Reasoning under Uncertainty: Intro to Probability

Computer Science cpsc322, Lecture 24

(Textbook Chpt 6.1, 6.1.1)

March, 15, 2010

To complete your Learning about Logics

Review textbook and inked slides²

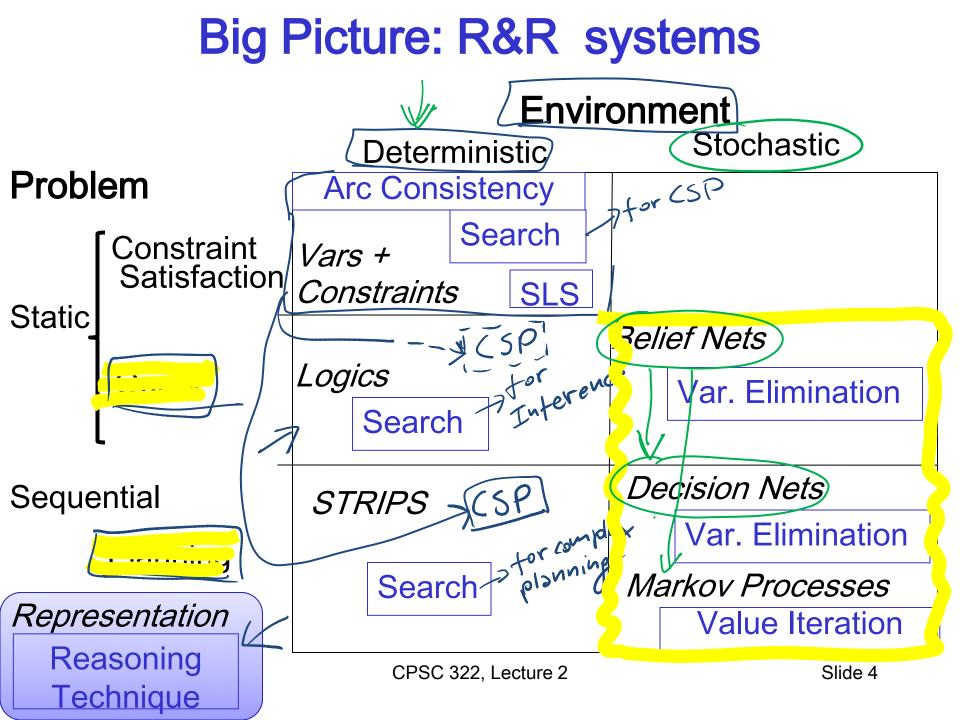
Practice Exercises on Vista <---

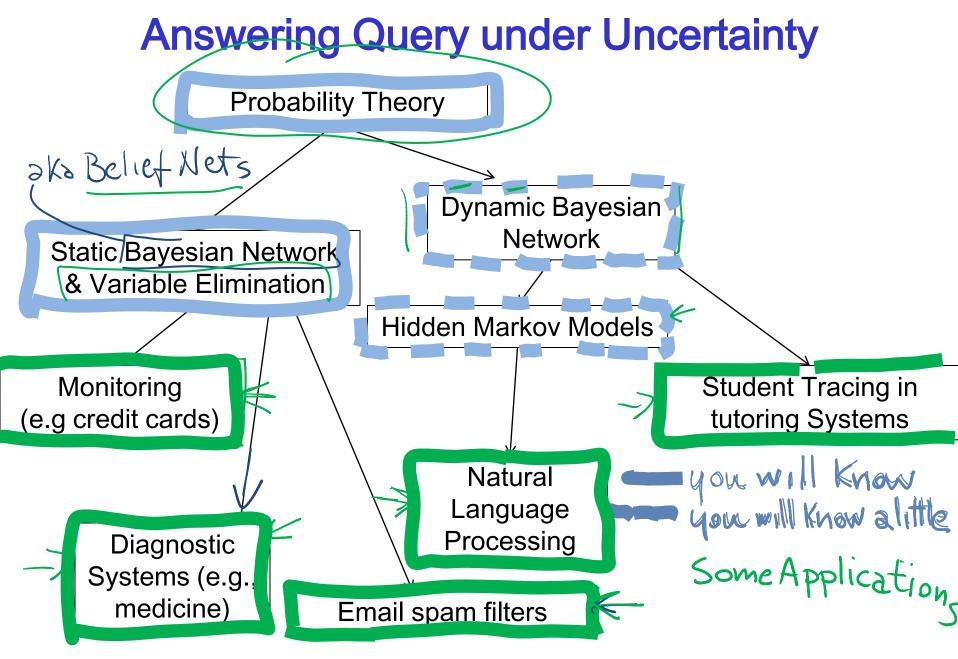
Assignment 3

- It will be out on Wed. It is due on the 29th. Make sure you start working on it soon.
- One question requires you to use Datalog (with TopDown proof) in the Alspace.
- To become familiar with this applet download and play with the simple examples we saw in class (available at course webPage).

Lecture Overview

- Big Transition
- Intro to Probability
- •





CPSC 322, Lecture 18

Intro to Probability (Motivation)

- Will it rain in 10 days? Was it raining 98 days ago?
- Right now, how many people are in this room? in this building (DMP)? At UBC?Yesterday?
- Al agents (and humans ③) are not omniscient (Know everything)
 Hey are ignorant
- And the problem is not only predicting the future or "remembering" the past

Intro to Probability (Key points)

- Are agents all ignorant/uncertain to the same degree? No subsective
- Should an agent act only when it is certain about relevant knowledge?
- (not acting usually has implications)

 So agents need to represent and reason about their ignorance/ uncertainty

Probability as a formal measure of uncertainty/ignorance

- Belief in a proposition <u>f</u> (e.g., <u>it is snowing outside</u>, <u>there are 31 people in this room</u>) can be measured in terms of a number between 0 and 1 – this is the probability of <u>f</u>
 - The probability fis 0 means that fis believed to be definitely false
 - The probability fis 1 means that fis believed to be definitely true
 - Using 0 and 1 is purely a convention.

Random Variables

- A random variable is a variable like the ones we have seen in <u>CSP</u> and <u>Planning</u>, but the agent can be uncertain about its value.
- As usual
 - The domain of a random variable *X*, written *dom(X)*, is the set of values *X* can take
 - values are mutually exclusive and exhaustive
- Examples (Boolean and discrete)

Random Variables (cont')

A tuple of random variables <X₁,..., X_n> is a complex random variable with domain..

Assignment X=x means X has value x

 A proposition is a Boolean formula made from assignments of values to variables

Examples

, OB

Possible Worlds

- A possible world specifies an assignment to each random variable
 - E.g., if we model only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct possible worlds:

W1 Cav	rity = T ∧ Toothache = T
wz Cav	ity = $T \wedge Toothache = F$
wz Cav	ity = $F \land Toothache = T$
WL Cav	$ity = T \land Toothache = T$

cavity	toothache
Т	Т
Т	F
F	Т
F	F

As usual, possible worlds are mutually exclusive and exhaustive

 $w \not\models X = x$ means variable X is assigned value x in world w

ws E conty F w4 € Toothoche = F

CPSC 322, Lecture 24

Semantics of Probability

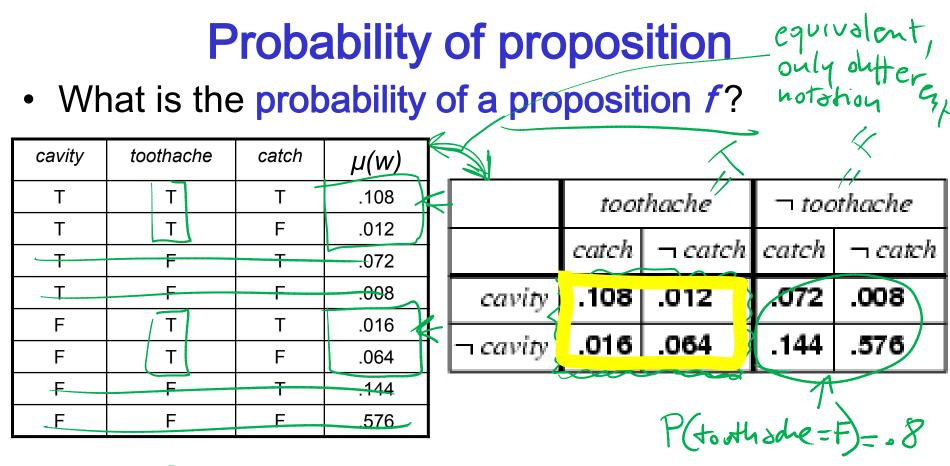
- The belief of being in each possible world w can be expressed as a probability $\mu(w)$
- For sure, I must be in one of them.....so

 $\mu(w) = 1$ $\mu(w) \text{ for possible worlds generated by three Boolean variables:}$ $\mu(w) \text{ for possible worlds generated by three Boolean variables:}$

I			1		
	cavity	toothache	catch	μ(w)	5 = 1
	Т	Т	Т	.108	
	Т	Т	F	.012	
	Т	F	Т	.072	
	Т	F	F	.008	
	F	Т	Т	.016	
	F	Т	F	.064	
	F	F	Т	.144	
	F	F	F	.576	Slide

Λ

12



For any *f*, sum the prob. of the worlds where it is true: $P(f) = \sum_{w \neq f} \mu(w)$ Ex: P(*toothache = T*) = . 2.

Probability of proposition

• What is the probability of a proposition *f*?

cavity	toothache	catch	μ(w)
T	Ŧ		.108
~_ 	Ŧ	F	.012
Т	F	Т	.072
Т	F	F	.008
- F	Ŧ	Т	.016
F	Т		.064
	F	Т	.144
	F	F	.576

	toot	thache	⊐ toothache		
	catch ¬ catch		catch	¬ catch	
cavity	.108	.012 🧹	.072	.008	
\neg cavity	.016	.064	.144	.576	

For any *f*, sum the prob. of the worlds where it is true:

P(cavity=T and toothache=F) = .08

Probability of proposition

• What is the **probability of a proposition** *f*?

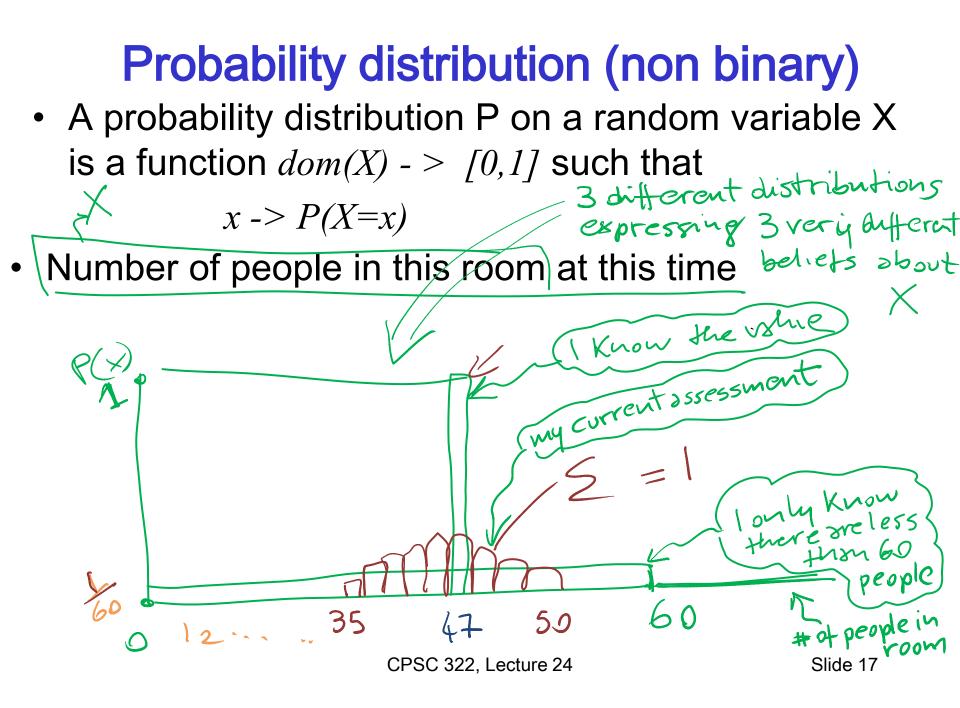
cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	T	.144
_ F	F	F	.576

	toothache		⊐ toothache		
	catch ¬ catch		catch	rh ⊐ catch	
cavity	.108	.012	.072	.008	
⊐ cavity	.016	.064	.144	.576	

For any *f*, sum the prob. of the worlds where it is true: $P(f) = \sum_{w \neq f} \mu(w)$ P(cavity or toothache) = 0.108 + 0.012 + 0.016 + 0.064 + 0.064 + 0.072 + 0.08 = 0.28

Probability Distributions

• A probability distribution P on a random variable X is a function $dom(X) \rightarrow [0,1]$ such that $x \rightarrow P(X=x)$ dom(covity) = [T,F] $\frac{cavity?}{X} \xrightarrow{T \to 2} 2 P(c_{avity}=T)$ $X \xrightarrow{F \to 8} P(c_{avity}=F)$ cavity toothache catch $\mu(w)$ Т Т Т .108 Т F .012 toothache ⊐ toothache Т т F Т .072 catch. \neg catch catch \neg catch F Т F .008 2 .108 cavity .012 .008 .072 F .016R F. F .064 .016 .064 .144 .576 \neg cavity F Ŧ 144 F .576 CPSC 322. Lecture 24 Slide 16



Joint Probability Distributions

- When we have <u>multiple random variables</u>, their joint distribution is a probability distribution over the variable Cartesian product
 - E.g., P(<*X*₁,..., *X*_n>)
 - Think of a joint distribution over n variables as an ndimensional table
 - Each entry, indexed by $X_{1} = x_{1}, \dots, X_{n} = x_{n}$ corresponds to $P(X_{1} = x_{1} \land \dots \land X_{n} = x_{n})$
 - The sum of entries across the whole table is 1

		toothache		¬ toothache		
		catch	\neg catch	catch	\neg catch	K
\nearrow	cavity	.108	.012	.072	.008	
7	¬ cavity	.016	.064	.144	.576	<u>2</u> 4

Question

- If you have the joint of n variables. Can you compute the probability distribution for each variable?
 Yes you concompute the
 - prob. of any proposition in

X1 Xn

Learning Goals for today's class

You can:

Define and give examples of random variables, their domains and probability distributions.

- Calculate the **probability of a proposition f** given $\mu(w)$ for the set of possible worlds.
- Define a joint probability distribution

Next Class

More probability theory

- Marginalization
- Conditional Probability
- Chain Rule
- Bayes' Rule
- Independence