooms.
The number of states is....

k * 2K
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Lecture Overview

Simple Agent and Examples

Search Space Graph

Search Procedure

Criteria to compare Search Strategies

Simple (Uninformed) Search Strategies
* Depth First and Breadth First

Uninformed lterative Deepening (IDS)
Search with Costs
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How can we find a solution?

 How can we find a sequence of actions and their
appropriate ordering that lead to the goal?

» Define underlying search space graph where
nodes are states and edges are actions.

13 123 127 125 r123 121 119
storage

o131 0129 0127 o125 o123 o121  oll@ -
e - i o117 ;.,.m? '
| b4 R

@ 2 h3 0115 |/ 1115 0113 — r113

» b1 bz ¢ lﬂ Tl
P T Y = 0107—— 0109 —— 0111

mall ts 0101 0103 o105 |oi07 oo ot T l H
b

stairs 01 1103 105 [1&/ 1103 r

J/HOY r109  r111

T CPSC 322, Lecture 2 Slide 18




Search space for 8puzzle
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Vacuum world: Search space graph
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Lecture Overview

Simple Agent and Examples

Search Space Graph

Search Procedure

Criteria to compare Search Strategies

Simple (Uninformed) Search Strategies
* Depth First and Breadth First

Uninformed lterative Deepening (IDS)
Search with Costs
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Search: Abstract Definition

How to search
. Start at the start state =

* Consider the effect of taking different actions
starting from states that have been encountered
In the search so far

« Stop when a goal state is encountered

To make this more formal, we'll need review the
formal definition of a graph...
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Search Graph

A graph consists of a set Nof nodes and a set A of ordered
pairs of nodes, called arcs.

Node n,is a neighborof n. if there is an arc from n,to n,. That
s, if ( n, n,) e A

A pathis a sequence of nodes n, n, n,,.., n,such that{ n_,

n;) e A.

A cycleis a non-empty path such that the start node is the
same as the end node @

A directed acyclic graph (DAG) is a graph with no cycles

Given a start node and goal nodes, a solufionis a path from a

start node to a goal node.
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Examples for graph formal def.
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Examples of solution

e Start statoal r113
e Solution <b4, 0107, 0109, 0113, r113>
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Graph Searching

Generic search algorithm: given a graph, start node,
and goal node(s), incrementally explore paths
from the start node(s).

Maintain a frontier of paths from the start node that
have been explored.

As search proceeds, the frontier expands into the
unexplored nodes until (hopefully!) a goal node is
encountered.

The way in which the frontier is expanded defines i/-

the search strategy.
CPSC 322, Lecture 2 Slide 26



Generic Search Algorithm

\

Input: (a graph] a start node, Boolean procedure goa/(n) that
tests if nis a goal node
frontier:=[<s>: sis a start node];
While(7rontieris motempty)
—select and remove path <n,, > from frontier; |
/_@ A L
—return <n,,....,n>; Mw‘«é \@Q\D
— For every neighbor 17 o7 w o
—> add <n,,....,n,, n>to frontier;
end .
No s«n J g \ OV) @uv\q ) ‘F‘rowé’if"’ 1.
X | LAS |KADED
( %L
{— N =\ _
ST —(E . qeel(B)=T %
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Problem Solving by Graph Searching

Ends of 'ﬁr?er |

unexplored nodes
path S




Branching Factor

The forward branching factor of a node is the

number of arcs going out of the node
>

The backward branching factor of a node is the
number of arcs going into the node

L

If the forward branching factor of any node is b
and the graph is a tree, how many nodes are

n steps away from a node?

nb bn n° n/b

é n=*% 2
< CPSC 322, Lecture 2 Slide 29
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Summary Generic Search Approach

+ Search is a key computational mechanism in <

many Al agents

« We will study the basic principles of search on the
simple deterministic planning agent model
Generic search approach:
* define a search space graph,
e start from current state,

* incrementally explore paths from current state until goal
state is reached.

The way In which the frontier is expanded defines™

the search strategy.
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Searching: Graph Search Algorithm with three bugs ®

Input: a graph,
a start node,
Boolean procedure goal(n)that tests if nis a goal node.
)<front/er:={(g):g is a goal node };<— shoold be (udizted w &l
. . : _ <t=cC mod(
while frontier is not empty:
select and remove path (1, n,, ..., n,)from frontier, <—

ii? i/e(:lj)rﬁn,) (o shonbd retvrin the pathy

for every neighbdt_n)of n,

<_ add ( m ) to frontier, 4_/\//
\ 3

end while

 The goal/ function defines what is a solution.
« The neighbor relationship defines the graph.

« Which path is selected from the frontier defines thi&

search strategy.
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Lecture Overview

Simple Agent and Examples

Search Space Graph

Search Procedure

Criteria to compare Search Strategies

Simple (Uninformed) Search Strategies
* Depth First and Breadth First

Uninformed lterative Deepening (IDS)
Search with Costs
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Comparing Searching Algorithms: will it find a
solution? the best one?

Def. (complete): A search algorithm is complete if,
whenever at least one solution exists, the algorithm
is guaranteed to find a solution within a finite
amount of time.

Def. (optimal): A search algorithm is optimal if, when
it finds a solution , it is the best solution
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Comparing Searching Algorithms: Complexity

Def. (time complexity)

The time complexity of a search algorithm is an expression for
the worst-case amount of time it will take to run,

* expressed in terms of the maximum path length m and the
maximum branching factor b.

Def. (space complexity) : The space complexity of a search
algorithm is an expression for the worst-case amount of
memory that the algorithm will use (number of nodes),

* Also expressed in terms of mand b.
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Learning Goals for today’s Part1

» |dentify real world examples that make use
of deterministic, goal-driven planning

agents How WO poss ble stdes

» Assess the size of the search space of a¢~
given search problem.

: : [
* Implement the generic solution to a search

problem. cec slse Muvs Explover
Lectore A
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Lecture Overview

Simple Agent and Examples

Search Space Graph

Search Procedure

Criteria to compare Search Strategies

23D rvivms BREAK
Simple (Uninformed) Search Strategies
* Depth First and Breadth First

Uninformed lterative Deepening (IDS)
Search with Costs
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Depth-first Search: DFS

* Depth-first search treats the frontier as a stack

* |t always selects one of the last elements added
to the frontier.

\da Fhese
e A \nm w
Example: ¢ Af f O pdded \jmtrcb\fﬁ
* the frontier i3 /o, o, ..., p] speordred T

* neighbors of last node of p, (fits end) are {n,, ..., n}

« What happens? o
* p,is selected, and its end is tested for being a goal. l«{- na. ..

* New paths are created attachlng {n, ... njtop, K wew PZ‘\‘L\S
* These “replace” p,at the beginning of the frontier”

* Thus, the frontier is now[(p7 ny) ..., (P; nk)@ , P -
. NOT 5 only selected when all paths extending p, have been

explored.
Slide 37
AJ)space -
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Depth-first search: lllustrative Graph --- Depth-first Search Frontier
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Analysis of DFS

Def. : A search algorithm is complete if whenever there is at
least one solution, the algorithm is guaranteed to find it
within a finite amount of time.

O
Is DFS complete? NoO /@.

N
o Sodwidh
@be gR O/@%) ORR §©
oo & 3O

If there are cycles in the graph, DFS may get “stuck” in one of them
see this in AlSpace by loading “Cyclic Graph Examples” or by
adding a cycle to “Simple Tree”

e.g., click on “Create” tab, £rgatg 2 neyy.edge from N7 to N1, go bgek 44
to “Solve” and see what happens




Analysis of DFS

Def.: A search algorithm is optimal if when it finds a solution, it
is the best one (e.g., the shortest)

Is DFS optimal?  Yes No /O\

R@\Q 3
AL ORY OR
TR

O
* E.g., goal nodes: red boxes O ? @ OR R

OO
Ow O 0O
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Analysis of DFS

Def.: A search algorithm is optimal if when it finds a solution, it
Is the best one (e.g., the shortest)

s DFS optimal? | No /O\Q

LR

It can “stumble” on longer solution O
paths before it gets to shorter ones. g ?R? Q/@ p QRR§ O
ONO

E.g., goal nodes: red boxes

see this in AlSpace by loading “Extended Tree Graph” and set N6 as a goal
e.g., click on “Create” tab, right-click on N6 and select “set as a goal node”
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Analysis of DFS

Def.: The time complexity of a search algorithm is

the worst-case amount of time it will take to run,
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

 What is DFS’s time complexity, in terms of mand b ?

O
o(™ O(md O(mm) [Ob+m) R/Q«Q?\ Qp\R

ST ORS R R

* E.g., single goal node -> red box ﬁ) R @/@% O RO Q

@O ?ORQ‘O
o O OO0
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Analysis of DFS

Def.: The time complexity of a search algorithm is

the worst-case amount of time it will take to run,
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

 What is DFS’s time complexity, in terms of mand b ?

O

O(b™) R/@@\ C{/O\R
A ORE KPR
* In the worst case, must examine @ R @/@{ O RO
every node in the tree OO O ? O RO‘
E.g., single goal node -> red box ONO O O 9
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Analysis of DFS

Def.: The space complexity of a search algorithm is the
worst-case amount of memory that the algorithm will use
(i.e., the maximal number of nodes on the frontier),
expressed in terms of
- maximum path length m
- maximum forward branching factor b.

« What is DFS’s space complexity, interms of mand b ?

O™ O(m®) O(bm) Ofb+m) o

/@g@g\\OQR@RR
See how this @ R ®/@% © ROR
works in p@@@ ©® O 9 O ROO
CPSC 322, Lecture 2 @ @ Q Q Q


http://www.aispace.org/mainTools.shtml

Analysis of DFS

Def.: The space complexity of a search algorithm is the

worst-case amount of memory that the algorithm will use
(i.e., the maximum number of nodes on the frontier),
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

« What is DFS’s space complexity, in terms O~

POEED. N
ofmandb ? O(bm) /@R@ %@C{R@RR
- for every node in the path currently explored, DFS %) ;i{ @ﬁ O %O %

maintains a path to its unexplored siblings in the © ®) Q g) O RQQ
search tree
o O OO

Alternative paths that DFS needs to explore

- The longest possible path is m, with a maximum of See how this
b-1 alterative paths per node ©FSC 322, Lecture 2 works in P@@@


http://www.aispace.org/mainTools.shtml

Analysis of DFS: Summary
Is DFS complete? NO

* Depth-first search isn't guaranteed to halt on graphs with cycles.
* However, DFS /s complete for finite acyclic graphs.

Is DFS optimal? NO

It can “stumble” on longer solution paths before it gets to
shorter ones.

What is the time complexity, if the maximum path length is m
and the maximum branching factoris 6 ?
* O("): must examine every node in the tree.
* Search is unconstrained by the goal until it happens to stumble on the
goal.

What is the space complexity?
* O(bm)
* the longest possible path is m, and for every node in that path must

maintain a fringe of size b.
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Depth-first Search: When it is appropriate?

Appropriate P
« Space is restricted (complex state representation e.g.,Zf
robotics) Y
L,

 There are many solutions, perhaps with long path lengths,
particularly for the case in which all paths lead to a

solution p@@@

Inappropriate
* Cycles
* There are shallow solutions

o 1t Yon care oyt OPJ'\W\él ‘{‘vl
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Why DFS need to be studied and understood?

* |tis simple enough to allow you to learn the basic
aspects of searching (When compared with
breadth first)

/

* |tis the basis for a number of more sophisticated /
useful search algorithms
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Breadth-first Search: BFS

» Breadth-first search treats the frontier as a queue
* it always selects one of the earliest elements added to the frontier.

Example: fogf /69‘)5\/‘

* the frontier Q[pﬁpz, p_,f

* neighbors of the last node of p,are {n,, ..., n/}
« What happens? S

* p,is selected, and its end tested for being a path to the goal.

* New paths are created attaching {n,, ..., n,jtop,
These follow p, at the end of the frontier.

Thus, the frontier is now /p,, ..., 'O"LM’ ey (P, n,é}
* p,is selected next. @)space
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Analysis of BFS

Def. : A search algorithm is complete if whenever there is at
least one solution, the algorithm is guaranteed to find it
within a finite amount of time.

Is BFS complete? Yes No JO, /@\
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Analysis of BFS

Def.: A search algorithm is optimal if
when it finds a solution, it is the best one

Is BFS optimal?  Yes No JO, ON

- E.g.,two goal nodes: red O © 9O
boxes ?R R ﬂ R
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Analysis of BFS

Def.: The time complexity of a search algorithm is

the worst-case amount of time it will take to run,
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

 What is BFS’s time complexity, in terms of m and b ?

O
O(b™ O(mP) O(bm) Ob+m) R/Q@\ @/@\R

@ 0 @ W
* E.g., single goal node: red box QP'/(;% Q%‘q (%D\ Q%R
O? %)O ? O QOO
oo O O

v

CPSC 322, Lecture 2
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Analysis of BFS

Def.: The space complexity of a search algorithm is the

worst case amount of memory that the algorithm will use
(i.e., the maximal number of nodes on the frontier),
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

« What Is BFS’s space complexity, in terms of mand b ?
O(b™ O(mb) O(bm) O(b+m) Jodiy N
SRR R
5 BRD 26 R
How many nodes at depth m? ¥ ,@\ QR @ ROR
OCP CPO ?D O ROO
oo O 0O
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Analysis of Breadth-First Search

* Is BFS complete?

° Yes p@@@

* |Infact, BFS is guaranteed to find the path that involves the fewest
arcs (why?) @)space
« What is the time complexity, if the maximum path length is
m and the maximum branching factor is 57

* The time complexity is 76""‘ ?must examine every node in the
tree. 0

* The order in which we examine nodes (BFS or DFS) makes no
difference to the worst case: search is unconstrained by the goal.

« What is the space complexity?

* Space complexity i30<b W‘) ?
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Using Breadth-first Search

 When is BFS appropriate? A
* space is not a problem & O(aé/t‘/‘/‘ ‘A”/\
* it's necessary to find the solution with the fewest arcs

* although all solutions may not be shallow, at least some
are

 When is BFS inappropriate?
* space is limited
* all solutions tend to be located deep in the tree (
* the branching factor is very large

T~
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What have we done so far?

GOAL.: study search, a set of basic methods
underlying many intelligent agents

Al agents can be very complex and sophisticated

Let’s start from a very simple one, the deterministic,
goal-driven agent for which: the sequence of
actions and their appropriate ordering is the
solution

We have looked at two search strategies DFS and BF S:
« To understand key properties of a search strategy

* They represent the basis for more sophisticated
(heuristic / intelligent) search
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Recap: Comparison of DFS and BFS

Complete Optimal | Time Space
DFS TN “ RN

Y wo %{a{ej\ y\/ 0(6 >O@ M>
BFS T \[/ %, ( bw ) O@ vvn)

CPSC 322, Lecture 2
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Lecture Overview

Simple Agent and Examples

Search Space Graph

Search Procedure

Criteria to compare Search Strategies

Simple (Uninformed) Search Strategies
* Depth First and Breadth First

Uninformed Iterative Deepening (IDS)
Search with Costs
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lterative Deepening (sec 3.6.3) \

How can we achieve an acceptable (linear) space

complexity maintaining completeness and optimality?

Complete Optimal | Time Space
DFS ,\/ M 6 7 — 5
BFS \( &[/ )O L 5 g
Lps| 1 T L™ | wmb

Key ldea: let’s re-compute elements of the frontier rather
than saving them.

CPSC 322, Lecture 2
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lterative Deepening in Essence

Look with DFS for solutions at depth 1, then 2, then 3,
etc. o - B

If a solution cannot be found at depth D, look for a
solution at depth D+ 1.

You need a depth-bounded depth-first searcher.

Given a bound B you simply assume that paths of length
B cannot be expanded....
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(Time) Complexity of lterative Deepening

Complexity of solution at depth m with branching factor’ 6
fotelat of paths credted by 1155

Total # of paths #times created by  #times created E
at that level BFS (or DFS) by IDS ?

b { M
bl | -~ |

l
\

B

\
(
t |
\
2

™
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(Time) Complexity of lterative Deepening
Complexity of solution at depth m with branching factor b

Total # of paths generated

AL B

b+ 2677 + 304+ ..+ mb=4

@£+2b7 +3b2 +.4m b )<

A

&=

—0O(b™)

[y
N
o

V)

NS

L, =L
L =7
b =4 712

s
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Further Analysis of lterative Deepening DFS (IDS)
« Space complexity

O(bm)

* DFS scheme, only explore one branch at a time

« Complete?

Yes

* Only paths up to depth m, doesn't explore longer paths
— cannot get trapped in infinite cycles, gets to a solution
first

° Optlmal'? Yes

CPSC 322, Lecture 2
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Lecture Overview

Simple Agent and Examples

Search Space Graph

Search Procedure

Criteria to compare Search Strategies

Simple (Uninformed) Search Strategies
* Depth First and Breadth First

Uninformed lterative Deepening (IDS)
Search with Costs
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Example: Romania
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CPSC 322, Lecture 2 Slide 68



Search with Costs

Sometimes there are costs associated with arcs.

Definition (cost of a path)
The cost of a path is the sum of the costs of its arcs:

In this setting we often don't just want to find just any solution
« we usually want to find the solution that minimizes cost

Definition (optimal algorithm)
A search algorithm is optimal if it is complete, and only returns
cost-minimizing solutions.
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Lowest-Cost-First Search

« At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

« The frontier is a priority queue ordered by path cost
* We say a path" because there may be ties

« Example of one step for LCFS:

* the frontieris fp,, 5), (b5 7)., (P, 11),]
. @is the lowest-cost node in the frontier

* “neighbors” of p,are {(p, 70), (D15 15)}
* What happens?

* p,is selected, and tested for being a goal.
Neighbors of p,are inserted into the frontier

Thus, the frontier is now [f(p,, 7, ; 17), (P 15)].

? ﬁog ? is selected next.
Etc. etc. CPSC 322, Lecture 2 @@@ Slide 70



 When arc costs are equal LCFS is equivalent to..

DFS

BFS

IDS

=
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Analysis of Lowest-Cost Search (1)

* |Is LCFS complete?

* not in general: for instance, a cycle with zero or negative
arc costs could be followed forever.

* yes, as long as arc costs are strictly positive > & >0

see how this works in Alspace: @space
* e.¢, add arc with cost -20 to the simple search graph from N4 to S

e |s LCFS optimal?
PEV O VES  NO | IT DEPENDS
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Analysis of Lowest-Cost Search (1)

* |Is LCFS complete?

* not in general: a cycle with zero or negative arc costs
could be followed forever. @space

. .. ¢
* yes, as long as arc costs are strictly positive- S O

* Is LCFS optimal? < Q —L2 .
* Notin general. Why not? 5 G

* Arc costs could be negative: a path that initially looks
high-cost could end up getting a " refund".

* However, LCFS /s optimal if arc costs are guaranteed

to be non-negative. L2 O
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Analysis of Lowest-Cost Search

« What is the time complexity, if the maximum path length is

m and the maximum branching factor is 67
* The time complexity iust examine every
node in the tree.

* Knowing costs doesn't help here.

 What is the space complexity?
* Space complexity is{ O )/we must store the whole

frontier in memory.
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Learning Goals for Search (up to today)

* Apply basic properties of search algorithms:

completeness, optimality, time and space

complexity of search algorithms.

Complete  |Optimal | Time Space
DFS N N b b v
BFS \ <’ % T
DS T Y /) b
LEFS | /L\{. C>0 \(/\1)'# 3! b L
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Beyond uninformed search....

» So far the selection of the next path to
examine (and possibly expand) is based on

CPSC 322, Lecture 2 Slide 76



» Assignment 1 out today
 Start working on the practice exercises

Next Class
* Heuristic Search
« Other Search Strategies

textbook.: 3.6 intro

3.6.1
3.7.1,3.7.4
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Learning Goals for Search (cont’)
(up to today)

« Select the most appropriate search algorithms for
speC|f|c problems.

* BES vs DFS vs IDS vs—B+eI+|=S W f e e
LCFS ys TBFS+

*

» Define/read/write/trace/debug different
search algorithms
* With / Without cost
* lnfermed / Uninformed
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Lecture Overview

* Recap
» Criteria to compare Search Strategies

» Simple (Uninformed) Search
Strategies
* Depth First ,@ opace

® w”\’{/‘
st C MMW& |
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Learning Goals for today’s class
* Apply basic properties of search algorithms:

completeness,)optimality] timeland space
complexity of search algorithms. &
Comipo Qyﬂ%‘%t N Eiaed

e
5 DFg —‘>“\:;l5e EHQ bW\ \ ! &

BFS  STewe e N b

» Select the most appropriate search algorithms for
/gpecific problems. et & \ectures

——

e BFS vs DFS v& IDS vs BiditS-

* LCFS vs. BFS - M’Ormcc\
*/A* vs. B&B vs IDA”™ vs MBA*
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Lecture Overview

« Recap DFS vs BFS

* Uninformed Iterative Deepening (IDS)

o Search with Costs
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Recap: Graph Search Algorithm

Input: a graph, a start node, Boolean procedure goal(n)that tests if nis a
goal node

frontier:=[<s>: sis a start node];
While frontier is not empty:
select and remove path <n,,....,n> from frontier;

If goal(n,) PP
return <n,,....,n>; \> NN PD
For every neighbor nof n, ¢ ws\z\/ & DN
add <n,,....,n, n>to frontier; V (\Wﬁ\/\
end AP

In what aspects DFS and BFES_differ when we look at the
generic graph search algorithm?
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