Reasoning under Uncertainty:
“Conditional Prob,, Bayes and
Independence
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Lecture Overview

—Recap Semantics of Probability -
—Marginalization <
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Recap: Possible World Semantics

for Probabilities
Probability is a formal measure of subjective uncertainty.

« Random variable and probability distribution
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Joint Distribution and Marginalization
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Why is it calle

d Marginalization?
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Lecture Overview

— Conditional Probability
—Chain Rule



Conditioning
(Conditional Probability)

We model our environment with a set of random
variables.

=

Assume have the joint, we can compute the
probability .z2eq. For—ulan

Are we done with reasoning under uncertainty?

What can happen?

Think of a patient showing up at the dentist office.
Does she have a cavity?




Conditioning
(Conditional Probability)

Probabilistic conditioning specifies how to rewse
beliefs based on new mformatlon

You build a probabilistic model (for now the joint)
taking all background information into account. This

gives the prior probability.

All other information must be conditioned on.

If evidence e g is all of the information obtained
subsequently, the conditional probability P(hle) of h
given e is the posterior probability of h.




Conditioning Example

* Prior probability of having a cavity
P(cavity = T)

« Should be revised if you know that there is toothache
P(cavity = T | toothache =T)
/!

* |t should be revised again if you were informed that
the probe did not catch anything

P(cavity =T | toothache = T, catch = F)

 What about ?
P(cavity = T | sunny = T)




How can we compute P(h|e)

 What happens in term of possible worlds if we know
the value of a random var (or a set of random vars)?

« Some worlds are vv.led . The other become ....
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Semantics of Conditional Probability
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Semantics of Conditional Prob.: Example
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Conditional Probability among Random

Variables
PX|Y)=P(X,Y)/P(Y)
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Product Rule

 Definition of conditional probability:
- P(X; [ Xp) = P(Xy, X;) I P(Xp)~

* Product rule gives an alternative, more intuitive
. /W
formulation:

- P(Xy, Xy) =KF’(2<2} P(X1 1 X3) = P(X;) P(X3 | Xq) =
2 A
* Product rule general form:
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Chain Rule

* Product rule general form:
P(X;, ... X)) =

« Chain rule is derived by successive application of
product rule:
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Chain Rule: Example

P(cavity , toothache, catch) =
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Lecture Overview

—Bayes' Rule
—Independence



Bayes' Rule

* From Product rule :

—P(X,Y)=P(Y)P(X]Y)=P(X) P(Y | X)
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Do you always need to revise your beliefs?

...... when your knowledge of Y’s value doesn'’t affect your belief
in the value of X

DEF. Random variable X is marginal independent of random
variable Y if, for all x, e dom(X), y, € dom(Y),

P(X=x|Y=y,)=PX=x)
Consequence:
P(X=X,Y=y)=P(X=x[Y=y)P(Y=y)=
= P(X=X;) PCY=yy)



Marginal Independence: Example

A and B are independent iff:
P(A|B)=P(A) orP(B|A)=P(B) orP(A, B)=P(A)P(B)

That is new evidence B (or A) does not affect current
belief in A (or B)

Ex: P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

JPD requiring entries is reduced to two smaller ones (
and )

7 Cavity
decomposes into '3-.Tmthache Catch

Cavity
Toothache Catch

Weather



Learning Goals for today’s class

You can:

Given a joint, compute distributions over any
subset of the variables

Prove the formula to compute P(h|e)
Derive the Chain Rule and the Bayes Rule

Define Marginal Independence
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Next Class

« Conditional Independence
» Belief Networks.......

Assignments -

* | will post Assignment 3 this evening

* Assignment2

 If any of the TAs' feedback is unclear go to office
Nours

* If you have questions on the programming part,
office hours next Tue (Ken)




Plan for this week

Probability is a rigorous formalism for uncertain
knowledge

Joint probability distribution specifies probability of
every possible world

Probabilistic queries can be answered by summing
over possible worlds

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional
independence (frequent) provide the tools



Conditional probability
(irrelevant evidence)

* New evidence may be irrelevant, allowing
simplification, e.g.,
— P(cavity | toothache, sunny) = P(cavity | toothache)

— We say that Cavity is conditionally independent from
Weather (more on this next class)

« This kind of inference, sanctioned by domain
knowledge, is crucial in probabilistic inference



