Reasoning Under Uncertainty: Bnet Inference

(Variable elimination)

Computer Science cpsc322, Lecture 29

(Textbook Chpt 6.4)

March, 26, 2010

CPSC 322, Lecture 29

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Intro

Learning Goals for Wed's class

You can:

- In a Belief Net, determine whether one variable is independent of another variable, given a set of observations.
- Define and use Noisy-OR distributions.
 Explain assumptions and benefit.
- Implement and use a naïve Bayesian
 classifier. Explain assumptions and benefit.

n Boolean variables, <u>k max.</u> number of parents

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Bnet Inference

• Our goal: compute probabilities of variables in a belief network

What is the posterior distribution over one or more variables, conditioned on one or more observed variables?

Bnet Inference: General

- Suppose the variables of the belief network are X_1, \dots, X_n . • \hat{Z} is the query variable
- $Y_1 = v_1, \dots, Y_j = v_j$ are the observed variables (with their values)

CPSC 322. Lecture 29

- Z_1, \ldots, Z_k are the remaining variables
- What we want to compute:

$$P(Z \mid Y_1 = \gamma_1, \dots, Y_j = \gamma_j) \not \sim$$

Example: $P(L | S = t, R = f)^{L}$ $Z \iff L$ $Y_{2} Y_{2} \iff S, R$ $T_{1} T_{2} \iff S, R$ $T_{1} T_{2} \iff S, R$

Slide 8

What do we need to compute?
Remember conditioning and marginalization...

$$P(L | S = t, R = f) = P(L, S = t, R = f) \in O$$

 $P(S = t, R = f) = P(S = t, R = f) (2)$

L	S	R	P(L, S=t, R=f)	
t	t	f	, 3	
f	t	f	• 2	

Do they have to sum up to one? ທຸດ

		·			($\overline{3}$
	_	L	S	R	<i>P(L</i> <i>S=t, R=f</i>)	
<u> </u>	7	t	t	f	. 6	-
		f	t	f	.4]9

In general.....

$$P(Z | Y_1 = v_1, \dots, Y_j = v_j) = \boxed{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}_{P(Y_1 = v_1, \dots, Y_j = v_j)} = \underbrace{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}_{Z} P(Z, Y_1 = v_1, \dots, Y_j = v_j)}$$

- We only need to **compute the** humersfor and then **normalize**
- This can be framed in terms of **operations between factors** (that satisfy the semantics of probability)

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Factors

P(Z|XY)

f

t

f

f

Ζ

t

val

0.1

0.9

0.2

0.8

0.4

0.6

03

0.7

- A factor is a representation of a function from a tuple of random variables into a number. (2)
- We will write factor f on variables X_1, \dots, X_j as $f(X_1, \dots, X_j)$
- A factor denotes one or more (possibly partial) distributions over the given tuple of variables
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$ Distribution
 - e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor Partial distribution $\underbrace{\frac{t}{t}}_{t}$
- e.g., $P(Z \mid X, Y)$ is a factor f(Z, X, Y) f(X, Y, Z)
- e.g., $P(X_1, X_3 = v_3 / X_2)$ is a factor Set of partial $f(X_1, X_2)_{X_3 = v_3}$ Distributions

CPSC 322, Lectı

Manipulating Factors:

We can make new factors out of an existing factor

Our first operation: we can <u>assign</u> some or all of the variables of a factor.

Ζ Y Х val t t 0.1 t f 0.9 t f t 02 t f(X,Y,Z): f f 0.8 Ŧ 0.4ŧ 0.60.3 **U.**7

What is the result of assigning X=t?

f(X=t,Y,Z)

 $f(X, Y, Z)_{X = t}$

More examples of assignment

CPSC 322, Lecture 29

Summing out a variable example

Our second operation: we can *sum out* a variable, say X_1 with domain $\{v_1, ..., v_k\}$, from factor $f(X_1, ..., X_j)$, resulting in a factor on $X_2, ..., X_j$ defined by:

Multiplying factors

•Our third operation: factors can be *multiplied* together.

Multiplying factors: Formal

•The **product** of factor $f_1(A, B)$ and $f_2(B, C)$, where *B* is the variable in common, is the factor $(f_1 \times f_2)(A, B, C)$ defined by:

$$f_1(A,B)f_2(B,C) = [f_1 \times f_2)(A,B,C)$$

$$\downarrow \neq \downarrow \neq AB$$

Note1: it's defined on all <u>A</u>, <u>B</u>, <u>C</u> triples, obtained by multiplying together the appropriate pair of entries from f_1 and f_2 .

Note2: A, B, C can be sets of variables

Factors Summary

- A factor is a representation of a function from a tuple of random variables into a number.
 - $f(X_1, \ldots, X_j)$.
- We have defined three operations on factors:
 - 1. Assigning one or more variables
 - $f(X_1 = v_1, X_2, ..., X_j)$ is a factor on $X_2, ..., X_j$, also written as $f(X_1, ..., X_j)_{X_1 = v_1}$
 - 2. <u>Summing out variables</u>

•
$$(\sum_{X_1} f)(X_2, \ldots, X_j) = f(X_1 = v_1, X_2, X_j) + \ldots + f(X_1 = v_k, X_2, X_j)$$

3. Multiplying factors

• $f_1(A, B) f_2(B, C) = (f_1 \times f_2)(A, B, C)$

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Intro Variable elimination Algo

Variable Elimination Intro

- Suppose the variables of the belief network are X_1, \dots, X_n . • Z is the query variable
- • $Y_1 = v_1, ..., Y_j = v_j$ are the observed variables (with their values) • $Z_1, ..., Z_k$ are the remaining variables
- What we want to compute: $\left| P(Z \mid Y_1 = \gamma_1, \dots, Y_j = \gamma_j) \right|$
- We showed before that what we actually need to compute is

$$P(Z, Y_1 = \gamma_1, ..., Y_j = \gamma_j)$$

This can be computed in terms of **operations between factors** (that satisfy the semantics of probability)

Variable Elimination Intro

• If we express the joint as a factor,

• We can compute $P(Z, Y_1 = v_1, \dots, Y_j = v_j)$ by ??

•assigning
$$Y_1 = v_1, \dots, Y_j = v_j$$

observed

 $f(Z, Y_{1}, Y_{j}, Y_{j})$

•and summing out the variables $Z_1, ..., Z_k$

$$\underbrace{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}_{Z_k} = \underbrace{\sum_{Z_k} \dots \sum_{Z_1} f(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hn's is He}}_{\text{Hn's is He}}$$

CPSC 322, Lecture 29

Learning Goals for today's class

You can:

- Define factors. Derive new factors from existing factors. Apply operations to factors, including assigning, summing out and multiplying factors.
- (*Minimally*) Carry out variable elimination by using factor representation and using the factor operations. Use techniques to simplify variable elimination.

Next Class

Variable Elimination

- The algorithm
- An example

Course Elements

- Practice Exercises available on Vista, two on <
 Bnets. See course Bboard for instructions.
- Assignment 3 is due on Monday!
- Assignment 4 will be available on Wednesday and due on Apr the 14th (last class).