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Key points Recap

• We model the environment as a set of ….

• Why the joint is not an adequate representation ? 

“Representation, reasoning and learning” are 
“exponential” in …..

Solution: Exploit marginal&conditional independence 

But how does independence allow us to simplify the 
joint?
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Lecture Overview

• Belief Networks

• Build sample BN

• Intro Inference, Compactness, Semantics

• More Examples
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Belief Nets: Burglary Example
There might be a burglar in my house

The anti-burglar alarm in my house may go off

I have an agreement with two of my neighbors,  John and 
Mary, that they call me if they hear the alarm go off when I 
am at work

Minor earthquakes may occur and sometimes the set off the 
alarm. 

Variables:

Joint has                 entries/probs
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Belief Nets: Simplify the joint
• Typically order vars to reflect causal knowledge 

(i.e., causes before effects)
• A burglar (B) can set the alarm (A) off

• An earthquake (E) can set the alarm (A) off

• The alarm can cause Mary to call (M)

• The alarm can cause John to call (J)

• Apply Chain Rule

• Simplify according to marginal&conditional 
independence
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Belief Nets: Structure + Probs

• Express remaining dependencies as a network
• Each var is a node

• For each var, the conditioning vars are its parents

• Associate to each node corresponding conditional 
probabilities

• Directed Acyclic Graph (DAG) 
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Burglary: complete BN

B E P(A=T | B,E) P(A=F | B,E)

T T .95 .05

T F .94 .06

F T .29 .71

F F .001 .999

P(B=T) P(B=F )

.001 .999

P(E=T) P(E=F )

.002 .998

A P(J=T | A) P(J=F | A)

T .90 .10

F .05 .95

A P(M=T | A) P(M=F | A)

T .70 .30

F .01 .99
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Lecture Overview

• Belief Networks

• Build sample BN

• Intro Inference, Compactness, Semantics

• More Examples
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Burglary  Example: Bnets inference

(Ex1) I'm at work, 

• neighbor John calls to say my alarm is ringing, 

• neighbor Mary doesn't call. 

• No news of any earthquakes. 

• Is there a burglar?

(Ex2) I'm at work, 

• Receive message that neighbor John called , 

• News of minor earthquakes. 

• Is there a burglar?

Our BN can answer any probabilistic query that can 
be answered by processing the joint!
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Bayesian Networks – Inference Types

Diagnostic

Burglary

Alarm

JohnCalls

P(J) = 1.0

P(B) = 0.001

0.016

Burglary

Earthquake

Alarm

Intercausal

P(A) = 1.0

P(B) = 0.001

0.003

P(E) = 1.0

JohnCalls

Predictive

Burglary

Alarm

P(J) = 0.011

0.66

P(B) = 1.0

Mixed

Earthquake

Alarm

JohnCalls

P(M) = 1.0

P( E) = 1.0

P(A) = 0.003

0.033
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BNnets: Compactness

B E P(A=T | B,E) P(A=F | B,E)

T T .95 .05

T F .94 .06

F T .29 .71

F F .001 .999

P(B=T) P(B=F )

.001 .999

P(E=T) P(E=F )

.002 .998

A P(J=T | A) P(J=F | A)

T .90 .10

F .05 .95

A P(M=T | A) P(M=F | A)

T .70 .30

F .01 .99
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BNets: Compactness

In General:
A CPT for boolean Xi with k boolean parents has          rows for 

the combinations of parent values

Each row requires one number pi for Xi = true
(the number for  Xi = false is just 1-pi )

If each variable has no more than k parents, the complete 
network requires O(                      ) numbers

For k<< n, this is a substantial improvement, 

• the numbers required  grow linearly with n, vs. O(2n) for 
the full joint distribution
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BNets: Construction General Semantics

The full joint distribution can be defined as the product of 
conditional distributions:

P (X1, … ,Xn) = πi = 1 P(Xi | X1, … ,Xi-1) (chain rule)

Simplify according to marginal&conditional independence

n

• Express remaining dependencies as a network
• Each var is a node

• For each var, the conditioning vars are its parents

• Associate to each node corresponding conditional 
probabilities

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

n
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BNets: Construction General Semantics 

(cont’)
n

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

• Every node is independent from its non-descendants 
given it parents
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Lecture Overview

• Belief Networks

• Build sample BN

• Intro Inference, Compactness, Semantics

• More Examples
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Other Examples: Fire Diagnosis

(textbook Ex. 6.10)
Suppose you want to diagnose 

whether there is a fire in a 

building

• you receive a noisy report
about whether everyone is 
leaving the building.

• if everyone is  leaving, this may 
have been caused by a fire 
alarm.

• if there is a fire alarm, it may 
have been caused by a fire or 
by tampering

• if there is a fire, there may be 
smoke raising from the bldg.
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Other Examples (cont’)

• Make sure you explore and understand the 

Fire Diagnosis example (we’ll expand on it to 

study Decision Networks)

• Electrical Circuit example (textbook ex 6.11)

• Patient’s wheezing and coughing example 

(ex. 6.14)

• Several other examples on 
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Realistic BNet: Liver Diagnosis
Source: Onisko et al., 1999
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Realistic BNet: Liver Diagnosis
Source: Onisko et al., 1999
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Learning Goals for today’s class

You can:

Build a Belief Network for a simple domain

Classify the types of inference

Compute the representational saving in terms 

on number of probabilities required
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Next Class

Bayesian Networks Representation

• Additional Dependencies encoded by BNets

• More compact representations for CPT

• Very simple but extremely useful Bnet (Bayes 

Classifier)
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Belief network summary

• A belief network is a directed acyclic graph (DAG) 
that effectively expresses  independence 
assertions among random variables. 

• The parents of a node X are those variables on 
which X directly depends.

• Consideration of causal dependencies among 
variables typically help in constructing a Bnet


