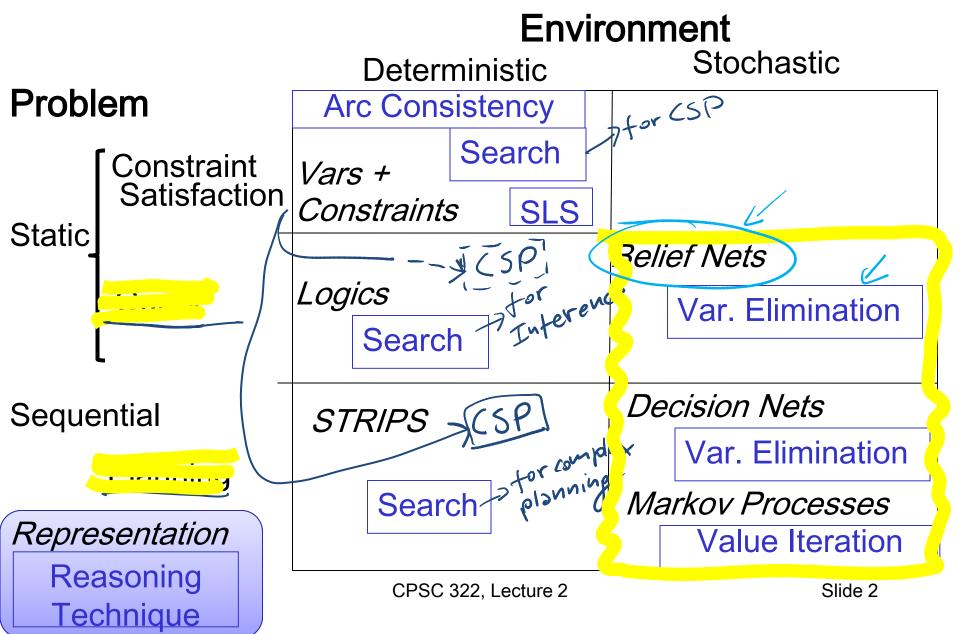
Reasoning Under Uncertainty: Belief Networks

Computer Science cpsc322, Lecture 27

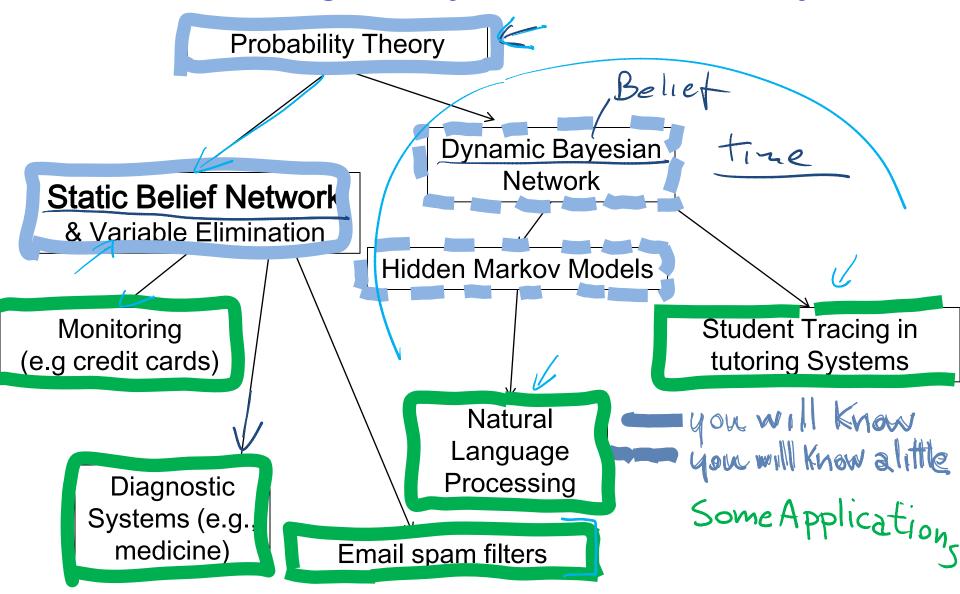
(Textbook Chpt 6.3)

March, 22, 2010

Big Picture: R&R systems



Answering Query under Uncertainty



Key points Recap

- We model the environment as a set of . Tandom vor s
 - $\times_1 \cdot \ldots \times_n \quad \text{JPD} \ \mathbb{P}(\times_1 \cdot \ldots \times_n)$
- Why the joint is not an adequate representation?

"Representation, reasoning and learning" are "exponential" in ...

Solution: Exploit, marginal & conditional, independence

$$P(X|Y) = P(X) \qquad P(X|YZ) = P(X|Z)$$

But how does independence allow us to simplify the joint? CHAIN RULE

Lecture Overview

- Belief Networks
 - Build sample BN
 - Intro Inference, Compactness, Semantics
 - More Examples

Belief Nets: Burglary Example

There might be a **burglar** in my house

The anti-burglar alarm in my house may go off

I have an agreement with two of my neighbors, John and Mary, that they call me if they hear the alarm go off when I am at work

Minor earthquakes may occur and sometimes the set off the alarm.

$$M = 5$$

Variables:
$$^{B}AMJE$$
 $_{M=5}$

Joint has $^{5}-1$ entries/probs $^{2^{N}}-1$

Belief Nets: Simplify the joint

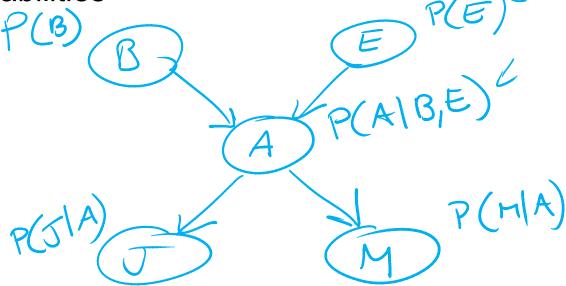
 Typically order vars to reflect causal knowledge (i.e., causes before effects)

- A burglar (B) can set the alarm (A) off
- An earthquake (E) can set the alarm (A) off
- The alarm can cause Mary to call (M)
- The alarm can cause John to call (J)

 Simplify according to marginal&conditional independence

Belief Nets: Structure + Probs

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities



Directed Acyclic Graph (DAG)

.90

.05

F

Burglary: complete BN (CE)

P(B=T)	P(B=F)				P(E=T)	P(E=F)
.001	.999	Butglary		Earthquak	.002	.998
					PCA B,	E)
			В	E	P(A=T B,E)	P(A=F B,E)
			Т	Т	.95	.05
	relA)	-vy) ->	Т	F	.94	.06
		\rightarrow	F	Т	.29	.71
		~	F	F	.001	.999
John Calls P(T/A) Mory Calls P(M/A)						
	A D(I=T A) P(I=F)	/ <u> </u>	A	P(M=T A)	P(M=F A)

F

.10

.95

.30

.99

.70

.01

Lecture Overview

- Belief Networks
 - Build sample BN
 - Intro Inference, Compactness, Semantics
 - More Examples

Burglary Example: Bnets inference

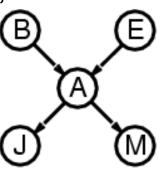
Our BN can answer any probabilistic query that can be answered by processing the joint!

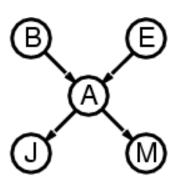
(Ex1) I'm at work,

- neighbor John calls to say my alarm is ringing,
- neighbor Mary doesn't call.
- No news of any earthquakes.
- Is there a burglar?

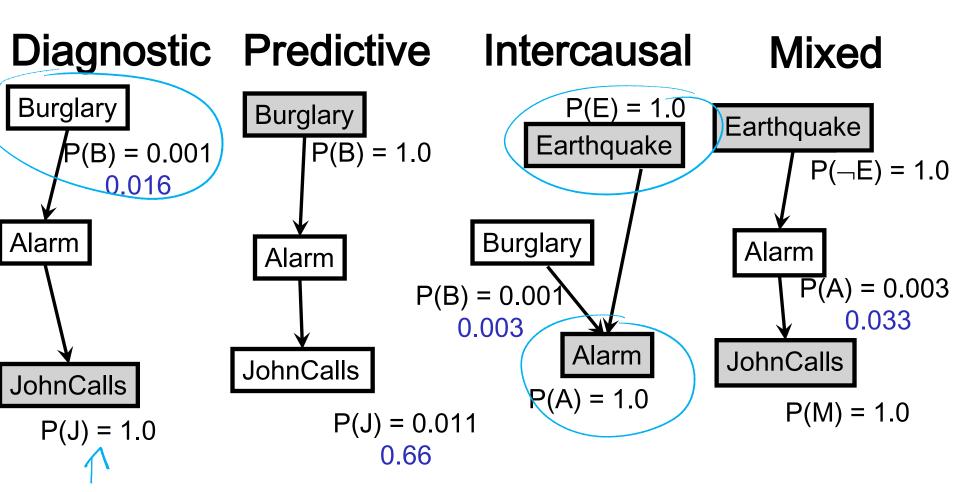
(Ex2) I'm at work,

- Receive message that neighbor John called ,
- News of minor earthquakes.
- Is there a burglar?





Bayesian Networks – Inference Types



BNnets: Compactness

P(B=T)	P(B=F)
.001	.999

Butglary

Earthquake

P(E=T)	P(E=F)
.002	.998

1

Ala	-W
\	

В	E	P(A=T B,E)	P(A=F B,E)	
Т	T	.95	.05	
Т	F	.94	.06	
F	Т	.29	.71	-
F	F	.001	.999	4

John Calls

A	$P(J=T \mid A)$	P(J=F A)
Т	.90	.10
F	.05	.95

Mory Calls

_	

) <i>A</i>	P(M=T A)	P(M=F A)
Т	.70	.30
F	.01	.99

BNet

Conditional Probability

BNets: Compactness

1 Xi

In General:

ACPT for boolean X_i with k boolean parents has $\frac{2}{k}$ rows for the combinations of parent values

Each row requires one number p_i for $X_i = true$ (the number for $X_i = false$ is just $1-p_i$)

If each variable has no more than k parents, the complete network requires $O(N(2^k))$ numbers

For *k*<< *n*, this is a substantial improvement,

• the numbers required grow linearly with n vs. $O(2^n)$ for the full joint distribution

BNets: Construction General Semantics

The <u>full joint distribution</u> can be defined as the product of conditional distributions:

$$P(X_1, ..., X_n) = \prod_{i=1}^{n} P(X_i / X_1, ..., X_{i-1})$$
 (chain rule)

Simplify according to marginal&conditional independence

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities

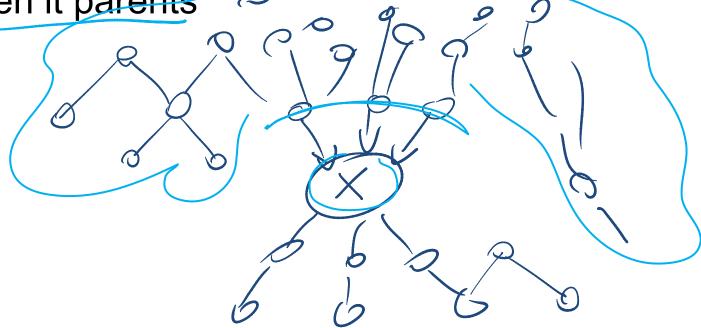
$$P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

BNets: Construction General Semantics (cont')

n

$$P(X_1, \ldots, X_n) = \Pi_{i=1} P(X_i | Parents(X_i))$$

Every node is independent from its non-descendants given it parents



Lecture Overview

- Belief Networks
 - Build sample BN
 - Intro Inference, Compactness, Semantics
 - More Examples

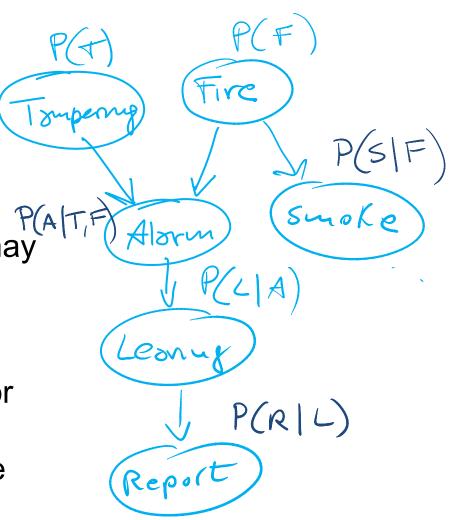
Other Examples: Fire Diagnosis (textbook Ex. 6.10)

Suppose you want to diagnose whether there is a fire in a building

 you receive a <u>noisy report</u> about whether everyone is <u>leaving the building</u>.

 if everyone is leaving, this may have been caused by a fire alarm.

- if there is a fire alarm, it may have been caused by a fire or by tampering
- if there is a fire, there may be smoke raising from the bldg.



cture 26 Slide 18

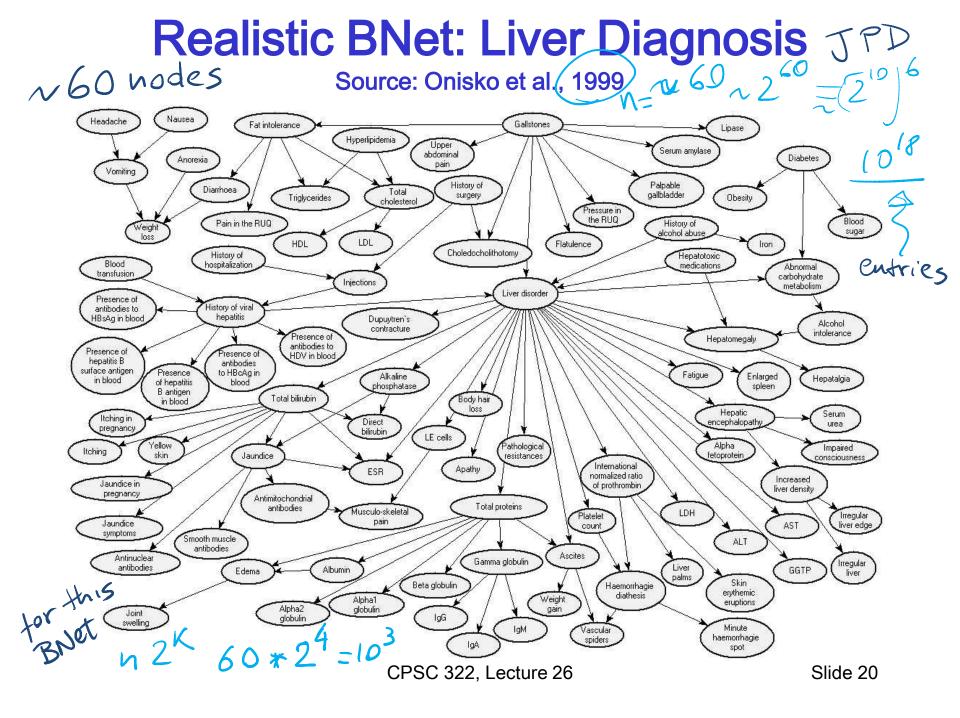
Other Examples (cont')

 Make sure you explore and understand the Fire Diagnosis example (we'll expand on it to study Decision Networks)

• Electrical Circuit example (textbook ex 6.11)

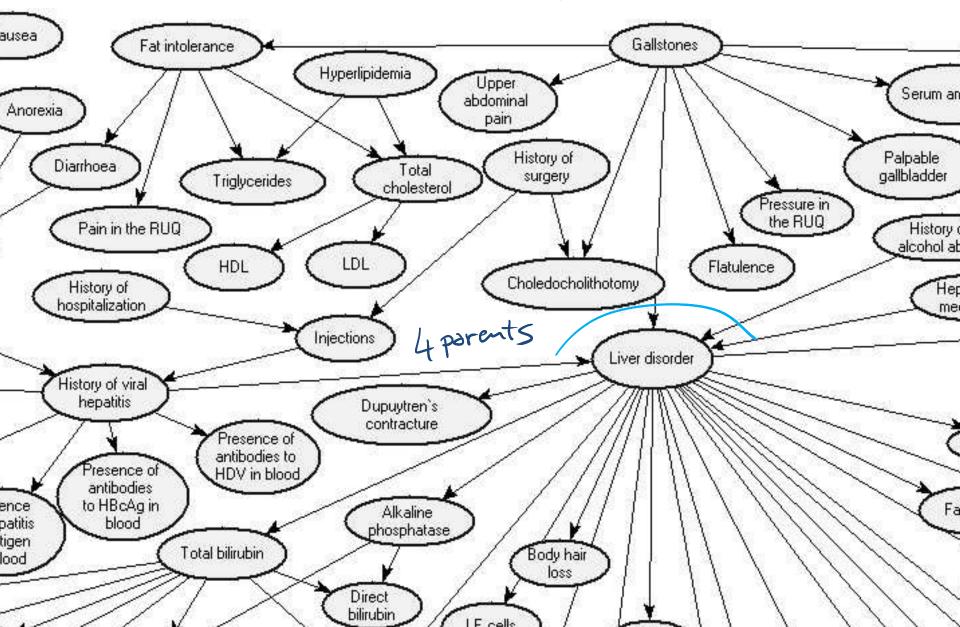
 Patient's wheezing and coughing example (ex. 6.14)

Several other examples on



Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999



Learning Goals for today's class

You can:

Build a Belief Network for a simple domain

Classify the types of inference

Diagnostic, Predictive, Intercousal, Mixed

Compute the representational saving in terms on number of probabilities required

Next Class

Bayesian Networks Representation

- Additional Dependencies encoded by BNets
- More compact representations for CPT
- Very simple but extremely useful Bnet (Bayes Classifier)

Belief network summary

- A belief network is a directed acyclic graph (DAG) that effectively expresses independence assertions among random variables.
- The parents of a node X are those variables on which X directly depends.
- Consideration of causal dependencies among variables typically help in constructing a Bnet