Reasoning Under Uncertainty:
Belief Networks
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Key points Recap

« We model the environment as a set of 2udom vers

Xp - Xy 3D PO - X))
* Why the joint'is not an adequate representation ?

‘&epresentation reasoning and learning” are
“‘exponential”’ in ..&-vors

Solution: Exploit marginal&conditional mdependence

@: PO<) | P(xIY2)=Plx|2

But how does independence allow us to simplify the
joint? A in RULE L
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Lecture Overview

* Belief Networks

* Build sample BN
* Intro Inference, Compactness, Semantics
* More Examples
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Belief Nets: Burglary Example

There might be a burglar in my house
B

The anti-burglar alarm in my house may go off

A

| have an agreement with two of my neighbors, John and
Mary, that they call me if they hear the alarm go off when |
am at work -

F J

Minor earthquakes may occur and sometimes the set off the
alarm. L

Variables: G A4 MJ & w= 5

5 "
Jointhas £ — 1 entries/probs -4



Belief Nets: Simplify the joint

* Typically order vars to reflect causal knowledge

(i.e., causes before effects) 3 =
* Aburglar (B) can set the alarm (A) off N
* An earthquake (E) can set the alarm (A) off A
* The alarm can cause Mary to call (M) / \
* The alarm can cause John to call (J) M R
F(B E, A M U‘\ e
A2\ ol élé/\ adef

« Apply Chain Rule %

() P(g/a)f?(ﬂf)ﬁ@?@)/xf/_@PéYWAE@

« Simplify according to marginal&conditional
independence




Belief Nets: Structure + Probs
S P(B) +P(E) » PLAIR,E) « P(M | A)+P( |A)

* EXxpress remaining dependencies as a network

* Each varis a node

* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional
probabilities o@ﬁ,)

£®
g’
IS Ao
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P(BY S

Burglary complete BN fE)”
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Lecture Overview

* Belief Networks

* Intro Inference, Compactness, Semantics
* More Examples
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can
be answered by processing the joint!

(Ex1) I'm at work,
= neighbor John calls to say my alarm is ringing,

oy neighbor Mary doesn't call. /(9
_—* No news of any earthquakes. m
* Is there a burglar? ‘
(Ex2) I'm at work, ey ¥ g ®
* Receive message that neighbor John called ,
* News of minor earthquakes. /(9

* |s there a burglar?
@gpace @ﬁt@
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Bayesian Networks — Inference Types

Diagnostic Predictive Intercausal  Mixed

|Burglary | | Burglary | P(E) = ﬁT\DEarthquakel
(B) = 0.001 P(B)=1.0 Earthquak = CE) - 1.0
016 (—E) =
Alarm | Burglary |
P(B) = 0.00 P(A) = 0.003
0.003 0.033
JohnCalls
JohnCalls | [JohnCalls | | |
PJ)=1.0 P(J)=0.011 P(M)=1.0

0.66
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:Yo‘/l n C,al l S

BNnets: Compactness
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sl BNets: Compactness
USRI
Co oot Q D0 O D
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In General: %

for boolean X; with A boolean parents has _é rows for
the combinations of parent values

Each row requires one number p; for X = frue
(the number for X;= falseis just 7-p;)

»f—c(‘ exch vode

If each variable has no more p/kparents, the complete
network requires O( » ) numbers

For k<< n, this is a substantial improvement,

* the numbers required fgrow linearly witﬂ vs. O(27)for
the full joint distribution
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BNets: Construction General Semantics

The full joint distribution can be defined as the product of
conditional distributions:

PX,..,X)=1II_, P(X:/X, ..,X.,) (chain rule)
7 / 7

[

Simplify according to marginal&conditional independence

* EXxpress remaining dependencies as a network
* Each varis a node
* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional &
probabilities
v

" v
PX,..,X)=1Il_,P(X Parents(X;))
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BNets: Construction General Semantics
(cont’)

PX,..,X)=1II_,P(X:/Parents(X))

* Every node is independent from its non-descendants
given it /a.Fth‘S/Q_\

N

SN
(f AN
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Lecture Overview

* Belief Networks

* Build sample BN
* Intro Inference, Compactness, Semantics
* More Examples
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Other Examples: Fire Diagnosis
(textbook Ex. 6.10)

Suppose you want to diagnose
whether there is a fire in a ‘P@’\ WF}

building
* YOU receive a noisy report
about whether everyone is
leaving the building. Pt
 if everyone is leaving, this may |
have been caused by a fire | P(q,a)

alarm.
* if there is a fire alarm, it may @

have been caused by a fire or
by tampering \‘/ PR | L)

« if there is a fire, there may be @
smoke raising from the bldg.
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Other Examples (cont’)

Make sure you explore and understand the p@@@
Fire Diagnosis example (we’ll expand on it to
study Decision Networks)

Electrical Circuit example (textbook ex 6.11) p@@@

/

(&
Patient’s wheezing and coughing example
(ex. 6.14)

p@@@

Several other examples on
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Realistic BNet: Liver Diagnosis 57>
/\/éo nodes Source: Onisko et al " éQmZ /€(Zl
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Learning Goals for today’s class

You can:
Build a Belief Network for a simple domain

Classifty the types of inference
D\m&v\og%c ‘ Preo\{cotﬂ‘ve/ 1m¥@r¢zus>) | H\X&J

Compute the representational saving in terms
on number of probabilities required
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Next Class

Bayesian Networks Representation
« Additional Dependencies encoded by BNets
* More compact representations for CPT &

* Very simple but extremely useful Bnet (Bayes
Classifier)
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Belief network summary

* A belief network is a directed acyclic graph (DAG)
that effectively expresses independence
assertions among random variables.

* The parents of a node X are those variables on
which X directly depends.

« Consideration of causal dependencies among
variables typically help in constructing a Bnet
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