Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs

Computer Science cpsc322, Lecture 20

(Textbook Chpt 5.1.2 - 5.2.2)

1

March, 3, 2010

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic:
 - Semantics
- PDCL: Bottom-up Proof

Logics as a R&R system

Represent

• formalize a domain

on_l_1 Five w_1

IIVE_W_1 FON_SW_1 Alive_W_3

Wire_1

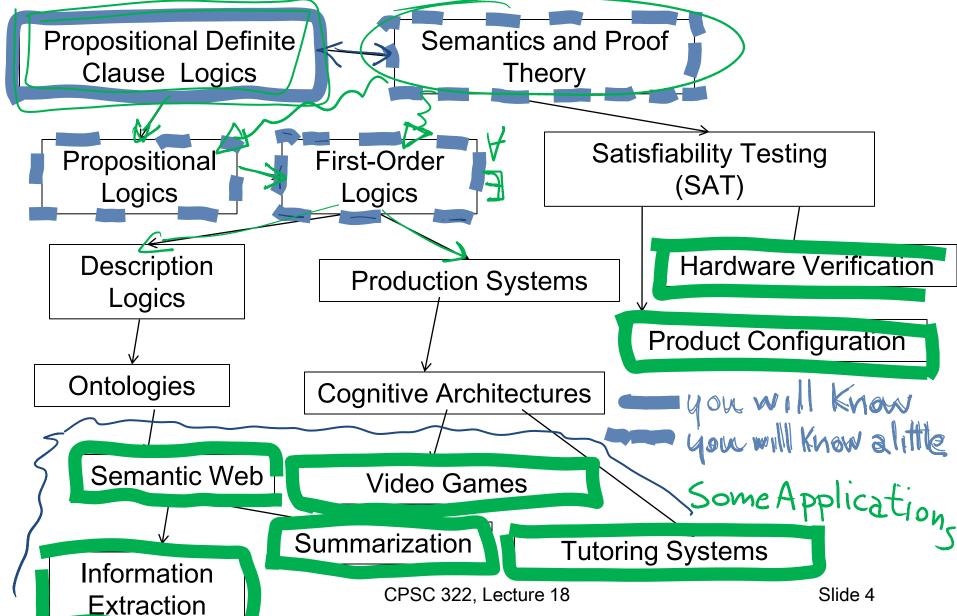
FOR SW_1 Alive_W_3

FOR SW_2 Alive_W_3

reason about it

if the agent knows on-sw1 and live_w3
it should be able to inter on-e1

Logics in Al: Similar slide to the one for planning



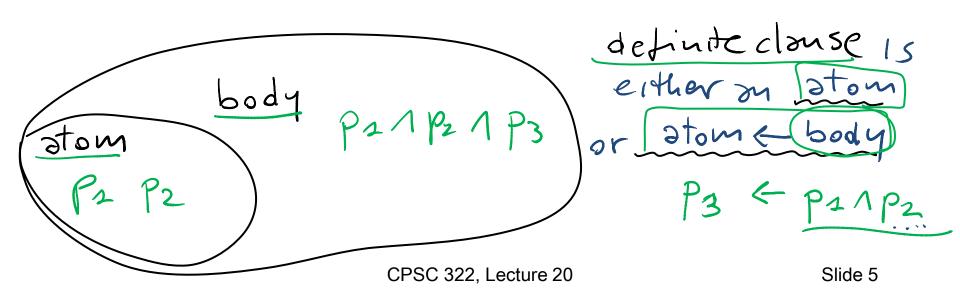
Propositional (Definite Clauses) Logic: Syntax

We start from a restricted form of Prop. Logic:

Only two kinds of statements

- that a proposition is true
- that a proposition is true if one or more other propositions are true

(P1 VP2) (P3 V7 PS)



Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

Propositional Definite Clauses Semantics: Interpretation

Semantics allows you to relate the symbols in the logic to the domain you're trying to model. An **atom** can be..... —

Definition (interpretation)

An interpretation *I* assigns a truth value to each atom.

If your domain can be represented by four atoms (propositions):

So an interpretation is just a ... Possible world.

PDC Semantics: Body

We can use the **interpretation** to determine the truth value of **clauses** and **knowledge bases**:

Definition (truth values of statements): A body $b_1 \wedge b_2$ is true in I if and only if b_1 is true in I and b_2 is true in I.

	р	•	r		PAY	PMMAS
I ₁	true	true	true	true		
I ₂	false	false	false	false		
I ₃	true	true	true false false true false	false	F	
I ₄	true	true	true	false		
I ₅	true	true	false	true	F	F
	Slide 8					

PDC Semantics: definite clause

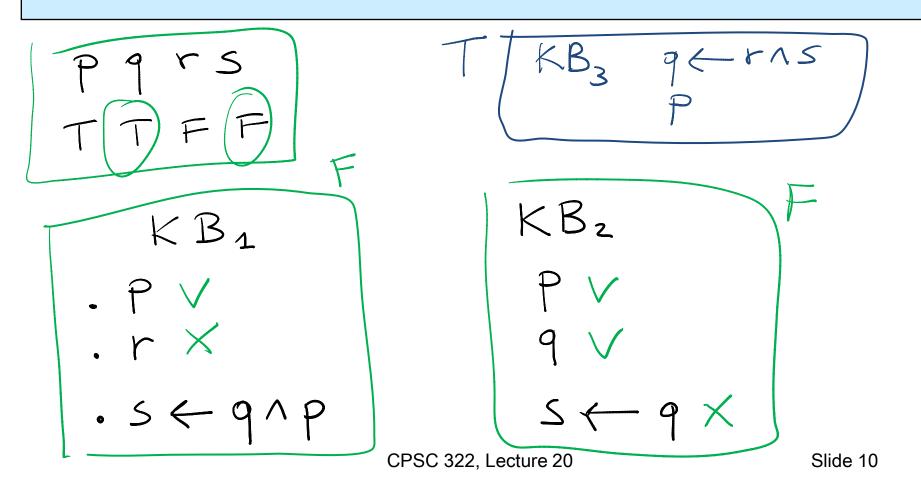
Definition (truth values of statements cont'): A rule $h \leftarrow b$ is false in I if and only if b is true in I and h is false in I.

	p	q	r	S	PES (S) = 91 r
> I ₁	true	true	true	true	
l ₂	false	false	false	false	T -
I_3	true	true	false	false	
I_4	true	true	true	false) T
	Ī.				F

In other words: "if b is true I am claiming that h must be true, otherwise I am not making any claim"

PDC Semantics: Knowledge Base

Definition (truth values of statements cont'): A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

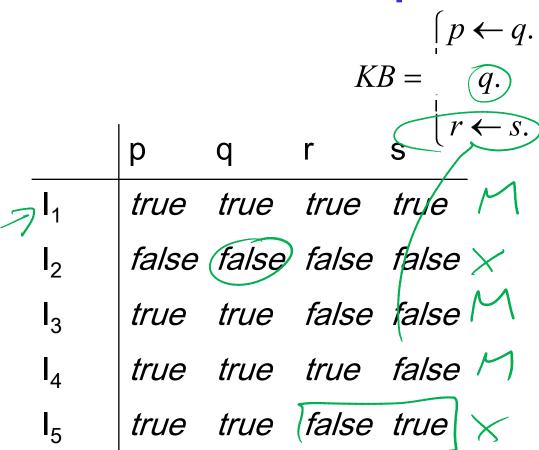


Models

Definition (model)

A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Example: Models



Which interpretations are models?

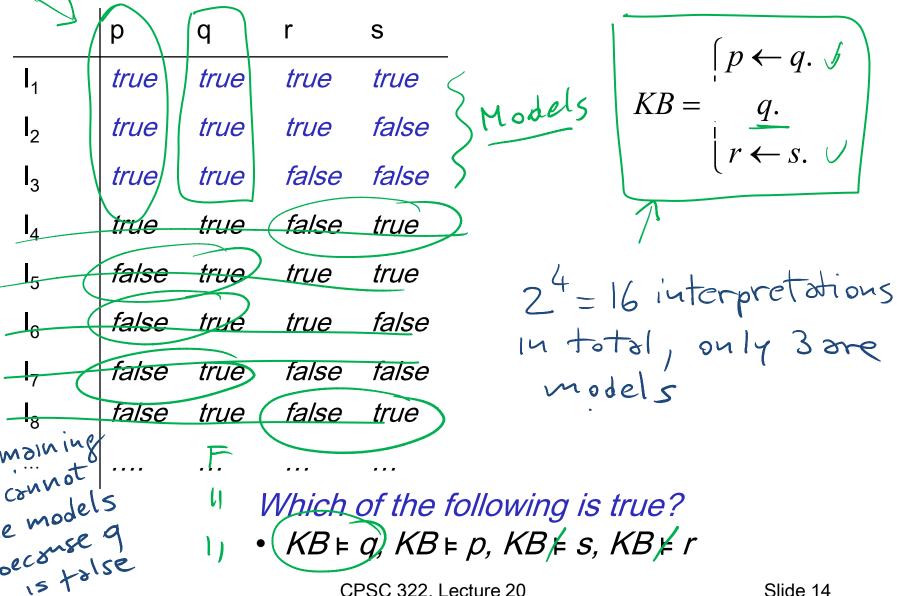
Logical Consequence

Definition (logical consequence)

If \overline{KB} is a set of clauses and \overline{G} is a conjunction of atoms, \overline{G} is a logical consequence of \overline{KB} , written $\overline{KB} \not\models \overline{G}$, if \overline{G} is true in every model of \overline{KB} .

- we also say that <u>G logically follows from KB</u>, or that <u>KB</u> entails <u>G</u>.
- In other words, KB ⊨ G if there is no interpretation in which KB is true and G is false.

Example: Logical Consequences



Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic:
 Semantics
- PDCL: Bottom-up Proof

One simple way to prove that G logically follows from a KB

- Collect all the models of the KB
- Verify that G is true in all those models

Any problem with this approach? check of the just actable time complexity

2" interpretations

The goal of proof theory is to find proof procedures that allow us to prove that a logical formula follows form a KB avoiding the above is logically entailed by

Soundness and Completeness

- If I tell you I have a proof procedure for PDCL
- What do I need to show you in order for you to trust my procedure?
 - KB ⊢ G means G can be derived by my proof procedure from KB.
 - Recall KB ⊨ G means G is true in all models of KB.

Definition (soundness) A proof procedure is sound if $KB \vdash G$ implies $KB \models G$.

Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of *modus* ponens:

If $h \leftarrow b_1 \land \dots \land b_m$ is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause. (This rule also covers the case when m=0.)

Bottom-up proof procedure

$$KB + G$$
 if $G \subseteq C$ at the end of this procedure:

repeat

select clause " $h \leftarrow b_1 \land ... \land b_m$ " in KB such that $b_i \in C$ for all i, and $h \notin C$;

$$C := C \cup \{h\}$$

until no more clauses can be selected.

Bottom-up proof procedure: Example

$$z \leftarrow f \wedge e \leftarrow C = \{ +_{1} v_{1} b_{1} a_{1} e_{2} \}$$
 $q \leftarrow f \wedge g \wedge z \leftarrow$

 $C := \{\};$

repeat

select clause " $h \leftarrow b_1 \land ... \land b_m$ " in KB such that $b_i \in C$ for all i, and $h \notin C$;

$$C := C \cup \{h\}$$

until no more clauses can be selected.

KB By 13 9? Z?

KB /BU 9

Learning Goals for today's class

You can:

- Verify whether an interpretation is a model of a PDCL KB.
- Verify when a conjunction of atoms is a logical consequence of a knowledge base.
- Define/read/write/trace/debug the bottom-up < proof procedure.

Next class

(still section 5.2)

- Soundness and Completeness of Bottom-up Proof Procedure
- Using PDC Logic to model the electrical domain
- Reasoning in the electrical domain

Study for midterm (Wed March 10)

Midterm: ~6 short questions (10pts each) + 2 problems (20pts each)

- Study: textbook and inked slides
- Work on all practice exercises and revise assignments!
- While you revise the learning goals work on review questions (posted) I may even reuse some verbatim ©
- Will post a **couple of problems** from previous offering (maybe slightly more difficult /inappropriate for you because they were not informed by the learning goals) ... but I'll give you the solutions ©