Tralfamadore: Unifying Source Code and Execution Experience
(Short Paper)

Geoffrey Lefebvre, Brendan Cully, Michael J. Feeley, Nonn@a Hutchinson and Andrew Warfield

Department of Computer Science, University of British Gohia, Vancouver, Canada

Categories and Subject Descriptord.2.5 [Testing and
Debugging: Debugging aids, Tracing; D.2.6Pfogram-
ming Environmenis Interactive Environments; H.3.3r-
formation Search and Retriealnformation filtering

come better able to infer the expected behavior of source
code and to safely change it. Still, the relationship betwaee
developer and source code is frequently interrogatorgnoft
requiring instrumentation or debuggers to answer question
such as: “What modifies this data structure?” or “What locks
are held when this function is called?”
Abstract The a}im of the work described in_this paper is to enhance
conventional tools that are used to interact with sourcecod
Program source is an intermediate representation of soft-in order to provide developers with a sense oféRperience
ware; it lies between a developer’s intention and the hard- of executing that source. By embedding execution details
ware’s execution. Despite advances in languages and develdirectly within a source browser, we allow developers to see
opment tools, source itself and the applications we use tothe bigger picture; they are able to better understand shing
view it remain an essentially static representation of-soft |ike the frequency with which specific regions of code run,
ware, from which developers can spend considerable energythe ranges of data that are processed, and the flow of control
postulating actual behavior. through source.

Emerging techniques in execution logging promise to Qur intention is not simply to provide static annotations,
provide large shared repositories containing high-figelit such as the call frequencies reported by a statistical profil
recordings of deployed, production software. Tralfamatior ing tool. Instead, we approach program understanding and
is a system that combines source and execution trace analdebugging as an online query and analysis problem where a
ysis to capitalize on these recordings, and to expose infor-view of program source may be used to specify constraints,
mation from the “experience” of real execution within the such as specific control flow paths or data values, that refine
software development environment, allowing developers to the presentation of that source. Unlike a statistical ggfil
inform their understanding of source based on how it be- the annotations are a result of online queries and analyses o
haves during real execution. complete execution traces applied to source views. Unlike
conventional debuggers, these analyses apply to existing e
ecution traces, and are able to summarize very large numbers
of executions, rather than focusing on a single (and gelgeral

General Terms Design, Experimentation, Languages

1. Introduction

“What were they thinking?” :]
This question, posed in one of several possible intona- Contrived) execution context. . .

tions, is often a developer’s first reaction to unfamiliauise The system we describe gathers detailed execution traces

code. As they gain familiarity with a large and complex @associated with a specific source version and stores them in

code base—such as an Operating System kerne|_they bed central location where they are analyzed and indexed. De-
veloper tools then interact with these traces by querying fo

relevant portions of execution and then performing dynamic
analysis on them in order to adjust the presentation of pro-
gram source to the developer. For example, a source browser
might annotate a function like the one shown in Figure 3 to
summarize the specific control paths taken through it during
traced execution. This trace immediately assists the devel

1n [Kurt Vonnegut's] Slaughterhouse-Five, Tralfamadcsettie home to
beings who exist in all times simultaneously, and are thiwg/fio knowl-
edge of future events, including the destruction of the ensig at the hands
of a Tralfamadorian test pilot. Wikipedia

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’09, April 1-3, 2009, Nuremberg, Germany.
Copyright(© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

oper by allowing them to differentiate common from excep-
tional paths of execution. Furthermore, the developer may
focus their view of the source by selecting a specific control
flow path, collapsing the view to only show the lines exe-
cuted in that path.

What is this function for?
What calls it? (both immediate and higher-level callers)
How frequently is it called?
What control flow paths are taken through it?
What values does it return?

céss calls to it correlated with specific data structuresel
locks?

How is this data structure used?

What reads and writes it?

How frequently is it accessed?

How much memory does it consume over time?

What values does it take?

What are the semantics of access (e.g., ordered array ag
atomic updates to all fields in a struct)?

=

Table 1. Some common questions asked in attempting to understagdgonasource.

2. Understanding Source Code use of locks [Engler 2003]. While static tools can perform
Table 1 lists a set of questions that may be useful in at- SOPhisticated source analysis, they rarely incorpordte-in
tempting to understand how source code behaves. CurrentlyMation from actual execution. As a result, they have trouble
there are three broad classes of tools for answering this@SS€SSing the relevance of the wealth of information thegt th
kind of query: fine-grained tools, like debuggers, thatsissi are capable of producing.

in deconstructing a single execution context; coarsenguhi These three classes of tools are each helpful for under-
tools, like statistical profilers, that summarize the highel

standing source, but they are all inefficient in some way. De-
behavior of an application; and static analysis tools, Whic buggers require that developers spend considerable amount
work directly with source, independent of actual execution

of time in uninteresting execution states while trying talfin
Fine-grained and interactive analysistools, such as de- the interesting ones. More brpadly, aII_of these tools. leave
buggers, allow a developer to directly interact with rumnin d€velopers cyclically performing a series of debugging or
software. These tools have the benefit of exposing COmlmeteanalyms experiments over numerous independent runs even
system state and allowing memory to be read and written. though they are not changing the source.

However, they represent only a single context of a program'’s

execution as it progresses through a single run. It is often

very difficult to attach a debugger to exceptional points in 21 Tralfamadore

program execution, especially where these points invalve e Tralfamadore uses detailed execution trace data in anjaittem
vironmental factors such as long run times or external depen to unify the above three classes of tools. Our intention is

dencies like network connections. Although time-traviglli to present a view of source code—what a progsiruld
debuggers [King 2005, O’Callahan 2008] allow a program- do—superimposed with trace data and analysis, or what it

mer to move along the time axis in either direction, their
view is still constrained to one instant at a time. Program
slicing techniques [Weiser 1981] help automate the discov-
ery of causal relationships between statements for a partic
ular execution context but provide little intuition abobet
behaviour of the code across a broad range of inputs.
Coarse-grained summarization tools, provide aggre-
gate information about application behavior. For instance
the GNU profiler uses program instrumentation to record
call frequencies at function granularity. Other tools mage
of hardware performance registers to provide instruction-
level execution frequencies in order to allow developers
to better understand where execution time is actually be-
ing spent. Dynamic binary analysis tools such as Val-
grind [Nethercote 2007] perform run-time analysis of ap-
plication execution to find problems like memory leaks or
inefficient cache usage. While these tools are clearly help-
ful, they require ara priori understanding of what analysis

should be performed, and produce summarized reports that

are unable to answer follow-up questions.

Static analysis of application source is used by a num-
ber of developer aids, from navigational and source brasvser
to more complicated checking tools that validate the carrec

actually does.
Our system has two important high-level goals:

1. Simultaneously present the recorded execution of soft-
ware from many points in timeTralfamadore aims to
preserve the detailed system view afforded by a debug-
ger, while also representing the collective execution of
the system over a long period of time. In other words, it
allows developers to become “unstuck in time”, present-
ing fine-grained analysis throughout many points in the
execution history.

. Allow the developer to interactively refine their view of
execution.High-fidelity trace data should allow the de-
veloper to overcome the inefficiencies of cyclical debug-
ging, letting them phrase follow-up question as refine-
ments of the scope of execution being examined which
included progressively more detail. In short the devel-
oper should be able to “drill down” in order to better un-
derstand specific nuances of system behavior. In the ex-
treme, the developer should be able to refine their view of
trace data to a single execution context at a single pointin
time, and ask the system to regenerate an instance of that
system, potentially attached to a conventional debugger.

3. Examples

This section demonstrates Tralfamadore’s ability to prese
the detailed and complex information resulting from trace
analysis in an intuitive manner. Our prototype is in its in-
fancy but can already reveal several interesting progsertie
as we demonstrate using the Linux source tree.

3.1 Function and Data Users

A major challenge to understanding the way that an indi-
vidual function or data structure is used is in identifyihg t
code that uses it. Static analysis, or even simpler teclestu
are useful, but hardly sufficient. First, these tools areblaa
to follow indirection. Second, they do not provide any in-
sight into the relative frequency of access, making it ditfic
for developers to start with the “common case”.

mutex_lock, paths: 6504 1351 533 417 412 188

void inline fastcall _ sched mutex_lock(struct mute
6 {
7 mlght_sleep();

* The locking fastpath is the 1->0 transit
* 'unlocked' into 'locked' state.
ny

mutex _fastpath_lock (&lock->count, _ mutex

>

}
ret pipe_read(6504) generic_file_llseek(1351) do_lookup(533)
generic_file_aio_write(417) open_namei(412) pipe_write(188)

Figurel. Some users of theut ex_| ock function.

Figure 1 shows the Linurut ex_| ock function anno-
tated with trace data. Locking semantics aside, this func-
tion represents the common idiom of an accessor function
guarding a specific variable, in this case a mutex. The an-
notated code immediately provides the developer with three
useful pieces of information: First, whileut ex_| ock is
called over 8000 times in the trace, the slow path is never
taken; if it were, a box highlighting a call on line 52 to
__mut ex_| ock_sl owpat h® would be shown. Second, it
is called by six different callers, resulting in indepentign
colored control flow tags in the annotation at the top of the
function. Finally, the actual frequencies of each of thesk ¢
ing contexts is reported in the box at the bottom of the func-
tion which shows where control returns to; this allows the
developer to immediately focus qm pe_r ead as the most
frequent caller.

3.2 Control Flow Indirection

In the example above, we revealed the users of a function.
In many cases, the inverse operation can also be very usez
ful. When calls are performed indirectly, e.g., throughdun
tion pointers, static tools are easily stymied. While dyiam

analysis does not necessarily present a complete inventory,,qa can

of control flow targets for a given site, it does allow detdile
insight into real invocations.

2ie.,grep

3__mut ex_l ock_s| owpat h is the second parameter on line 52 and un-
fortunately runs off the edge of the figure.

jae syscall_badsys
call *sys call_table(,%eax, 4)
call sys_read(8340) sys_open(3394) sys_write(1125) sys_clone(63)
sys wrme(34)sys read(29)
DISABLE_INTERRUPTS(CLBR_ANY)
TRACE_IRQS_OFF
movl TI_flags(%ebp), %ecx
testw $ _TIF_ALLWORK_MASK, %cx
3 jne syscall exit work
IJCC syscall exit_work(63) syscall_exit_work(34) syscall_exit work(29)}>o di
movl PT_EIP(%esp), %edx

Figure2. Following anindirectcallirsysent er _entry.

Figure 2 shows one of Linux’s system call entry points,
sysent er _entry. On line 340, the system call number
in registerEAX is used as an offset into a jump table, in
an assembler invocation that is difficult to analyze stdlfica
Tralfamadore annotates this statement with a list of thegjum
targets that are taken in the trace. As with the accessor
example above, it clearly presents a ranked list of system
calls, providing the developer with an intuitive sense @& th
common uses of the underlying code.

Because it uses actual traces, it can display useful infor-
mation that is not available from profile-based tools. Fer ex
ample, it is easy to see that of the 4 system calls invoked
in this slice of trace data, onsys_cl one) always calls
syscal | _exi t _.wor k after it returns, oneslys_open)
never calls it, and twosys .r ead, sys_wr i t €) sometimes
do but usually don'’t. In Section 4.3, we discuss how this ex-
ecution context may be used to produce a refined view of
program flow satisfying non-local conditions.

3.3 Path Analysis

eth_type_trans, paths: 3815 2173 97
_ bel6 eth_type_trans(struct sk_buff *skb, struct ne
{
struct ethhdr *eth;
unsigned char *rawp;
skb->dev = dev;
skb_reset_mac_header(skb);
skb_pull(skb, ETH_HLEN);
eth = eth_hdr(skb);
if (is_multicast_ether_addr(eth->h_dest)) {
1f (!compare_ether_addr(eth->h_dest,
skb->pkt_type = PACKET_BROAD
else
skb->pkt_type = PACKET_MULTI
}
else 1f (1 /*dev->flags&IFF_PROMISC */) {
1f (unlikely(compare_ether_addr(eth-
skb->pkt_type = PACKET_OTHER
}
if (ntohs(eth->h_proto) >= 1536)

Figure3. Processing 3 packet typesaenh_t ype_trans.

In large functions, the set of possible paths through the
quickly become obscured by a cascade of com-
plex conditional jumps—this number is typically far lesarth
gconditionals due to inter-branch dependencies. By present-
ing the set of actual paths taken, Tralfamadore makes it much
easier to understand these dependencies. As a simple exam-
ple, consider theet h_t ype_t r ans function in Figure 3.

We can clearly see that there are three distinct control flows specific system configurations, and to adapt a single OS ker-
corresponding to the type of ethernet packet being prodesse nel to specific virtual and physical boot environments.
(multicast, broadcast, or normal). The distribution ofstne The second component produced by QEMU is e
packet types during the trace is also presented, allowing aecution Trace LogThis log identifies all instructions that
developer to better understand the actual workload being in are executed and their associated side effects to memory and
spected. For instance, in this example 5,988 packets are mulregister state. It also contains details of events such-as in
ticast or broadcast versus only 97 normal packets, imply- terrupts and exceptions. These two traces are then merged

ing that the host is engaged in relatively little active natkv into a singleDetailed Tracewhich is the complete execution

communication during the trace period. log of the system. Splitting the initial trace into two compo
nents is largely a matter of efficiency. Because QEMU stores

4. System Architecture translated instructions in a code cache for performanee, th

instruction trace grows at a rate much slower than the ex-
ecution trace. We have observed more than two orders of
magnitude difference between the two.

It is worth mentioning that the current QEMU-based im-
plementation is the second prototype execution trace-facil
ity that we have implemented. Our early prototype took ad-

Figure 4 presents an overview of Tralfamadore, and details
how it is currently configured with regard to the analysis ex-
amples shown in the previous section. Tralfamadore is di-
vided into three major components. TEsecution Trace
Facility is responsible for recording execution and generat-

Ing a p(_er5|stent log. ThEackend Analysis Engirgerforms _vantage of the branch trace store (BTS) feature that has
streaming transformathns on the trace data, reconstgicti . been available on Intel processors since the Pentium 4 [In-
system state and mapping it back onto program source. Fi-io| 500g], allowing the generation of a continuous log of all

nally, aClient Interfaceinteracts with both the analysis en- e pranches. Branch trace information alone was insuffi-
gine and the program source repository to present informa- gien o perform many dynamic analyses, and handling self-
tion to the developer.) modifying code in particular would have meant extending

. The current system hgs focused exclusively on the_ record-y,q implementation to track modifications to code pages. We
ing and analysis of the Linux kernel. As a complex piece of 10,5 red the baseline overhead of BTS to be a 20-30x slow-
multi-threaded low-level software, Linux s an excellemtt 45, o the systenieforeadding the extensions required to
get for Tralfamadore. That said, the system is hardly lichite , -jeve comprehensive traces. The QEMU implementation
In Its appllcajuonlto OS kernel code: we intend to extend 't,to is currently comparable to that of BTS, but incurs consider-
include application code, and to present source annogation able overhead in writing out trace data. We have found the
for languages other than C. emulator-based approach to be faster to extend, and gener-

41 Execution Trace Facility ally more efficient than the processor feature.

The work in this paper is unconcerned with the efficient cap- 42 Trace Analysis
ture and indexing of execution traces. A number of projects The core of our system is a streaming trace analysis engine,
already exist that aim to capture high-fidelity execution which allows a pipeline of dynamic analysis modules to be
traces in hardware [Xu 2003], software [Bhansali 2006] and applied to trace data. This approach allows us to quickly
at the virtualization layer [Dunlap 2002]. Recent work has develop and test new analysis components, and to process
demonstrated that the deterministic event logging andyepl very large traces without requiring large memory overheads
systems in a commercial hypervisor may be used to decoupleWe plan to extend the system to parallelize trace analysis
trace capture from trace analysis and result in a traceeolle across a cluster of servers, eventually providing a scalabl
tion overheads averaging 5% on common workloads [Chow analysis engine for large software systems.
2008, Xu 2007]. Our prototype execution trace facility is a Our analysis engine is currently implemented in approx-
modified version of the QEMU emulator [Bellard 2005]. imately 4500 lines of OCaml. It uses the trace we generate
The system produces two parallel trace components.from QEMU but could be easily adapted to use traces from
First, aninstruction Translation Tables extended whenever other tracing environments such as Nirvana [Bhansali 2006]
the emulator translates a new basic block of program binary. or Retrace [Xu 2007]. The trace data is read from disk and
This table maps the current instruction pointer (EIP) to the converted to an internal representation that is passedghro
in-memory instruction that is actually emulated, and serve the individual pipeline stages. Stages process trace alada,
two purposes. First, it reduces the size of the executi@efra are able to both annotate the stream with additional meta-
by only requiring complete instructions to be stored once data and to build in-memory data structures, such as caches,
and referenced by EIP. Second, it allows the system to han-as look-up services and optimizations for later stages.
dle changes to the executing binary (e.g., self-modifying For the examples shown in Section 3, in which the system
code) that occur during execution. Self-modifying code has is analyzing an execution trace of the Linux kernel during
become increasingly prevalent in modern systems; the Linux a kernel compilation, Tralfamadore’s pipeline is configlre
kernel, for instance uses it to tune lock implementations to with the four stages illustrated in Figure 4. Analyzing the

System Execution (Backend Analysis Engine (Showing current pipeline configuration))
. * \ Context extraction. Platform Per-context Control Flow. Reduce
Trace Facility specific heuristic isolates individual each context to list of basic blocks
Instruction o T CF contexts. Linux kernel prototype characterizing the control flow of each
Translation Table || (eip, side effects o isolates system calls, interrupts/ individual execution context as a
(eip->instr) events) exceptions, and kernel threads. control flow path.
Y Y Function-level CF Analysis. Source Mapping Annotations. Extend
Detailed Trace. Sequence list of Aggregate individual control flows, function summarizations with
executed instructions, side effects, counting frequency and grouping eferences to relevant source. Add line
and events. by function. numbers, function names, etc.
Source Repository Client
Source History Web Server Presentation layer. Maps analysis results onto the source display, handles
Including object [|Source browser ¥ interactive requests. As discussed in section 4, this layer will be extended to
metadata. interface. push down additional analysis requests as queries against the trace data.

Figured4. Trace analysis pipeline.

trace of arunning OS is challenging, as it contains many con- 4.3 Source Repository and Client

current execution contexts, such as system calls or ifE&STU g itamadore presents annotated source listings to develo

which may occur at any given point in time. The analysis o5 through a web-based source browser. We have modi-
system must start with the system-granularity trace stream fioq the source browser interface provided by the Mercu-

and refine the representation up to the function-granylarit 5| (Mackall 2005] version control system to associategra
annotations demonstrated in Section 3. . data with the source that produced its executable. The trace
In the first stage, the system perforamntext extraction je\ver adds trace annotations to the source file viewer, in-
to isolate individual flows of execution. This stage encodes cluding the lines comprising each basic block, the order of
a heuristic that tracks task switch, interrupt, and exeepti gyecytion of basic blocks, and the targets of branches, call
events as implemented by Lindt then annotates the trace returns and so on. In our current prototype, the server pro-

stream with fra.ming information_ to label the ind_ividual X~ \ides precomputed summarizations of program flow (which
tents of execution associated with each execution flow. The result from the final stage of the analysis pipeline above)

sec_ond stage perfornpmr-cqntggt control flovby concate- along with client-side javascript to visualize it.
nating the extents of each individual labelled flow and con- 14 fagilitate the interactive exploration of execution-his

structing alist of the basic blocks that make up that cor#ext y4rjes most of the work of visualization is performed on the
flow. At the end of this stage, the execution trace has beenjient side, within the user's web browser. The client resde

reduced into a list of all individual control flows througteth graphs of execution based on the raw data about basic blocks
system, each Qescnbed as a series of basic blocks. _ and branches taken, as supplied by the server-side extensio
The remaining two stages work upwards from this de- e yser can filter for particular execution paths by select-
composition. First, dunction-level control flow analyzeg- ing one of the set of paths or selecting those where function
gregates the individual control flows associated with each pointers take on particular valu&or example, in Figure 3,
function, and builds per-function control flow trees. Each ia user could choose to display only the path taken by mul-
tree Qescribes the set of unique contrqlflows through a givenyjcast packets by selecting the branch passing through line
function, and annotates each flow with a frequency count. 171 similarly, in Figure 2, the user could distinguish icae
The final stage takes the resulting trees and perfsn&Ce {jons of the same system call that end up scheduling further

mapping annotationssing DWARF debugging information 0.« pefore returning from those that don't.
to further annotate the trees with information like sounce |

numbers and symbol names. 5. Future Work and Conclusions

Tralfamadore’s design hypothesizes that it will soon be
reasonable to build central repositories containing tetai

4The current heuristic uses interrupts, exceptions, arubtta mark the 51n the current prototype we only track control flow data susfitaction
start of a context, and iret/sysexit to mark the end. We usiaaxtspecific pointers; eventually we will track all data changes and wilpport more
heuristic of tracking the esp0 field of the TSS to detect cdrewitches. extensive filtering capabilities.

recordings of program execution, and explores how these for instruction-level tracing and analysis of program exems.
can be used to assist developers in understanding and im- In Proceedings of the 2nd International Conference on Virtual
proving software. Even with current techniques, we believe Execution Environment2006.

that this approach can be usefully applied, for instance, to [Chow 2008] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling
record regression test runs of software releases as aleentra dynamic program analysis from execution in virtual environ
ized tool for developers. ments. INUSENIX Annual Technical Conferen@908.

While the majority of related work has been discussed in [Dunlap 2002] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
earlier sections of the paper, it is worth mentioning that re and P. M. Chen. ReVirt: enabling intrusion analysis through
cent work in programming languages research has explored Virtual-machine logging and replay. Proceedings of the 5th
building query languages that simplify the encoding of dy- symposium on Operating Systems Design and Implementation
namic analyses [Martin 2005, Goldsmith 2005]. These sys- 2002.
tems have the same operational limitations of other binary [Engler 2003] D. Engler and K. Ashcraft. RacerX: effectigetic
analysis tools (applications must be rerun to apply a new detec_tion of race conditions a_md deadlocks._Pmceedings of_ _
query, for instance), but provide an elegant high-level in- the Nineteenth ACM Symposium on Operating Systems Princi-
terface to evaluate execution. We hope to extend these ap- P'€S 2003.
proaches in the future to apply to whole-system traces and[Goldsmith 2005] S. Goldsmith, R. O'Callahan, , and A. Aiken
to simplify the development of new analysis extensions. Relational queries over program traces.. lecegdmgs of the

The current prototype presents an end-to-end implemen- AC_:M SIGPLAN 2005 Conference on (_)bjt_ect-Orlented Program-
tation of such a system, from execution recording, through ming, Systems, Languages,-and Appll?atl(ﬁﬁE)S.
analysis, to presentation as an annotated interactivesour ['Ntel 2008] Intel. lIntel 64 and ia-32 architectures softe/devel-
browser. Developers using the system are “unstuck in time” °P€r's manual volume 3b: System programming guide.
and able to immediately visualize huge amounts of execution .http./lwww.lntel.c.om/products/processor/manualsD&O
as it pertains to individual areas of source. An immediate [King 2005] S. T. King, G. W. Dunlap, and P. M. Chen. Debug-
area of development involves extending our analysis engine glggElt\Jlli);ftlng systems with time-traveling virtual macfsinin
to track the state of data in addition to control flow, allow- nnual Technical Conferen@dos.)
ing us to better answer questions from the first column of [Mackall -~ 2005] M.~ Mackall. Mercurial.
Table 1. We are extending the client to allow new queries to MP-/www.selenic.com/mercurial/, 2005.
be issued to the backend, and to have partial results reporte [Martin 2005] M. Martin, B. Livshits, and M. S. Lam. Find-
and displayed in an online manner as the trace is processed. "9 application errors and security flaws using PQL: a progra

The current prototype is intended to act as a platform for glii% lgga?:rgeiééiﬁ:r?cgﬁiggé?ife:t‘s dzgt:) ﬁgmznﬁ\c’\sﬂ itlc(e;ms
a considerably more general execution analysis system. As Languages, and Applicatiénzoos 9 g sy ‘
Tralfamadore matures, we hope to be able to perform more ' ' ,
complex analysis tasks, including the identification oflyut [Nethercote 2007] N. Nethercm? apd J. Seward. Valg_nndar;mé-
ing and exceptional execution states which may represent a work_for heavyweight dynamic binary instrumentation. Firo-
source of either bugs or attacks. We also hope to allow de- ﬁﬁig”ﬂgﬁ;g;gz |:2)22i79r? Zr,:/clj ?%%Elﬁ;tzgggﬂshce on Program-
velopers to retroactively state assertions regardingxeete , ,)
tion of their systems, and to validate these assertionsiagai [Otfaﬂlf_gzg egoods gbf g g e? Cg!z‘:gn. on imr;:?é? : ncaenr ('j Celg;w; N
execution traces. With assertions, this would allow a popu- http://code.google.com/p/chronomancer/, 2008.
lar defensive programming technique to be applied retroac-
tively and without the need for cyclic re-compilation and re
execution as assertions are added or changed.

Tralfamadore is in its infancy, but we believe it demon-
strates the power of its approach to code analysis. When real
execution history is overlaid directly upon the source code
that produced it, the gap between intention and effect be-
comes narrow enough to be bridged. To experiment with a
(sometimes) live version of the system, point your browser

[Weiser 1981] M. Weiser. Program slicing. Rroceedings of the
5th International Conference on Software Engineerih@g81.

[Xu 2003] M. Xu, R. Bodik, and M. D. Hill. A “flight data
recorder” for enabling full-system multiprocessor deteistic
replay. InProceedings of the 30th Annual International Sympo-
sium on Computer Architectur2003.

[Xu 2007] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalannga
B. Weissman. Retrace: Collecting execution trace withueirt
machine deterministic replay. [fhird Annual Workshop on

athttp://tral famadore. cs. ubc. ca/. Modeling, Benchmarking and Simulation, held in conjunctio
with the 34th Annual International Symposium on Computer
References Architecture 2007.

[Bellard 2005] F. Bellard. QEMU, a fast and portable dynamic
translator. INUSENIX Annual Technical Conferen@®05.

[Bhansali 2006] S. Bhansali, W. Chen, S. de Jong, A. Edwards,
R. Murray, M. Drini¢, D. Mihotka, and J. Chau. Framework

