Reasoning under Uncertainty: Conditional Prob., Bayes and Independence

Computer Science cpsc322, Lecture 25 (Textbook Chpt 6.1.3.1-2)

March, 17, 2010

Lecture Overview

- –Recap Semantics of Probability
- -Marginalization <
- Conditional Probability
- -Chain Rule
- –Bayes' Rule /
- -Independence

Recap: Possible World Semantics for Probabilities

Probability is a formal measure of subjective uncertainty.

- Random variable and probability distribution
- $\begin{array}{c} X \\ dom(X) = \{X_{1}, X_{2}, X_{3}\} \\ & X_{1} \longrightarrow P(X_{1}) \\ & X_{2} \longrightarrow P(X_{2}) \\ & X_{3} \longrightarrow P(X_{3}) \\ \end{array}$ $\begin{array}{c} X \\ & Y \\ & X_{2} \longrightarrow P(X_{3}) \\ & Y \\ & X_{3} \longrightarrow P(X_{3}) \\ & Y \\ & Y \\ & Y \\ & X_{3} \longrightarrow P(X_{3}) \\ & Y \\ & Y$

 $P(f) = Z_{M(w)}$

Joint Distribution and Marginalization P(X,Y,Z)

							. 1	7 7 1	
	cavity	toot	hache	catch	μ(w)	> P(cavity,toothache,catch)		ache,catch)	
	Т	Т		Т	.108	Given a joint distribution, e			
	Т		Т	F	.012	P()	<i>(,Y,Z)</i> w	e can compute	
	Т		F	Т	.072	distributions		over any	
	Т		F	F	.008		smaller sets of variables		
	F		Т	Т	.016	511			
	F		Т	F	.064	$P(X,Y) = \sum P(X,Y)$		(X,Y,Z=z)	
	F		F	⇒ T	.144	$\sum_{z \in dom(Z)}$			
l	F		F	⇒ F	.576	PC	Planatat Madra)		
_	II S				F	P(conty, toothadhe)			
		toothache		tc	🖵 toothache			1	
		catch	$\neg cat$	ch catcl	n – catch	cavity	toothache	P(cavity , toothache)	
-	aguitu	.108	.012	.072		Т	Т	.12	
_	cavity					Т	F	.08	
	cavity	.016	.064	.144	.576	F	Т	.08	
						F	F	.72	

Why is it called Marginalization?

						_			
	cavity	tootha	ache	P(cavity , t	oothache)				
\int	Т	Т	\checkmark	.1	.12 .08		$P(X) = \sum_{i=1}^{n} P(X, Y = y)$		
$\left(\right)$	Т	F	\checkmark	.0					
\int	F	Т	\wedge	.0	8	$y \in dom(Y)$			
	F	F F ¹ .7		2	P				
-							(conty)		
			Toot	hache = T	Toothacl	he = F			
	Cavit	ty = T		.12	.08	·]	• 2		
	Cavit	Cavity = F		.08 V	.72 🗸		• 8		
				•2	- 8)	_		

P(t. thoche)

Lecture Overview

- -Recap Semantics of Probability
- -Marginalization
- -Conditional Probability
- -Chain Rule
- -Bayes' Rule
- -Independence

Conditioning (Conditional Probability)

- We model our environment with a set of random variables.
- Are we done with reasoning under uncertainty?
- What can happen?
- Think of a patient showing up at the dentist office.
 Does she have a cavity?

Conditioning (Conditional Probability)

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model (for now the joint) taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability P(h|e) of h given e is the posterior probability of h.

Conditioning Example

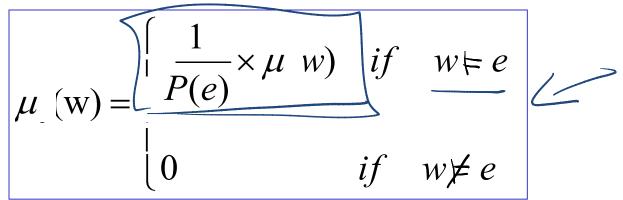
- Prior probability of having a cavity
 P(cavity = T)
- Should be revised if you know that there is toothache
 P(cavity = T | toothache = T)
- It should be revised again if you were informed that the probe did not catch anything

P(cavity =T | toothache = T, catch = F)

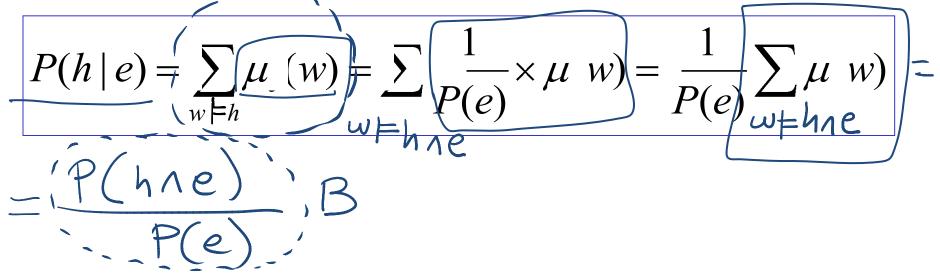
What about ?
 P(cavity = T | sunny = T)

How can we compute P(h|e)

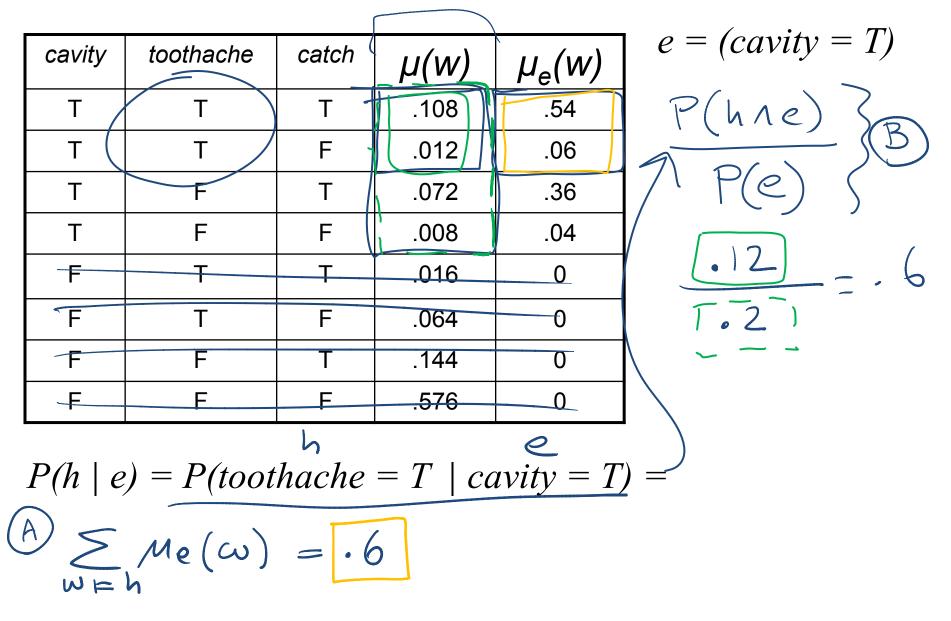
- What happens in term of possible worlds if we know the value of a random var (or a set of random vars)?
- Some worlds are ruled . The other become more likely out 1 = P(e) = 2


					_
cavity	toothache	catch	μ(w)	μ _e (w)	
Т	Т	Т	.108	».54	
Т	Т	F	.012	- 06	_
Т	F	Т	.072	. 36	
Т	F	F	.008	. 04	
-F	Ŧ	Ť	.016	0	10
F	Т	E.	.064	Ø	
F	F	<u>Ţ</u>	.144	Q	
F	F	IL.	.576	D	

e = (cavity = T)


 $A_e(w) = \frac{M(w)}{P(e)}$

WEC


Semantics of Conditional Probability

The conditional probability of formula *h* given evidence *e* is *A*

Semantics of Conditional Prob.: Example

Conditional Probability among Random									
Variables (1+ thate)									
Variables $P(X Y) = P(X, Y) / P(Y)$									
$P(X \mid Y) = P(toothache \mid cavity)$									
= $P(toothache \land cavity) / P(cavity)$									
	Toothache = T	Toothache = F	-P(x, Y) PROB. DIST						
Cavity = T	<u> </u>	.08 1.2	0.2						
Cavity = F	.08 /.8	.72 /. 8	0.8						
	• 2	• 8	P(XIX) he (-F)						
	Toothache = T	Toothache = F	a (tooth 20) conty						
Cavity = T	• 6	.4 -	$\frac{0.2}{P(X Y)} = \frac{1}{P(X Y)} = $						
Cavity = F		. 9	P(700) <=1						
			< 1						

Product Rule

- Definition of conditional probability: $-P(X_1 | X_2) = P(X_1, X_2) / P(X_2)$
- Product rule gives an alternative, more intuitive formulation:

 $- P(X_1, X_2) = P(X_2) P(X_1 | X_2) = P(X_1) P(X_2 | X_1)$

• Product rule general form:

$$\mathbf{P}(X_1, \dots, X_n) = \mathbb{P}(X_1, \dots, X_t, X_{t+1}, \dots, X_n)$$

=
$$P(X_1,...,X_t) P(X_{t+1},...,X_n | X_1,...,X_t)$$

Chain Rule

• Product rule general form:

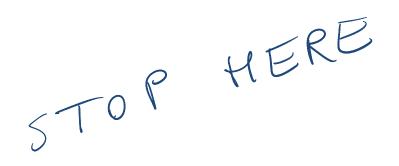
$$\mathbf{P}(X_{1}, ..., X_{n}) =$$

= $\mathbf{P}(X_{1}, ..., X_{t}) \mathbf{P}(X_{t+1}, ..., X_{n} | X_{1}, ..., X_{t})$

 Chain rule is derived by successive application of product rule: t=n-1 $\mathbf{P}(X_1, \dots, X_{n-1}, X_n)$ $= \mathbf{P}(X_1, \dots, X_{n-1}) \mathbf{P}(X_n \mid X_1, \dots, X_{n-1})$ $(X_{1},...,X_{n-2}) \mathbf{P}(X_{n-1} | X_{1},...,X_{n-2}) \mathbf{P}(X_{n} | X_{1},...,X_{n-1}) =$ $= \mathbf{P}(X_{1}) \mathbf{P}(X_{2} | X_{1}) \dots \mathbf{P}(X_{n-1} | X_{1}, \dots, X_{n-2}) \mathbf{P}(X_{n} | (X_{1}, \dots, X_{n-2}))$ $= \prod_{i=1}^{n} \mathbf{P}(X_{i} | X_{1}, \dots, X_{i-1})$

Chain Rule: Example

P(cavity, toothache, catch) = P(cavity) * P(toothache | covity) * * P(cotch | covity, toothache)


P(toothache, catch, cavity) = P(toothache) * P(cotch|toothache) * P(conty| toothache) these and the other four decompositions are OK

Lecture Overview

- -Recap Semantics of Probability
- -Marginalization
- -Conditional Probability
- -Chain Rule
- **–Bayes' Rule**
- –Independence

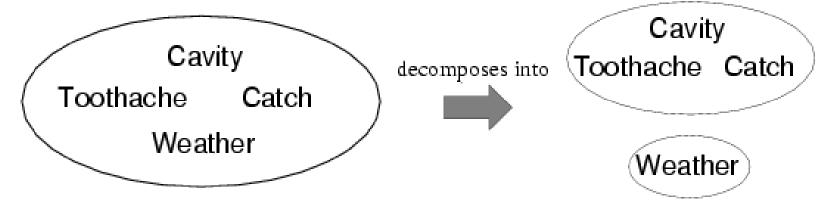
Bayes' Rule

From Product rule : - P(X, Y) = P(Y) P(X | Y) = P(X) P(Y | X)

Do you always need to revise your beliefs?

..... when your knowledge of **Y**'s value doesn't affect your belief in the value of **X**

DEF. Random variable **X** is marginal independent of random variable **Y** if, for all $x_i \in dom(X)$, $y_k \in dom(Y)$,


$$P(X = x_i | Y = y_k) = P(X = x_i)$$

Consequence:

P(X=
$$x_i$$
, Y= y_k) = P(X= $x_i | Y = y_k$) P(Y= y_k) =
= P(X= x_i) P(Y= y_k)

Marginal Independence: Example

- A and B are independent iff: P(A|B) = P(A) or P(B|A) = P(B) or P(A, B) = P(A) P(B)
- That is new evidence B (or A) does not affect current belief in A (or B)
- Ex: P(Toothache, Catch, Cavity, Weather)
 = P(Toothache, Catch, Cavity) P(Weather)
- JPD requiring entries is reduced to two smaller ones (and)

Learning Goals for today's class

- You can:
- Given a joint, compute distributions over any subset of the variables

- Prove the formula to compute P(h|e)
- Derive the Chain Rule and the Bayes Rule
- Define Marginal Independence

CPSC 322, Lecture 4

Next Class

- Conditional Independence
- Belief Networks.....

Assignments

- I will post Assignment 3 this evening
- Assignment2
 - If any of the TAs' feedback is unclear go to office hours
 - If you have questions on the programming part, office hours next Tue (Ken)

Plan for this week

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every possible world
- Probabilistic queries can be answered by summing over possible worlds
- For nontrivial domains, we must find a way to reduce the joint distribution size
- Independence (rare) and conditional independence (frequent) provide the tools

Conditional probability (irrelevant evidence)

- New evidence may be irrelevant, allowing simplification, e.g.,
 - P(cavity | toothache, sunny) = P(cavity | toothache)
 - We say that Cavity is conditionally independent from Weather (more on this next class)
- This kind of inference, sanctioned by domain knowledge, is crucial in probabilistic inference