
SecondSite: Disaster Tolerance as a Service

Shriram Rajagopalan Brendan Cully Ryan O’Connor Andrew Warfield

Department of Computer Science, University of British Columbia

{rshriram, brendan, rjo, andy}@cs.ubc.ca

Abstract

This paper describes the design and implementation of SecondSite,
a cloud-based service for disaster tolerance. SecondSite extends the
Remus virtualization-based high availability system by allowing
groups of virtual machines to be replicated across data centers over
wide-area Internet links. The goal of the system is to commodify
the property of availability, exposing it as a simple tick box when
configuring a new virtual machine. To achieve this in the wide
area, we have had to tackle the related issues of replication traffic
bandwidth, reliable failure detection across geographic regions and
traffic redirection over a wide-area network without compromising
on transparency and consistency.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability—Backup procedures, Checkpoint/restart, Fault-tolerance

Keywords Wide Area Replication, Disaster Recovery

1. Introduction

Failures in the cloud are spectacular. In January 2010, Heroku, a
Ruby-on-Rails application hosting company experienced the com-
plete failure of their 22 virtual machines hosted on Amazon EC2.
This outage, which was reportedly the result of a router failure, af-
fected the 44,000 applications hosted on the site [7]. In May 2010,
Amazon experienced four EC2 outages in a single week, the last of
which resulted from a car crashing into a utility pole cutting power
to a portion of the system [25]. Outages such as these are hardly
limited to Amazon, who through the introduction of “availability
zones”, has taken steps to expose failure domains explicitly to cus-
tomers so that applications may be designed to survive outages.
However, while techniques to expose fate sharing and exposure to
risk, such as Amazon’s availability zones, help their customers en-
gineer systems to survive failures, they are no panacea.

In April 2011, a “networking event” in the Virginia facility trig-
gered a cascading failure in Amazon’s Elastic Block Store (EBS),
and resulted in a serious outage across multiple availability zones.
An undisclosed number of virtual machines, including the hosts
of a number of large, popular web-based applications, became un-
available for the initial twelve hours of the outage. Complete ser-
vice was not restored for five days. Amazon published a detailed
postmortem of the event, explaining that the outage stemmed from
a series of bugs and unanticipated behaviors in the failure recov-
ery mechanisms for EBS [37]. One of the concluding observa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

tions made in the document is that for the highest degree of avail-
ability, applications should be protected across multiple regions–
geographically separate data center facilities that have a much
lower degree of fate sharing than availability zones within the same
data center.

The EBS failure is illustrative of the fact that while cloud com-
puting environments are well maintained and professionally ad-
ministered systems, they are not immune to outages. The post-
mortem, released less than a week after the outage itself, represents
a surprisingly thorough and forthcoming explanation of the chain
of events leading to failure. It also identifies a set of changes, to
both software and administrative procedures, that will be taken to
avoid repeating this sort of outage in the future. However, the fail-
ure severely impacted customers–even those who were making ef-
forts to engineer their systems to be resistant to outages within the
hosting environment–and left them without service for as many as
five days. As such, the Virginia outage also demonstrates that while
rare, outages are happening, and they are happening at scale. Even
the skilled developers of mature Internet-based services face chal-
lenges in designing systems that handle these failures gracefully.

This paper describes SecondSite, a high-availability and disas-
ter tolerance service for virtual machines running in cloud environ-
ments. Based on the premise that implementing application- or OS-
level fault tolerance is both difficult and expensive, we argue that
facilities to enhance the availability of hosted software should be
commodified, and offered as part of the hosting infrastructure. Just
as spot markets [40] allow customers to receive a less reliable level
of service at a cut rate, we argue that important workloads (and
less sophisticated developers) would prefer a service that transpar-
ently provides a higher degree of availability. Using SecondSite,
the owner of a hosted virtual machine may elect to have that VM’s
entire state continuously replicated to a backup image at an alter-
nate geographic location. As with the Remus [11] system on which
it is based, in the event of failure SecondSite allows the backup
VM to take over in a completely transparent manner, requires no
changes to OS or application code and exposes no failure to con-
nected clients.

1.1 Failure Model

High-availability systems are typically complex: they require care-
ful planning, complex integration with program logic, and ongo-
ing maintenance as application code evolves over time. Second-
Site makes two simplifying design decisions regarding its failure
model that are intended to make it more practical for general pur-
pose use.

Provide protection from fail-stop failures. Like Remus before
it, SecondSite provides protection from fail-stop failures, the typi-
cal case in large-scale outages and disasters. The system provides
transparent, continuous replication of a running VM to a passive
backup host at another location. While fail-stop clearly includes de-
structive events such as fires and power outages, we also promote
network failures to be fail-stop through the use of a watchdog that

97

Local Area (Remus) Wide Area (SecondSite)

Replication Link Bonded Ethernet Interfaces Routed IP connectivity over WAN
Replication Latency Hundreds of microseconds Tens of milliseconds
Failure Detection Complete link failure of replication channel Quorum among external vantage points
Network Relocation Ethernet MAC (e.g. via ARP) IP address (e.g. via BGP)

Table 1: Differences between the Local and Wide-Area Network.

automatically removes the active host from service in the case of
network disconnection. This approach does not attempt to survive
“wounded” applications experiencing partial failures as a result of
overload, environmental problems, or bugs. However, it can help
to maintain availability when a site is experiencing wide-area con-
nectivity problems by transparently migrating to a better-connected
backup during the network outage.

Protect the complete state of the running application. The
failures for which SecondSite provides protection address concerns
of both availability and durability. The established approach for
disaster recovery in many environments today involves the asyn-
chronous replication of storage. In the event of failure, storage-
based disaster recovery systems (a) lose some amount of data
and (b) require that the hosts reboot successfully from a crash-
consistent image. In SecondSite, the disk image and complete run-
ning machine state are replicated, meaning that no data will be lost
in the event of failure, and that reboots, with associated file system
checks, are not required. This approach mitigates the risk associ-
ated with failures that may occur during restart on the backup host,
such as problems checking the local (crash-consistent) file system.

In the next section, we characterize three challenges that we
faced in evolving Remus to provide disaster tolerance as a ser-
vice. The first of these concerns involve making replication work
effectively over expensive and higher-latency wide-area links. The
remaining two concerns address the network-related challenges of
detecting failure and restoring service in an Internet, as opposed
to local-area, environment. Many of the individual techniques de-
scribed here have been used in other systems: the contribution of
this work is to describe the development of an active disaster toler-
ant testbed that is currently deployed between two university data
centers, approximately 260 kilometers apart. In addition to the ar-
chitecture of the system, we describe several of the more painful
corner cases that we experienced during development and deploy-
ment, and provide details of a continuous regression test suite that
we use to validate and demonstrate confidence in the system to oth-
ers.

2. Challenges of Wide-Area Disaster Tolerance

Remus [11] provides transparent high availability for unmodified
OS and application software running within virtual machines on the
Xen [4] hypervisor. Remus achieves this by employing checkpoint-
based fault tolerance: during normal operation, incremental check-
points of the entire VM state on the primary host are replicated to
a backup host. These checkpoints are performed at a very high fre-
quency (20-40 checkpoints/second) to enable fine grained recovery.
On failure of the primary host, the VM at the backup host resumes
execution from the latest completed checkpoint. The failover pro-
cess is totally transparent to clients: the backup VM has the same
IP address as the primary VM and, just as with live migration [9],
the backup host issues a gratuitous ARP to ensure network packets
going to the failed VM are automatically redirected to the backup
VM as soon as it becomes available.

Remus checkpoints capture the entire state of the primary VM,
which includes disk, memory, CPU and network device state.
Checkpoint replication and acknowledgement is carefully pipelined

and overlapped with execution to maintain low overhead, while still
preserving consistency. The execution of the primary VM during
each checkpoint interval is speculative until the interval has been
checkpointed, since it will be lost if a failure occurs. Therefore,
Remus uses output commit [29] to ensure that the external world
sees a consistent view of the server’s execution, despite failovers.
More specifically, Remus queues and holds any outgoing network
packets generated by the primary server until the completion of
the next checkpoint, ensuring that unprotected speculative state is
never exposed.

Output commit is also applied to isolate disk writes generated
during a checkpoint interval. Writes received from the active server
during an epoch are buffered and released to disk only after a
checkpoint is complete. In the case of failure, Remus ensures that
prior to resuming execution on the backup, all outstanding check-
pointed writes have been written to disk and that any writes associ-
ated with speculative execution are discarded.

2.1 Challenges of Wide-Area Networks

Remus is designed for a LAN environment, and is intended to re-
spond to the increased exposure to failure that results from con-
solidating many physical servers into virtual machines on a sin-
gle host. In this environment, the failure of a single physical host
carries elevated consequences, and Remus provided the ability to
transparently recover from this class of failure by replicating state
to a second physical server.

The environmental differences that face an availability system
in moving from the local to the wide area are summarized in Ta-
ble 1. First, the high bandwidth and low latency network of the lo-
cal area is replaced with a typically lower bandwidth, and certainly
higher latency IP connection between sites. As a consequence, the
system must be more frugal with replication traffic, as networking
resources are constrained and often also quite expensive.

A second difference is that Remus aims to survive any single,
fail-stop physical failure. In Remus, replication traffic travelled
over a dedicated point-to-point Ethernet link from the primary to
the backup. This meant that Remus could survive the failure of
any single physical component, even the loss of a replication NIC.
In the wide area, the link between the active and backup hosts
is often an IP route and may be lost even though the rest of the
network remains available, requiring more careful consideration of
failure notification. Finally, address relocation is considerably more
challenging as a result of the need to alter upstream routing.

The remaining subsections discuss each of these three issues in
more detail.

2.2 Bandwidth-Efficient Replication

Continuously replicating virtual machine checkpoints can require a
lot of bandwidth. Depending on the frequency of checkpoint repli-
cation and the amount of state changed since the previous check-
point, replication can easily consume up to 600 Mbps for memory
intensive workloads. While a 1Gbps link supports this load, the cost
of wide-area networking makes site-wide replication impractical
at this rate. Furthermore, having multiple high-bandwidth streams

98

share a single link can increase congestion and reduce the effective
bandwidth of the link.

In previous work on optimizing Remus for databases [24], we
faced similar challenges: database workloads can generate very
large checkpoints to the point that even fast LAN links may become
performance bottlenecks. We developed three main techniques to
reduce checkpoint size and latency: Commit Protection relaxes out-
put buffering of some network messages. Read tracking avoids
replicating changes to the contents of memory where that state has
previously been read from disk. Finally, Checkpoint Compression
saves bandwidth by performing online compression of the replica-
tion stream.

2.3 Failure Detection

To ensure correct execution, it is very important that only one
of the replicas is active at once. When the replicas lose contact
with each other, we must ensure that the active replica has failed
(or become globally unreachable). Remus deals with the problem
of distinguishing between system failure and network partition by
bonding together two physical NICs for the replication link, so that
it will continue to operate even if a single NIC fails. This does not
suffice across a WAN, where the connection between the primary
and the backup is not necessarily under the control of the high-
availability service provider.

Differentiating between network partition and host failure using
only two hosts is not easy, and we do not attempt to do it. Instead,
we rely on an arbitration service residing outside of the protected
network. If the primary and backup hosts lose contact with each
other, they attempt to contact the arbitrator to decide which of them
should continue running. They will terminate if instructed to do so
by the arbitrator, or if they cannot reach the arbitrator.

2.4 Failure Recovery

When a virtual machine is relocated, network traffic between it and
its clients must take a different path. The transition between loca-
tions must have two properties to be effective: it must be compre-
hensive — as the VM is being recovered in a geographically distant
location, traffic from all clients must be appropriately redirected to
the new VM instance. Second, in order to maintain availability, it
must also complete in a timely manner. In the LAN environment,
these properties are easy to achieve: As both primary and backup
hosts are on a common Ethernet network, relocation is not exposed
to the IP layer beyond the use of ARP.

Unlike the LAN environment, wide-area migrations involve
BGP updates to redirect IP traffic from one site to another. BGP
convergence times are challenging to reason about and slow BGP
convergence may result in considerably longer periods of unreach-
ability for the backup host. Rather than attempting to tackle the
general issue of convergence delays related to IP address migration
in BGP our approach uses a specific, but realistic BGP configura-
tion to provide failover: we configure the protected network on the
active and backup sites in the same manner that dual-homed IP net-
works are configured to survive link or ISP failures. Our network
configuration can be thought of as a dual-homed set up in which
not only is the backup link is redundant, but so are the servers that
they connect to.

3. SecondSite Design

SecondSite builds upon Remus and provides the same transparency
and consistency guarantees. In a typical deployment, Second-
Site runs on each physical host on the primary site, replicating
all virtual machines (VM) running on that host across a WAN to a
host on the backup site. Each VM is checkpointed independently.

When the primary site fails, the backup site performs the re-
quired network reconfiguration (e.g., BGP updates) and resumes

the execution of all the protected virtual machines from their last
consistent checkpoint. The failure and subsequent migration to a
remote location is completely transparent to the VMs.

3.1 Reducing Replication Overhead

RemusDB [24] introduced a set of optimizations to address the
large overheads of checkpoint-based HA for database applications.
These optimizations addressed both latency and replication band-
width, and thus can be very beneficial for disaster recovery. The
following were the main optimizations introduced by RemusDB:

• Checkpoint Compression Using Page Delta compression [30,
34] and an LRU cache of previously dirtied pages, this tech-
nique reduces the size of a checkpoint dramatically. The obser-
vation here was that updates to memory were sparse but spread
over a large working set.

• Disk Read Tracking Since the disk is kept synchronized by
Remus during replication, pages read from the disk by Guest
VM need not be included in the checkpoint as long as it is
unmodified during the checkpoint. At the backup host, these
pages are periodically read from disk into the backup VM’s
memory.

• Commit Protection Applications can dynamically override
output commit through a setsockopt() option. The abil-
ity to dynamically switch a connection between buffered and
unbuffered states, allows transactional workloads like OLTP to
leverage consistency guarantees of Remus without incurring
the latency overhead introduced by output buffering [29].

We have only used one of these techniques (checkpoint com-
pression) in this work. The read tracking optimization was devel-
oped against the Remus disk replication module, which does not
support resynchronization after failure. Preliminary investigation
indicated that it would not produce large improvements for the
workloads we examined (discussed in Section 4), and so we have
not yet ported support to our new disk synchronization layer.

Commit protection can reduce client-perceived latency dramati-
cally, but it requires understanding of the protected application and
cannot simply be switched on. As a platform-level service, Sec-
ondSite aims for transparency for both the protected VMs and the
service provider, and so we have only evaluated techniques that
conform to that goal.

3.2 Failure Detection in SecondSite

In SecondSite, we only consider fail-stop failures. A node may sus-
pect failure if the replication stream times out, but the failure of the
replication link does not prove that the remote node itself has failed,
or even that it has become unreachable to its clients. Incorrectly
classifying link failure as node failure can lead to a Split-Brain sce-
nario, where both primary and backup become active at the same
time. Failure detection in distributed systems is a richly researched
topic, with many possible approaches but no single perfect solution.
Possible approaches include unreliable failure detectors [8], mini-
mal synchrony [12] and partial synchrony [15]. Several variants
of unreliable failure detectors have been proposed, such as heart-
beat [1, 2], adaptive timeouts [16], gossip-based detection [32], and
so on. Such approaches assume partition tolerance, which Second-
Site does not require.

SecondSite’s failure detector requires the following properties:

• Quick detection — The failure detection logic contributes to
the service downtime, as network packets from VMs are not
released until a decision is made.

• No false positives — Incorrectly classifying a live site as dead
leads to split brain situation and loss of data consistency.

99

Figure 1: State Transitions of a Quorum Node

• Conservative failover — Network congestion can produce tran-
sient communication delays. Aggressively classifying such de-
lays as failures and triggering recovery is expensive and could
lead to reduced availability.

Quorum-based failure detection techniques can be used to
achieve these requirements. There are several variants of the quo-
rum technique. One simple technique is to use a shared quorum
disk, where both nodes try to atomically reserve a disk partition
(e.g. SCSI Reserve & Release). Such a solution is infeasible over
a wide-area network. Another commonly used solution in WAN
environments [41] is the ping-based approach. When the replica-
tion channel is broken, the backup site attempts to ping the primary
site over a different network address. If the ping is successful,
failover is avoided. This technique requires that there be at least
two different routes between the primary and backup site, one to
carry replication traffic and another for the ping test. This approach
avoids requiring a third node by using distinct network interfaces to
create a quorum. A third approach is to use quorum protocols [18]
with one or more quorum nodes outside the WAN cluster acting as
arbitrators.

Procedure 1 Quorum Logic at Primary Site

Require: ReplicationT imeout == True

suspend VMs and stop replication
result = SendHeartbeat(quorumNode)
if result == PrimaryAlive then // Link/Backup Failure

resume VMs
else // Failover happened

shutdown
end if

Procedure 2 Quorum Logic at Backup Site

Require: ReplicationT imeout == True

stop replication
loop

result = SendHeartbeat(quorumNode)
if result == PrimaryAlive then // Link Failure

shutdown
else if result == TimeWaitPrimary then

wait T secs for Primary to respond
else if result == BackupAlive then // Link/Primary failure

Issue BGP update to re-route network traffic
resume VMs from latest checkpoint

end if
end loop

In SecondSite, we chose to use quorum server(s) to arbitrate
during failure detection. We deployed a quorum web service in
Google App Engine [39]. Figure 1 shows the state transitions of
a quorum server used by SecondSite. The corresponding logic used
by the primary and backup sites are illustrated in procedures 1
& 2 respectively. Using a quorum web service is just one example
of how one could deploy a quorum service on the cloud cheaply.
In fact, the quorum service we deployed consumed very little re-
sources that it was well within the “daily free quota” offered by
Google. When a failure is suspected by one node, a quorum is ini-
tiated. If the backup node initiates quorum first, it waits for a con-
figurable time period for the primary node to make contact. The
wait phase avoids unnecessary failovers caused by transient con-
nectivity loss between the two nodes. While one quorum server is
sufficient, to provide better redundancy one could deploy several
quorum servers and use a simple majority quorum algorithm to de-
cide which of the two nodes should be victimized in the event of
network partition.

There are three failure scenarios to consider in our setup:

• One Node Failure Recovery succeeds with the help of quorum
servers. If the surviving node is the backup node, failure recov-
ery procedures are initiated.

• Replication Link Failure If a node obtains a quorum, it lives
(or recovers). If not, it shuts down. It is thus possible that both
nodes would shutdown if they fail to reach any quorum servers
or the quorum nodes in any partition is insufficient to satisfy a
majority. For services that cannot tolerate partitioned operation,
this behavior ensures data consistency.

• Quorum Node(s) Failure Replication proceeds as usual.

Table 2 enumerates different failure scenarios, the quorum outcome
and time to achieve the quorum (i.e. service downtime).

3.3 Failure Recovery

The dominant new challenge in recovering from failures in a wide-
area environment is that of redirecting traffic: after failure detec-
tion determines that the backup site should step in, the IP addresses
must be relocated as quickly as possible, between the two loca-
tions on the Internet. As Remus continues to perform output com-
mit and the failure detection protocol ensures that at most one VM
instance is ever active at a time, there is no possibility that open
TCP sessions will ever move into an irrecoverable state due to
mismatched sequence numbers. If IP advertisements change suf-
ficiently quickly, failover will be almost completely transparent to
clients; TCP sessions will remain open, and the only exposed as-
pect of failure will be the possibility of a small number of dropped
packets during failover. To achieve this, SecondSite requires net-
work support to quickly move IP addresses between the two sites.

100

Failing Component Quorum Outcome Resolution Time (Service Downtime)

Replication Link Backup Shutdown RTT to Quorum Service
Primary [+ Link] failover to Backup 2 RTTs to Quorum Service + Quorum Timeout + Network Re-configuration
Backup [+ Link] Primary survives RTT to Quorum Service
Quorum Server Replication continues 0
Primary + Quorum Backup Shutdown Service Failure (Manual Intervention)
Backup + Quorum Primary Shutdown Service Failure (Manual Intervention)
Link + Quorum Primary & Backup Shutdown Service Failure (Manual Intervention)

Table 2: Failure Scenarios and Down-times using Quorum Servers

The system achieves this by interacting with the Border Gateway
Protocol (BGP) to influence Internet routing decisions.

BGP is a path vector protocol where every router selects the
best route to destinations (IP address blocks) based on the routes
advertised by neighboring routers. A BGP route advertisement
for a given destination IP prefix contains the autonomous system
numbers of all ASes it has traversed through, since originating from
the AS responsible for that prefix. Route advertisements also have
one or more attributes, that play a role in choosing the best possible
route to a destination from a set of routes. Transitive attributes are
passed on from one router to another, while non-transitive attributes
are used to manipulate routing decisions between any two adjacent
routers. When there are multiple routes to the same destination AS,
the choice of the best route depends on the routing policies, AS
path lengths and other attributes assigned to the route.

Figure 2 shows our routing architecture. We leverage BGP
multi-homing to achieve failure recovery. On a high level, the
system works as follows: the set of hosts being protected by Sec-
ondSite can be reached through two different Internet routes, one
leading to the primary site and another to the backup site. Only the
primary site’s route is kept active (i.e. the best route) during normal
operation. When a failover occurs, the backup site issues a new
route advertisement that has preferable attributes to those of the
existing preferred route. BGP route attribute manipulation enables
us to influence the routing decisions made by upstream ASes.

An extensive measurement study done by Labovitz et al. [22]
revealed that route updates from shorter to longer path lengths take
longer time to converge compared to the converse case. As we
are concerned with ensuring that reachability to the backup host
be established as quickly as possible on failover, we have opted
for a configuration in which a single upstream AS provides both
links. We believe that this is realistic for many deployments, but
also observe that the intuition from Labovitz et al. is that it is
desirable to limit the number of ASes that advertisements need to
propagate through to the greatest degree possible in order to reduce
convergence times.

In practice, BGP multi-homing can be achieved in a number of
ways. As examples, the following are some key attributes used to
indicate route preferences:

• Multiexit Discriminator (MED): When an AS has multiple
entry points, the optional MED attribute can be used to pro-
vide a hint to neighbouring ASes about the preferred link for
inbound traffic. As such, the MED attribute to switch inbound
traffic from a primary to backup link. While MEDs are hon-
ored by current BGP implementations, they are non-transitive,
i.e. a MED attribute received by an AS does not leave the AS.
Thus, MED attribute based route manipulation only works in
HA configurations that have a single upstream AS.

• AS-path prepend: AS-path prepending is a common way to
influence BGP routing decisions of upstream routers. If there is
no conflict with local routing policies, BGP routers generally

select the route with the shortest path to a given destination pre-
fix. Routers can be configured to indicate a reduced preference
to the neighbouring ASes by advertising a longer AS-path for
that prefix. AS-paths can be lengthened by prepending it one or
more times with the router’s AS number. AS-path prepending
can be used as an HA mechanism for IP failover: The backup
site advertises a longer path than the primary site for the IP
prefix. On failover, it removes prepended entries to advertise a
shorter path than the primary, resulting in a preferential route
and so re-routing traffic to the backup site. This technique can
be used even when there are multiple AS peerings at each site,
however, the further upstream path adjustments have to travel in
order to successfully redirect traffic, the more exposed the sys-
tem will be to long convergence times and potential unreacha-
bility.

• Communities and local preference: A number of extensions
have been added to BGP, largely with the intention of allow-
ing ISPs to delegate a greater degree of control over routing
decisions to their customers. BGP community and local pref-
erence attributes are two such extensions, and may be used in
conjunction with AS-path prepending if the routing preferences
should be visible beyond the ISP. The local preference attribute
is used to influence routing decisions within an AS; routes with
a higher local preference are favored over other routes. Com-
munities allow collections of prefixes to be grouped and scoped
together, and so act as a useful point of indirection to apply local
preference updates.

To influence routing decisions within the ISP, the client and the
ISP agree to map certain BGP communities advertised by the
client to local preferences within the ISP. This approach allows
the client to use a private AS number, but will not propagate
route changes beyond the ISP’s AS without an analogous map-
ping of client BGP communities to ISP AS path prepends.

SecondSite uses BGP communities mapped to local preferences
and AS path prepends, for failure recovery. The local preferences
are used to influence routing decisions within our upstream AS.
The community mappings to AS-path prepends influence routing
decisions beyond our upstream AS. Both the primary and backup
sites advertise a BGP route for a /24 CIDR block. All the protected
VMs are assigned IP addresses from this block. The backup site’s
AS-path to the IP prefix is longer than the primary, as indicated in
Figure 2, allowing the primary site to receive all network traffic for
the VMs. When a failover is initiated, the backup site advertises
a route with shorter AS-path and higher local preference, than the
primary site. This causes traffic to flow to the backup site, once the
routing update converges.

The approach that we have taken is hardly the only way to
achieve route redirection with BGP. Other techniques, such as the
use of more specific advertisements to redirect traffic are also pos-
sible. An earlier version of our system used this approach success-

101

Figure 2: SecondSite setup over WAN

fully, but we were dissatisfied with the associated loss of IP address
space that the technique required.

Further, BGP based IP multi-homing is not the only solution to
transparently failover network connections. For example, in VPN
based setups, routing reconfigurations could be done on the VPN
concentrator [34], in order to maintain client connectivity during
VM migration. Our concern with overlay network-based solutions
such as these is that they often either introduced a single point of
failure in the VPN concentrator, or led to situations in which traffic
had to be routed through both active and passive sites during some
classes of failure.

3.4 Seamless Failback

After a crashed primary site comes back online, in order to restart
SecondSite, storage has to be resynchronized from backup to the
primary site, without causing an outage to the VMs running in the
backup site. Remus’ storage replication driver, based on Xen’s Blk-
tap2 driver [36] does not provide a means for online resynchroniza-
tion of storage. In order to understand the requirements of resyn-
chronization, we turn the reader’s attention towards the disk repli-
cation component of Remus.

Remus replicates disk writes asynchronously over the network
to the backup site during a checkpoint interval. The backup site
buffers in memory all writes received during a checkpoint. At the
end of a checkpoint, primary site flushes any pending data in the
socket and sends a commit message to the backup site. On reception
of this message, the backup site sends an acknowledgement and
then asynchronously flushes the buffered writes to disk. When
the primary site fails during a checkpoint period, the backup site
discards all buffered disk writes accumulated in that unfinished
checkpoint.

A resynchronization module needs the following two function-
alities:

• Track blocks written by VMs at backup site after failover. When
the primary site is back online, these blocks have to be repli-
cated from the backup to primary site, while the VMs continue
performing i/o. This requires an online algorithm for dirty block
tracking and resynchronization.

• Discard writes made by primary site during the last unfinished
checkpoint. While it is easy for the backup site to compute
these blocks from its checkpoint buffer and include them as
part of dirty block resynchronization, it would be incomplete
since replication is asynchronous. Only the primary site would
have complete knowledge of blocks written before failure. This
would necessitate the primary site to log the location of disk
writes before doing the actual write. During resynchronization,
the primary site would use the log to identify writes in the
unfinished checkpoint prior to failure and overwrite them with
data from the backup site.

DRBD [27] provides storage replication in asynchronous or
synchronous mode with efficient online resynchronization func-
tionality. Its quick-sync bitmap feature tracks writes done by a
backup node after primary failure. Meanwhile, the primary node
uses activity logging to keep track of active extents (4MB in size)
during normal operation. It offers a variety of resynchronization op-
tions that suit SecondSite’s needs. However, the current replication
modes in DRBD do not support the checkpoint based asynchronous
replication required by SecondSite. We modified DRBD to add a
new Remus style replication protocol. DRBD is configured to per-
form a one-way resynchronization from backup to primary site, of
all blocks indicated by the quick-sync bitmap at backup and activity
log at primary.

During resynchronization period, the VMs at backup site con-
tinue to operate normally while the DRBD driver performs online
storage resynchronization to bring the peer node up-to-date. Once
the resynchronization is complete, SecondSite replication can be
restarted very easily from either the primary site after live migrat-
ing the VMs back to it, or by reversing roles of primary and backup
site.

4. Evaluation on a WAN Testbed

We have deployed SecondSite to provide continual protection for
servers running in their home location at UBC in Vancouver, BC,
backed up to a site 260 kilometers away at Thompson Rivers
University in Kamloops, BC. The two sites are connected by a
1-Gigabit link with an average round trip time of 5ms. Figure 2
shows the topology of our configuration. The primary and backup
servers are equipped with 8-core Intel Xeon processors and 16GB
of RAM, and run Xen Linux 2.6.18-8 on Xen 4.0.0. SecondSite was
configured to checkpoint the VMs on the primary host at 50ms
epoch intervals, for a checkpoint frequency of 20 checkpoints per
second.

4.1 Regression Tests

Using a high-latency routed link for replication applies stress to the
checkpointing, failure detection and recovery systems that is not
experienced over an Ethernet link. We felt the best way to validate
our system was to run continuous regression tests under a real
deployment between two distinct sites. The test suite consisted of a
cluster of VMs (each with 512MB RAM and 1 vCPU) protected
by SecondSite. The VMs ran synthetic workloads that stressed
disk, memory and network subsystems, as described in Table 3. As
they ran, we regularly triggered site failures. On failover, the test
programs verified the integrity of their memory and files to ensure
that data was not corrupted. When a crashed site came back online,
its disks were resynchronized while online using DRBD. Once this
phase completed, protection restarted with the recovered primary
host acting as the new backup. The VMs continued to run their
workload without interruption throughout this process.

102

Test Name Workload Test Goal

MemoryStress
Continuous malloc, dirty and free. Check in-
tegrity of allocated memory upon failover.

Trigger memory corruption bugs in compres-
sion logic.

PagetableStress Parameterized fork bomb.
Trigger memory corruption bugs not caught by
MemoryStress.

IOStress
Reads and writes on a large file in different I/O
modes (buffered, direct).

Trigger bugs in disk replication logic.

Table 3: The Regression Test Suite

The regression test suite turned up some interesting corner
cases:

Caching Pagetable Pages. Occasionally, the VM running the
PagetableStress workload suffered fatal crashes in the guest kernel,
pointing to random processes as the fault origin. Once it became
evident that the crash was caused by memory corruption, we were
able to trace the culprit to stale entries in the LRU page cache
of the compression module. During live migration, a guest VM’s
pagetable pages are canonicalized before transmitting to target
host, such that all references to the host’s machine frames are
replaced by their corresponding guest physical frames. On the
receiving end, this process is reversed. The compression code only
cached normal pages and transmitted pagetable pages as is, without
updating the cache. Thus, when a normal page became a pagetable
page, the cache ended up having a stale version of the page with
the valid bit still set. When the page became a normal page again,
a page delta would be taken against the wrong version of the
page, resulting in memory corruption at the receiving end. Simply
evicting the cache copy of the pagetable page fixed the issue.

Write after Write Race in Disk Replication. Write-heavy
workloads sometimes experienced disk data corruption on failover.
However, we could not reproduce the bug when we repeated the
experiment several times on a different set of machines. We finally
traced the problem to request re-ordering at the disk controller
level. When the backup flushes a disk checkpoint, it simply queues
up the writes to disk, merging the checkpoint flush with an ongoing
one. When there are overlapping writes in adjacent checkpoint
flushes, the disk does not guarantee the order of these writes.
Inserting a Disk I/O Barrier Request at the end of every checkpoint
flush fixed the issue.

4.2 Protecting a Cluster of VMs

Our goal in this section is to evaluate the cost and effectiveness of
SecondSite in a production environment. To that end, we have pro-
visioned an aggressive mix of macrobenchmark workloads on a sin-
gle server and enable concurrent protection on all of them. Specif-
ically, we have installed 2 web servers and 2 databases with differ-
ent physical resource allocations onto a host with 8 physical CPUs.
Domain-0 is configured with a vCPU for each physical CPU. Two
VMs run the Apache web server with 1G of RAM and 2 vCPUs
each, serving dynamic web pages. The SPECweb 2005 Ecommerce
benchmark [43] is used to generate the web server workloads. The
remaining two VMs run the MySQL Database Server, with 2G of
RAM and 2 vCPUs each. The DVD-Store OLTP benchmark [42]
is used to generate the database workloads. The VMs are assigned
IP addresses from a /24 CIDR block that is protected by Second-
Site using the BGP failover mechanism described earlier. Each
workload has 100 concurrent clients accessing the services via their
protected IP addresses. The benchmarks were run with 10 minutes
of warm-up interval and 30 minutes of measurement. The OLTP
benchmark’s mean user think time was set to 10s. We present the
benchmark results in terms of operations per minute, where the

operation represents a database transaction for OLTP or an HTTP
page request for SPECweb.

Figure 3 shows the throughput in terms of operations per minute
observed by the clients over a 50 minute measurement period.
A failure was injected at the primary site after 15 minutes of
execution. With the quorum timeout set to 10 seconds, the backup
site took 13 seconds to fully recover all the services and re-establish
network connectivity.

Restarting HA. SecondSite takes advantage of DRBD to resyn-
chronize storage with the recovering primary site, without inter-
rupting the execution of VMs on the backup site. Once storage
resynchronization completes, VM replication can be resumed from
the backup site (now acting as primary) to the primary site (now
acting as backup). If the primary site is the preferred home for the
VMs, they may optionally be migrated back at this point.

After a 15 minute outage period, the primary host was brought
online. Resynchronization of each VM’s disk was initiated in par-
allel. Resynchronization took 52s to complete after which HA was
restarted sequentially for each service, with the backup site now
acting as the new primary. All VMs were fully protected after 88
seconds, with a constant time overhead of 20 seconds per VM
to achieve steady state replication. The throughput increases after
failover because the VMs are running in an unprotected mode, and
therefore do not incur any checkpointing overhead. The drop in
overall throughput starts during disk resynchronization period and
settles back to pre-failure levels after all VMs are protected.

Disk Resynchronization. In order to restart HA for a VM, its
disk has to be resynchronized with the recovered primary site. Our
current recovery approach is to perform DRBD resynchronization
of all VMs in parallel. This is a simple approach that is easy to
validate and moves the system through recovery stages in lock step.
However, it can produce contention on a shared physical disk that
reduces the overall throughput of resynchronization. We have also
experimented with resynchronizing VMs sequentially, so that each
VM can be re-protected as soon as its individual synchronization is
complete. This approach reduces the total resynchronization time
and dramatically reduces the median unprotected window. In a test
similar to the workload in Figure 3, the total resynchronization time
is reduced from 37 seconds to 29 seconds, and median unprotected
time falls from 23 seconds to 7 seconds.

4.3 DRBD Resynchronization Delays

Failback relies on DRBD to provide disk resynchronization, and
cannot proceed until it completes. The time required for this pro-
cess depends on the amount and locality of data written to disk
while the VM is disconnected from its backup. To give an idea
of the costs, Figure 4 presents the amount of data changed by the
OLTP workload (a mixture of sequential and random I/O) as a func-
tion of the outage period, along with the time required to resynchro-
nize the disk.

103

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50

O
p

e
ra

ti
o

n
s
/m

in

Elapsed Time(mins)

OLTP2
OLTP1
WEB2
WEB1

Protected

Failover
Unprotected

 Resync &
 Restart HA(138s)

Protected

Service Downtime (13s)

Figure 3: SecondSite Failover and Failback of a set of heterogeneous workloads.

26M

155M
286M

367M

 0

 5

 10

 15

 20

 25

 30

 35

5m 15m 30m 1hr

T
im

e
to

 R
es

y
n
c(

s)

Outage Period

Figure 4: OLTP disk resynchronization costs

Resource Unprotected Protected

CPU Usage
(Primary)

Dom0 VMs
1.1% 4.0%

Dom0 VMs
12.0% 11.6%

CPU Usage
(Backup)

–
Dom0 VMs
8.4% –

Replication
Bandwidth

– 238.82 Mbps

Table 4: Resource Consumption in a Multi-VM Environment

4.4 Resource Consumption & Throughput

Figure 5 shows the bandwidth consumption per VM when the entire
site is protected by SecondSite. To get an idea of the CPU overhead
incurred by SecondSite, we sampled the CPU utilization for all the
domains on the physical host using the xentop [44] tool. All repli-
cation related overheads are accounted to Domain–0, while other
VMs are executing. The CPU was sampled every 3 seconds over
a one hour execution period. Xentop reports an additive percent-
age utilization over all physical cores. We normalize this value to
100% and report the CPU utilization of Domain–0 and aggregate
CPU used by the four VMs in Table 4 for both unprotected and
protected modes of operation. We also report the replication link

OLTP2
OLTP1
WEB2
WEB1

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900

R
e

p
lic

a
ti
o

n
 B

a
n

d
w

id
th

 (
M

b
it
s
/s

)

Elapsed Time(s)

Figure 5: Replication Bandwidth Consumption before Failover
(4 VMs x 100 Clients/VM)

bandwidth consumed by SecondSite during the one hour execution
period in Table 4.

We also measure resources consumed by SecondSite (CPU and
replication bandwidth) as a function of varying application loads.
We vary the user’s “think time” parameter of the OLTP workload,
which in turn determines the number of requests/minute arriving
at the server. We define three representative loads: High, Medium
and Low, corresponding to think time values of 5s , 10s and 15s
respectively. The aggregate CPU and network bandwidth consumed
by Domain-0 are shown in Figure 6a and Figure 6b respectively.

4.5 Throughput vs Replication Latency

For a latency-sensitive workload like SPECweb, the throughput is
limited by latency between the clients and the server. Our earlier
work [11] examined the impact of network output buffering delay
on SPECweb throughput, but did not examine the effects of repli-
cation link latency (there was none). In SecondSite, higher repli-
cation latencies result in longer times to commit the checkpoint at
the backup site. Since the outgoing packets from the protected VM
are buffered until the commit acknowledgement is received at the
primary site, an increase in replication latency increases the pro-
tected server’s response time. For workloads like SPECweb, this
increased response time results in lower throughput, as illustrated
in Figure 7.

104

 0

 5

 10

 15

 20

 25

 30

 35

Low Medium High

C
P

U
 U

ti
liz

a
ti
o
n
(%

)

Unprotected
Protected

(a) Domain-0’s CPU Utilization

Low Medium High
 0

 2

 4

 6

 8

 10

 12

R
e
p
lic

a
ti
o
n
 B

a
n
d
w

id
th

 (
M

B
p
s
)

(b) Bandwidth usage on the ReplicationChannel

Figure 6: Cost of HA as a function of Application Load(OLTP Workload with 100 concurrent users).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(O

p
s
/m

in
)

Replication Link Latency (ms)

Figure 7: Impact of Replication Link Latency on
Application Throughput (SPECweb with 100 Clients)

5. Related Work

5.1 Replication Overhead

Virtualization has been used to provide high availability for arbi-
trary applications running inside virtual machines, by replicating
the entire virtual machine as it runs. Replication can be achieved ei-
ther through event logging and execution replay or whole machine
checkpointing. While event logging requires much less bandwidth
than whole machine checkpointing, it is not guaranteed to be able
to reproduce machine state unless execution can be made deter-
ministic. Enforcing determinism on commodity hardware requires
careful management of sources of non-determinism [6, 13], and be-
comes infeasibly expensive to enforce on shared-memory multipro-
cessor systems [3, 14, 35]. Respec [23] does provide deterministic
execution recording and replay of multithreaded applications with
good performance by lazily increasing the level of synchronization
it enforces depending on whether it observes divergence during re-
play, but it requires intricate modifications to the operating system.
It also requires re-execution to be performed on a different core
of the same physical system, making it unsuitable for HA appli-
cations. For these reasons, the replay-based HA systems of which
we are aware support only uniprocessor VMs [28]. SecondSite, like
Remus [11] uses whole machine checkpointing, so it supports mul-
tiprocessor VMs.

Checkpoint-based replication builds on live migration [9] –
the ability to migrate virtual machines from one physical host to
another while they are running. The everRun VM [38] product,
from Marathon Technologies, provides automated fault detection
and failover for individual Windows VMs running over the Xen
hypervisor. While it employs techniques similar to Remus, it is
heavily tailored towards select Windows services like Exchange
Server, SQL Server, etc. SecondSite on the other hand provides
high availability through whole virtual machine replication with
Xen [4] in an application and operating system agnostic manner,
running over commodity hardware.

5.2 Minimizing Downtime

The established approach for disaster recovery in many environ-
ments today involves the synchronous or asynchronous replication
of storage (e.g. SnapMirror [26], PipeCloud [33]). The Recovery
Time Objective (RTO) and Recovery Point Objective (RPO) deter-
mines the degree of synchrony required and the overhead incurred
during normal operation. Generally, some support is expected from
the application level in order to restore the disk data to a consistent
state.

Live migration has been successfully exploited by many sys-
tems to minimize planned downtime, when VMs are migrated
across WAN. Storage migration over WAN has been explored by
Bradford et. al [5] and Hirofuchi et. al [20]. Svärd et. al [30] evalu-
ate the advantages of page delta compression for live migration for
large enterprise class workloads.

CloudNet [34] demonstrated a viable cloud migration solution
across data centers using storage migration, page delta compression
and custom VPN concentrator components to maintain client con-
nectivity during the migration. CloudNet primarily aims to tackle
resource mobility and cloud burst scenarios for enterprise clouds.
SecondSite could be integrated into CloudNet to achieve both dy-
namic resource pooling and fault tolerance across a WAN.

5.3 IP Migration across WAN

Harney et. al [19] use mobile IPv6 to solve the IP address migration
issue. This system requires ISP network-level support for mobile
IPv6 which is not yet widely available. Bradford et. al [5] propose
the use of IP tunneling and dynamic DNS for maintaining network
connectivity during live migration of a VM across WAN. Such a
system is not resilient against site-wide failures or DNS caching at
local proxies.

105

WOW [17] creates a VLAN on a P2P overlay network in which
connectivity to the migrating virtual machine is maintained by
forwarding it to the new destination. In WOW, the connectivity
problem is restricted in scope to maintaining access only among
peers of the P2P network. VIOLIN [21] uses a similar technique
to create a VLAN on an overlay network, with software routers
and switches to route traffic to appropriate nodes in the network.
VIOLIN decouples the overlay virtual network from the underlying
physical network, rendering changes in the underlying network
topology transparent to the application. As with WOW, network
transparency is only provided to participants in the overlay network

VM Turntable [31] explores the feasibility of long-haul live mi-
gration over WAN/MANs across two continents. Clients are re-
quired to establish IP Tunnels to the virtual machines and the net-
work infrastructure at the destination takes care of reconfiguring the
tunnel endpoint when the VM migrates across network domains. In
contrast, SecondSite provides location transparency without requir-
ing cooperation from clients.

6. Conclusion

Netflix weathered the April 2011 Amazon AWS outage with very
little impact on its business [10]. Some key aspects of its cloud ar-
chitecture include completely stateless services and NoSQL based
data-stores that sacrifice consistency for availability and durability.
SecondSite may not be a good choice for such stateless services.
Building a scalable stateless e-commerce services like Netflix is
hard and it requires an engineering skill that is generally not af-
fordable by small and medium businesses. Application program-
mers use off-the-shelf solutions to rapidly develop and deploy web
applications that often end up being stateful. We believe that Sec-
ondSite is a good fit for such applications as it eliminates the burden
of maintaining consistency while adding high availability, transpar-
ent to the application.

Acknowledgments

We would like to thank Andree Toonk, Don McWilliam, Toby
Wong, Michael Hrybyk and Marilyn Hay from BCnet and UBC
IT for providing and supporting a WAN testbed for SecondSite.
Andree in particular was invaluable in helping to explore how BGP
could be configured to support failover. Thanks also to Cliff Harms
and Brian Mackay at Thompson Rivers University for providing
server hosting in Kamloops. Finally, we would like to thank the
VEE reviewers for their insightful feedback and for accepting the
paper for publication.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: A timeout-free
failure detector for quiescent reliable communication. Technical
report, Ithaca, NY, USA, 1997.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat failure
detector for quiescent reliable communication and consensus in
partitionable networks. Theor. Comput. Sci., 220:3–30, June 1999.
ISSN 0304-3975.

[3] G. Altekar and I. Stoica. ODR: output-deterministic replay for
multicore debugging. In SOSP ’09: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages 193–206,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth ACM

symposium on Operating systems principles, pages 164–177, New
York, NY, USA, 2003. ACM Press. ISBN 1-58113-757-5.

[5] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live
wide-area migration of virtual machines including local persistent

state. In VEE ’07: Proceedings of the 3rd international conference on

Virtual execution environments, pages 169–179, New York, NY, USA,
2007. ACM Press. ISBN 978-1-59593-630-1.

[6] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault-tolerance.
In Proceedings of the Fifteenth ACM Symposium on Operating System
Principles, pages 1–11, December 1995.

[7] C. Brooks. Heroku learns the hard way from amazon ec2 outage.
SearchCloudComputing.com, January 2010.

[8] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43:225–267, March 1996. ISSN 0004-
5411. doi: http://doi.acm.org/10.1145/226643.226647.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proceedings
of the 2nd conference on Symposium on Networked Systems Design &

Implementation, Berkeley, CA, USA, 2005. USENIX Association.

[10] A. Cockroft, C. Hicks, and G. Orzell. Lessons Netflix Learned from
the AWS Outage. http://techblog.netflix.com/2011/04/lessons-netflix-
learned-from-aws-outage.html, April 2011.

[11] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: high availability via asynchronous virtual
machine replication. In NSDI’08: Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Implementation, pages
161–174, Berkeley, CA, USA, 2008. USENIX Association. ISBN
111-999-5555-22-1.

[12] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism
needed for distributed consensus. J. ACM, 34:77–97, January 1987.
ISSN 0004-5411.

[13] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Revirt: Enabling intrusion analysis through virtual-machine logging
and replay. In Proceedings of the 5th Symposium on Operating

Systems Design & Implementation (OSDI 2002), 2002.

[14] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.
Execution replay of multiprocessor virtual machines. In VEE ’08:

Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages 121–130, New
York, NY, USA, 2008. ACM. ISBN 978-1-59593-796-4.

[15] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35:288–323, April 1988. ISSN 0004-5411.

[16] C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure detection
protocol. In Proceedings of the 2001 Pacific Rim International

Symposium on Dependable Computing, PRDC ’01, pages 146–,
Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-
7695-1414-6.

[17] A. Ganguly, A. Agrawal, P. Boykin, and R. Figueiredo. WOW: Self-
Organizing Wide Area Overlay Networks of Virtual Workstations.
High-Performance Distributed Computing, International Symposium
on, 0:30–42, 2006.

[18] D. K. Gifford. Weighted voting for replicated data. In Proceedings

of the seventh ACM symposium on Operating systems principles,
SOSP ’79, pages 150–162, New York, NY, USA, 1979. ACM. ISBN
0-89791-009-5.

[19] E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. Westall.
The efficacy of live virtual machine migrations over the internet.
In Proceedings of the 2nd international workshop on Virtualization

technology in distributed computing, VTDC ’07, pages 8:1–8:7, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-897-8.

[20] T. Hirofuchi, H. Nakada, H. Ogawa, S. Itoh, and S. Sekiguchi. A
live storage migration mechanism over wan and its performance
evaluation. In Proceedings of the 3rd international workshop on

Virtualization technologies in distributed computing, VTDC ’09,
pages 67–74, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
580-2.

[21] X. Jiang and D. Xu. VIOLIN: Virtual Internetworking on Overlay
Infrastructure. In ISPA, pages 937–946, 2004.

[22] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet
routing convergence. In in Proc. ACM SIGCOMM, pages 175–187,
2000.

106

[23] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn. Respec: efficient online multiprocessor replayvia
speculation and external determinism. In ASPLOS ’10: Proceedings

of the fifteenth edition of ASPLOS on Architectural support for
programming languages and operating systems, pages 77–90, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-839-1.

[24] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem,
and A. Warfield. Remusdb: Transparent high availability for database
systems. PVLDB, 4(11):738–748, 2011.

[25] C. C. T. A. P. Outage. R. miller. datacenterknowledge.com, May
2010.

[26] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and
S. Owara. SnapMirror: File-System-Based Asynchronous Mirroring
for Disaster Recovery. In FAST ’02: Proceedings of the 1st USENIX

Conference on File and Storage Technologies, page 9, Berkeley, CA,
USA, 2002. USENIX Association.

[27] P. Reisner and L. Ellenberg. Drbd v8 – replicated storage with shared
disk semantics. In Proceedings of the 12th International Linux System

Technology Conference, October 2005.

[28] D. J. Scales, M. Nelson, and G. Venkitachalam. The design and
evaluation of a practical system for fault-tolerant virtual machines.
Technical Report VMWare-RT-2010-001, VMWare, Inc., Palo Alto,
CA 94304, May 2010.

[29] R. Strom and S. Yemini. Optimistic recovery in distributed systems.
ACM Trans. Comput. Syst., 3(3), 1985.

[30] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of
delta compression techniques for efficient live migration of large
virtual machines. In Proceedings of the 7th ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments, VEE ’11,
pages 111–120, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0687-4.

[31] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J. Mambretti,
I. Monga, B. van Oudenaarde, S. Raghunath, and P. Y. Wang. Seamless
live migration of virtual machines over the MAN/WAN. Future Gener.
Comput. Syst., 22:901–907, October 2006. ISSN 0167-739X. doi:
10.1016/j.future.2006.03.007.

[32] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure
detection service. In Proceedings of the IFIP International Conference

on Distributed Systems Platforms and Open Distributed Processing,
Middleware ’98, pages 55–70, London, UK, 1998. Springer-Verlag.
ISBN 1-85233-088-0.

[33] T. Wood, H. A. Lagar-Cavilla, K. K. Ramakrishnan, P. Shenoy, and
J. Van der Merwe. Pipecloud: using causality to overcome speed-of-
light delays in cloud-based disaster recovery. In Proceedings of the

2nd ACM Symposium on Cloud Computing, SOCC ’11, pages 17:1–
17:13, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0976-9.

[34] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe.
CloudNet: dynamic pooling of cloud resources by live WAN
migration of virtual machines. In Proceedings of the 7th ACM

SIGPLAN/SIGOPS international conference on Virtual execution
environments, VEE ’11, pages 121–132, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0687-4.

[35] M. Xu, R. Bodik, and M. D. Hill. A ”flight data recorder” for enabling
full-system multiprocessor deterministic replay. SIGARCH Comput.

Archit. News, 31(2):122–135, 2003. ISSN 0163-5964.

[36] Xen Blktap2 Driver. http://wiki.xensource.com/xenwiki/blktap2 .

[37] Summary of the Amazon EC2 and Amazon RDS Service Disruption
in the US East Region. http://aws.amazon.com/message/65648/ .

[38] Marathon Technologies: everRun DR.
http://www.marathontechnologies.com/ .

[39] Google app engine. http://code.google.com/appengine/ .

[40] Amazon EC2 Spot Instances. http://aws.amazon.com/ec2/spot-
instances/ .

[41] VMware KB: Configuring Split-Brain Avoidance in a WAN.
http://kb.vmware.com/kb/1008606 .

[42] Dell DVD Store Database Test Suite.
http://www.delltechcenter.com/page/DVD+Store .

[43] SPECweb2005. http://www.spec.org/web2005/ .

[44] Xentop. http://linux.die.net/man/1/xentop .

107

