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Lecture Overview

Recap with Example
— Marginalization

— Conditional Probability
— Chain Rule &

Bayes' Rule &
Marginal Independence
Conditional Independence @
our most basic and robust form of knowledge
about uncertain environments.



Recap Joint Distribution
K=" H= Flse
3 binary random va?'éble/s:/éH,S,F)
— H dom(H)={h, —h} has heart disease, does not have...

- S dom(S)={s, —-s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet



Recap Joint Distribution
TJoiut Prol. Distribotion <TP]>>

-3 binary random variables: P(H,S,F)

— H dom(H)={h, —h} has heart disease, does not have...

— S dom(S)={s, —-s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet
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Recap Marginalization
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Recap Conditional Probability
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Recap Conditional Probability (cont.)
Sl (S, H)
P(S|H) - P (X, X Xn-_. YK>
1 P(H) e ” ,
A / /
P(SIH,F) ot

Two key points we covered in previous lecture

* We derived this equality from a possible world
semantics of probability \

It is not a probability distributions but...S.i”{' o~ |
/7 Fro'o. 64341’7\0.

* One for each configuration of the conditioning var(sy
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Recap Chain Rule
P(H,S,F)= P(H) & P(s])* WF"H/@
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Lecture Overview

* Recap with Example and Bayes Theorem

* Marginal Independence
« Conditional Independence



Do you always need to revise your beliefs?

NO.. when your knowledge of Y's value doesn't affect your belief
in the value of X

DEF. Random variable X is marginal independent of random
variable Y if, for all x; € dom(X), y, € dom(Y),

P(X=X; | Y=y) = P(X=X;)




Marginal Independence: Example

- X and Y are independent iff')gb(x>: (< \YB = P%
Y

TPoaY) Lj orLEm\X) pv) o P(X Y)—P(TP(B)

. That IS new evidence Y(or X) does not affect current belief

X — . iload“f
« Ex:~ P(loothaehe, Calch, Qawt Weather) 53\0 l 1

= P(Toothache, Catch, Cavity&lf)(we«l‘&@]
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In our example are Smoking and Heart Disease
marginally Independent ?

What our probabilities are telling us....?
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Lecture Overview

* Recap with Example
« Marginal Independence

« Conditional Independence



Conditional Independence

 With marg. Independence, for n independent
‘random vars, O(2") — O{M

Clx<a .. - S (é(¢ X - S(P(K>

* Absolute independence is powerful but when you

. Dentlstry Is a large field Wlth hundreds of
variables, few of which are independent
(e.qg.,Cavity, Heart-disease).

 \What to do?



Look for weaker form of independence,
P(Toothache, Cavity, Catch)

Catdn
Are Toothache and/Catch marginally independent:
PV | Y D = Phatecke ) TNO

BUT If (have a cavity, does the probability that the probe
catches depend on whether | have a toothache? NO

(1) P(catch | too;llgache, cavity) = P(csty | <> vﬂ—vo

What if | haven't got a cavity?
(2) P(catch | toothache,—cavity) = Plcstcly \ L C“‘m}"l\

* Each is directly caused by the cavity, but neither
has a direct effect on the other




Conditional independence

* In general, Catch is conditionally independent of Toothache

given Cavity:

@ P(Catch | Toothache,Cavity) = P(Catch | Cavity) S

« Equivalent statements:
@ P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

@ P(Toothache, Catch | Cavity) =
P(Toothache | Cavity) P(Catch | Cavity)
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Proof of equivalent statements
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Conditional Independence: Formal Def.

Sometimes, two variables might not be marginally
iIndependent. However, they become independent
after we observe some third variable

DEF. Random variable X is conditionally independent of
random variable Y given random variable Z if, for all
X; € dom(X), y, € dom(Y), z., € dom(Z)
P(X=x;|Y=vy.,Z=2z,)=PX=x,|Z=2,)
That is, knowledge of Y's value doesn't affect your
belief in the value of X, given a value of Z



Conditional independence: Use

« Write out full joint distribution using chain rule:
(AP(Cath,Ch, ZQthacheD

j/7= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
=LP(Toothache | Carvw—u! )\F\,,(E%\mh | Cavity)j P(Cavity)

2 N 2. 1.
how many probabilities? 27 -1= v
2 42+4 =5

* The use of conditional independence often reduces the size of
the representation of the joint distribution from exponential in n
to linear in n. Whatis n? % o vars

« Conditional independence is our most basic and robus%
form of knowledge about uncertain environments.



Conditional Independence Example 2

« Given whether there is/isn’t power in wire w0, is °
whether light |1 is lit or not, independent of the
position of switch s27?
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Conditional Independence Example 3

* |s every other variable in the system independent®
of whether light |1 is lit, given whether there is
power in wire w0 ?




Learning Goals for today’s class

You can:
Derive the Bayes Rule

Define and use Marginal Independence

Define and use Conditional Independence

CPSC 322, Lecture 4 Slide 22



Where are we? (Summary)
Probability is a rigorous formalism for uncertain
knowledge

/=
Joint probability distribution specifies probability of
every possible world

Queries can be answered by summing over
possible worlds

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional ="
independence (frequent) provide the tools



Next Class

« Bayesian Networks (Chpt 6.3)



