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Abstract

Federated learning (FL) is an effective technique to directly involve edge
devices in machine learning (ML) training while preserving client privacy.
However, the substantial communication overhead of FL makes training chal-
lenging when edge devices have limited network bandwidth. Existing work
to optimize FL bandwidth overlooks downstream transmission and does not
account for FL client sampling.

We propose GlueF'L, a framework that incorporates new client sampling
and model compression algorithms to mitigate low download bandwidths of
FL clients. GlueFL prioritizes recently used clients and bounds the number
of changed positions in compression masks in each round.

We analyse FL convergence under GlueFL’s sticky sampling, and show
that our proposed weighted aggregation preserves unbiasedness of updates
and convergence.

We evaluate GlueFL empirically, and demonstrate downstream band-
width and training time savings on three public datasets. On average, our
evaluation shows that GlueFL spends 29% less training time with a 27%
less downstream bandwidth overhead as compared to three state-of-the-art
strategies.
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Lay Summary

Machine learning is known as an effective approach to solving predictive
tasks by leveraging large volumes of data. Federated learning moves machine
learning training to mobile devices and allows participants to collaboratively
train a global model without disclosing their local training data. However,
since the training may involve thousands to millions of participants, net-
work usage becomes a performance bottleneck. Participants that have low
bandwidth act as stragglers and slow down model training.

We design GlueFL, a federated learning training framework that op-
timizes bandwidth usage. It consists of novel client sampling and model
compression algorithms. These new mechanisms alleviate the impact of
client staleness in client sampling and minimize downstream bandwidth. We
empirically demonstrate that GlueFL decreases communication costs while
preserving model performance on three public datasets. To the best of our
knowledge, this is the first work to combine model masking with client sam-
pling to reduce downstream bandwidth.
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Chapter 1

Introduction

Federated learning (FL) moves machine learning (ML) training to the edge.
In FL, edge clients communicate with a central server to collaboratively
train a global model, while keeping client training data local. We focus on
cross-device FL, in which there are many clients that are end-user devices.
For example, companies like Google and Intel use cross-device FL for com-
puter vision and natural language processing model training across customer
devices [11, 12, 45].

One downside of FL is its network usage. This is especially problematic in
cross-device FL, which relies on lower-bandwidth mobile or IoT devices [16].
For example, Google Keyboard (Gboard), a virtual keyboard with over 1
billion installs, selects clients from millions of mobile devices to enhance its
search query suggestions [45]. In this type of application, clients usually
have a diversity of device-to-server (upstream) and server-to-device (down-
stream) bandwidth. Clients that have either slow upstream or downstream
bandwidth act as stragglers and slow down model training.

This heterogeneous bandwidth setting has attracted significant research,
with a focus on reducing the communication cost of FL training |7, 24, 30, 32,
36]. One important strategy is client sampling, which limits the number of
clients that perform training in each round [23, 24|. Client sampling reduces
both upstream and downstream bandwidth. However, a client that is not
sampled gradually becomes stale: its local state diverges from the state
of clients that have been sampled. The next time this client is sampled,
the central server must therefore send a larger state update, increasing the
downstream transmission overhead.

Another approach to reducing FL. bandwidth usage is to apply a mask
to the client gradients, such as a sparsification mask [32, 38| or a parameter
freezing mask [5, 7]. In traditional masking schemes, clients apply a mask
to their local gradients and only transfer significant gradients to the server.
This saves upstream bandwidth. Since each client generates the mask locally
and independently, however, the entire model is usually updated at the end
of a round and needs to be fully synchronized. In server masking schemes,
such as Sparse Ternary Compression (STC) [32] and Adaptive Parameter



Chapter 1. Introduction

Freezing (APF) [7],

the server uses a mask to compute the final model update. Since the
server only partially updates the model, only a part of the model needs to
be sent back to clients; this saves downstream bandwidth.

User sampling and masking approaches are typically considered as or-
thogonal, compatible approaches |7, 32]. Though existing masking strategies
are indeed empirically effective in full participation FL, we show that when
client sampling is used they fail to decrease downstream bandwidth ( For
example, with a 0.01 sample ratio and a masking compression ratio of 10%,
a single client needs to download 75% of the global model on average.

The reason downstream bandwidth increases is because of the staleness
of local state at the clients. To see why, let us first consider the full participa-
tion case. Intuitively, since the global model is only partially updated by the
server under masking, a client only needs to download this partial update
and apply it to its local version of the model, saved from the previous round.
With client sampling however, a typical client skips multiple rounds by not
being sampled, and its local model state becomes stale. When the client
is later sampled, it needs to download the new value of all parameters up-
dated in the skipped rounds, which amounts to a large fraction of the model.
This effect increases downstream bandwidth usage, voiding the benefits of
server masking, and slowing down training when edge devices have limited
download capacity [1].

To resolve the incompatibility between masking and client sampling, we
propose GlueFL, a new FL training framework specifically designed to retain
the benefits of masking when using client sampling. This compatibility is
particularly important in cross-device FL deployments, which require both
client sampling (full participation is impractical) and bandwidth savings due
to mobile or IoT clients. To the best of our knowledge, GlueFL is the first
masking design to address the downstream bandwidth bottleneck in cross-
device FL with client sampling.

We design GlueFL with two new mechanisms to alleviate client staleness
and to optimize downstream bandwidth requirements. First, we introduce
sticky sampling ( to prioritize the most recently used clients, thereby
reducing the number of stale clients in each update. Since recently selected
clients have an up-to-date view of model parameters, they need to download
smaller updates. We combine sticky sampling with a weighted central aggre-
gation scheme to ensure that model updates remain unbiased, a requirement
for convergence ( Sticky sampling is especially important in practical
implementations that sample a small fraction of clients in each round [45].

Second, we propose a gradual mask shifting strategy (, to ensure

2



Chapter 1. Introduction

that consecutive central model updates share a large number of changed
parameters, while empirically preserving model convergence. This way, a
newly selected client only has to synchronize a subset of the model, even
after several rounds of not being sampled.

To sum up, we make three contributions:

* We present an FL design called GlueFL, which is based on sticky sam-
pling and mask shifting. These two new mechanisms alleviate the im-
pact of client staleness in client sampling. Both techniques minimize
downstream bandwidth in cross-device FL. To the best of our knowl-
edge, this is the first work to combine masking with client sampling to
reduce downstream bandwidth.

* We analyse FL convergence under GlueFL’s sticky sampling, and show
that our proposed weighted aggregation preserves unbiasedness of up-
dates and convergence.

* We evaluate GlueFL empirically, and demonstrate downstream band-
width and training time savings on three public datasets. On average,
our evaluation shows that GlueFL spends 29% less training time with a
27% less downstream bandwidth overhead as compared to FedAvg [24],
STC [32] and APF [7].



Chapter 2

Motivation and Background

We start by reviewing standard FL with client sampling. Then we introduce
a state of the art masking strategy called STC [32], and discuss its limita-
tions. Finally, we formalize the problem that we set out to solve in the rest
of the thesis. Table overviews our notation.

Table 2.1: Summary of notation used in this thesis.
N,N,i set, total number, index of clients

K, K set, number of sampled clients

Tt number, index of commumnication rounds
E e number, index of local update steps

w! server model in round ¢

wi ¢, gt®  model, gradients of client 4 in round ¢ and step e

S, S set, size of sticky group

c,C set, number of clients sampled from &
R,R set, number of clients sampled from N '\ S
Vis,Vir aggregation weight of client 7 in C, R
q,qshr  total, shared mask ratio

2.1 Federated Learning (FL)

Consider a system with N clients, coordinated by a central server. Each
client ¢ has a local data distribution D;. Let us denote the weight of client
i as p; such that Zf\il p; = 1. The weight p; is given by the server and
represents the importance of the i-th client’s local loss function. Under the
non-convex settings, our target is formulated as

N
min,  F(w) 23 piFi(w) (2.1)
=1

where Fj(w) = ﬁ > eep, LW, §), and £(w, §) is the empirical loss on model
w and sample . In practice, F;(w) is generally estimated with a ran-

4



2.2. Cross-device FL Bandwidth Characteristics

dom realization & drawn from D;, which is assumed to be unbiased, i.e.,
E¢,~p,l(W,&) = Fij(w). Let F, is the minimum value of the global objec-
tive, i.e., F(w) > F, for any w € R?,

FedAvg [24] is a standard algorithm to solve Equation . To improve
communication efficiency, clients are selected uniformly at random in each
round. The FedAvg algorithm with client sampling looks as follows:

1. At the beginning of round ¢, the server uniformly at random samples
a subset of clients (i.e., ) and broadcasts the latest global model w'
to these sampled clients.

t,0
)

2. Each sampled client i € K receives the model w' (= w;") and runs F

local SGD iterations to compute a local update Al = —y ZeE:_ol gf’ev

where 7 is the client learning rate. In each iteration, the client com-

putes the gradient as ¢ = V(W' ) where £ is drawn from
D;.

3. The server receives updates Al from all sampled clients and aggregates
them to compute the new global model [22]

N
witl = wt + 7 eZKpiAE (2.2)
KA

In expectation, the steps above realize an update form Ex [WH_I] =wl+
ZZJ\L 1 piAl in each round. To ensure that the global loss approaches the
optimal one, FedAvg repeats the process for T rounds. FedAvg achieves a

convergence rate of O % [17, 44] under partial worker participation.

2.2 Cross-device FLL. Bandwidth Characteristics

The cross-device FL setting relies on a large number of clients. In this case,
some clients are likely to have an unreliable or slow network. For exam-
ple, Figure shows the bandwidth distribution estimated by measurement
lab [25]. We observe that around 20% of devices have a download bandwidth
of at most 10Mbps. These devices can take at least 20s to download a typical
model like ShuffleNet V2 [46], which is specially designed for mobile devices
and contains 5 million model parameters.
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Figure 2.1: (a) The distribution of network bandwidth in North America,
June 2022 |25], and (b) the cumulative distribution function (CDF) of net-
work bandwidth in (a).

800 30
700 A ST LA MR A 254 -
600 By \j\/\"j SRS PRt Rt T e
w5001 1| LA™ m 20
= 4001 /| —— Down (g =20%) =15
3004/ Down (g = 10%) 10l /7
2004]7 o Up (g=20%) . —— Down (g =20%)
1004~ ——- Up (g =10%) W e Down (g = 10%)
00 10 20 30 40 50 60 70 80 90 00 5 10 15 20 25 30 35 40 45
Communication Rounds Communication Rounds
(a) (b)

Figure 2.2: (a) The downstream and upstream bandwidth usage of STC per
round, and (b) the model size a client must download when being re-sampled
after a certain number of rounds.

2.3 Limitations of Existing Masking Strategies

Prior work has proposed several masking strategies to reduce the amount
of transferred data and alleviate low bandwidth issues [5, 7, 32, 38]. To
demonstrate how masking fails to optimize downstream bandwidth in FL
with client sampling, we use STC [32], a popular server masking strategy, as
a representative technique.

STC builds on top-k sparsification [34], a masking approach that selects
and uploads the largest ¢ (e.g., 10%) absolute values in a client’s local gra-



2.3. Limitations of Existing Masking Strategies

Algorithm 1: Sparse Ternary Compression (STC)

Output: w’

1 fort+ 1toT do

2 /* Server:client sampling */
3 Generate set of sampled clients K ;
4 Broadcast w! to K ;

5 /* Client:local training */

6 for i € K in parallel do

7 wf’o — wt ;

8 fore<~ 0to F—1do

9 ‘ W;,e-ﬁ-l “ W:,e N ,yg?e;

10 end

11 /* Client:sparsification */
12 Al topy(wh? — w0 ;
13 end
14 /* Server:aggregation */

15 Receive Al from worker i € K ;

16 /* Server:sparsification */
17 Al tqu(Zz‘elC pi%Ag) :

18 with « wt + At;
19 end

dients. In STC, this top-k sparsification technique is applied to both clients’
gradients and server updatesﬂ Algorithm (1| shows this masking-only ver-
sion of STC. For a single client sampled in both the current and last round,
STC only has to update the weights covered by the server mask (line .
However, note that a client that has not been sampled recently may have to
update the entire model, as their local view of the model is stale. The reason
is that server masks change in each round, and the client has to synchronize
all updated model parameters since it last participated.

To measure the impact of model staleness on downstream bandwidth, we
apply STC to FedAvg and conduct experiments on FEMNIST, using N =
2,800 clients and a client sample size of K = 30. We try compression ratios

'For simplicity, we only consider the masking part of STC. STC also includes quanti-
zation, an orthogonal technique that can be combined with sparsification |2, 15| and will
not change our conclusion, as quantization compresses both downstream and upstream
communication.



2.4. Problem Setup

of 10% and 20%2. We examine both downstream and upstream bandwidth
usage in each round. The results in Figure[2.2]show that upstream bandwidth
is reduced when using a smaller compression ratio, as expected. However, a
client still needs to download 70% of the global model on average. Clients
with 10Mbps download bandwidth (§2.2)) will take at least 14s to receive
these changes. This imposes a high downstream bandwidth requirements
on participating clients. In general, the more rounds that a client skips,
the more updated model state it needs to download (Figure . As
a result, the training bottleneck shifts to downstream communication. We
expect these results to hold for other masking strategies as they similarly
update different parts of the global model in each communication round.
For example, in APF [7], model parameters are frozen in some rounds but
will then be updated again after the freezing period ends. The downstream
bottleneck is therefore a general limitation across masking strategies.

2.4 Problem Setup

Our goal in GlueFL is to minimize the total expected downstream bandwidth
of training, while retaining a low upstream bandwidth, and ensuring that the
expected global training loss F(w”) converges to a local minimum value,
where w' is the aggregated global model after T' rounds.

ZSmaller values led STC to require an unacceptable number of rounds to converge with
a noticeable drop in convergence accuracy.



Chapter 3

GlueFL Framework Design

GlueFL includes two components to decrease the downstream bandwidth
during FL training: sticky sampling (Figure and mask shifting (Fig-
ure . The newly designed sampling scheme allows some clients to be
re-sampled in a short term and mask shifting restricts the mask from chang-
ing too fast. We elaborate on the design of each of these components in
and before describing how to adapt other existing mechanisms in

3.1 Sticky Sampling

Client sampling is the process of selecting K out of N clients in each round,
to participate in computing the model update. With uniform sampling,
each client participates in each round with a probability of K/N. Thus, a
client is expected to participate in training every N/K rounds on average
(See Proposition |1 in Appendix . In cross-device FL systems, the
value of N is often large, and K is small. For example, Gboard samples
K =100 clients in each round while there are millions of devices [45]. This
produces a low probability of participation in each round, which means that
on average clients skip a large number of training rounds before being selected
again. As we saw in these long skips are responsible for local state
staleness. Clients’ state must therefore be re-synchronized when they are
selected, reducing the benefits of masking on downstream bandwidth.

GlueFL introduces sticky sampling to ensure that clients with an up-to-
date local state are more likely to be selected. Figure illustrates sticky
sampling and Algorithm |2| details it. The server maintains a smaller sticky
group of clients & with size S, while the remaining clients form a non-sticky
group, N\ §. We randomly select S clients to initialize S in the beginning
of training, and allow S to evolve over time.

Figure (step 1) illustrates how in each FL training round, the server
constructs its sampled set of clients K from two sources; K = CUR. It
samples C clients to construct C by sampling from the current sticky group
S. It samples (K —C) clients to construct R by sampling from the non-sticky
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e

K-C

- -~

7 K
( Sampled
cllents P

7

Step 1: Sample clients for training

K\’__\ .
Sampled
N cllents i

Step 2: Rebalance non-sticky and sticky groups with sampled clients
Figure 3.1: Sticky sampling design.

group, without replacement. All sampled clients K participate in one round
of training (Algorithm [2| line [5)).

At the end of the round (Figure 3.1] (step 2)), the server randomly selects
(K — C) clients from S\ C (the set of clients in the sticky group that did
not participate in the latest round) and removes these clients from the sticky
group (Algorithm 2] line 20). The server replaces these clients with (K — C)
clients that were not sampled from the sticky group and that participated
in the last update (R in Algorithm [2)).

Just as with uniform client sampling, sticky client sampling requires N/ K
rounds to re-sample a client on average (see Proposition 2| for details). How-
ever, a client selected with sticky sampling will join the sticky group and
then have a higher probability of being selected in the next round than un-
der uniform sampling, as long as % > % Since a client that exits the sticky
group (by not being selected in the current round) is less likely to be se-
lected than under uniform sampling ( ¢ < W when € 5 > ), we need to
ensure that a sticky client has a hlgher expectatlon of being 1ncluded during
the next several rounds. This is because after several missed rounds, the
whole model needs to be synchronized (see Figure 2.2(b)). Proposition [2|in
Appendix shows the probability for a client in the sticky group to be

10



3.1. Sticky Sampling

Algorithm 2: Sticky Sampling

Output: w’
1 fort«+ 1toT do

2 /* Server:sample clients */

3 Randomly select |C| = C clients from S;

4 Randomly select |R| = K — C clients from N \ S;
5 Set of sampled clients K < C UR;

6 Broadcast w! to K;

7 /* Client:local training */

8 for ¢ € K in parallel do

9 WE’O — wt ;

10 fore+0to E—1do

11 w;,e-l-l . W?e . Vg?e;

12 end

13 Al whP w0
14 end

15 /* Server:aggregation */

16 Receive Al from worker i € K;

17 At « EiEC Vzt,sAg + ZiG’R V’f,’f”Ag )

18 | witl «— wt + Al

19 /* Server:rebalance non-sticky and sticky groups */
20 Randomly remove K — C clients in S\ C ;
21 S+—SUR;
22 end

selected after r rounds. We use this formula to select S and C' to ensure that
this probability is higher than that of uniform sampling for a high enough
value of r.

Case Study. Consider a training run on FEMNIST with N = 2,800
clients, K = 30, S = 120, and C' = 24 (our default experimental setup in
§5.2). In this case, using the Proposition [1] and Proposition [2| in Appendix,
we can compute the probability of client inclusion over the next 6 rounds for
a client starting in the sticky group: 20.0%,15.0%, 11.2%, 8.5%, 6.4%, 4.8%.
By contrast, uniform sampling re-samples clients with a probability of around
1.1%.

With sticky sampling, clients that just participated in a round, and thus
have an up-to-date state, are more likely to participate again in the short
term. Such clients will therefore download smaller model updates. This

11



3.1. Sticky Sampling

synergizes with masking approaches that reduce the size of an update in
each round. We show in §5 that for cross-device FL, where a large N and a
small K are typical, masking approaches with sticky sampling significantly
reduce downstream bandwidth usage.

However, sticky sampling also introduces new challenges during aggre-
gation. As discussed in the global update should provide appropriate
representation for every client in expectation [26, 37, 40]. Formally, the up-
date should be an unbiased estimate of the FedAvg update computed on
every client in round ¢. That is: Ex[AY] = SN p;Al. Under the FedAvg
aggregation function (Equation (2.2)), since sticky clients are selected with
higher probability, they would have a larger weight then non-sticky clients.
To correct for this bias, GlueFL uses an inverse propensity weighted ag-
gregation function. It assigns a different weight to updates from clients of
different groups, corresponding to their importance parameter re-weighted
by the inverse probability of selection. Updates from sticky group clients

use the weight 1/55 = %pi, while non-sticky group clients use the weight
yfm = %—:g,pi. The model update rule then becomes:
witl <—wt+21/f78 ~A§+ZU§7T-A;§ (3.1)
1€C iI€ER
At

This is shown in lines [I7 and [1§| of Algorithm [2|
With this reweighting scheme in place, we can show that sticky sampling
udpates are unbiased:

Theorem 1 (Unbiased Aggregation). Let K = CUTR be the set of sampled
clients in sticky sampling. The update A' computed in Equation (3.1) is
unbiased. That is:

N
Ex[A] =) piAl (3.2)
=1

Proof. We can rewrite the update as a sum over all the data, where the

12



3.1. Sticky Sampling

probability of inclusion cancels out with the aggregation weight:

S N-5§
Mm%mmzkmM+ZK_MA§
ieC IER

S N-5
=Ex Z l{ieC}apiAg + Z Liiery Ki_CJDiA)Zf

i€S iEN\S
cs ., K-CN-S .,
=Y APl + ~ <o Pil;
ieSSC ieN\SN_SK_C

N
= 2Pl
i=1

where 1 cdictate} 18 the indicator function with value 1 when the predicate
is true, and 0 otherwise. ]

§ shows that estimating unbiased updates is key to analyzing the
convergence of GlueFL, following proof techniques from [8, 9].

3.1.1 Analysis of Sampling Schemes

In this section, we provide a comparison between uniform sampling and
sticky sampling to demonstrate the advantage of sticky sampling. We first
analyze the probability that a client is re-sampled after r rounds and then
give the expected number of rounds for a client to be re-sampled.

Proposition 1 (Uniform Sampling). Suppose a client is sampled at the cur-
. . . . . K K\r—

rent round. With uniform sampling, there is a probability of & (1 — & )" 1

that the client is sampled after r rounds. On average, a client is sampled

every N/K rounds.

Proof. The client is sampled with a probability of % The client has not been
selected for the first (r — 1) rounds. Thus, this happens with a probability
of %(1 — %)7’_1. Furthermore, the value of averaged sampled rounds is
S K=Ky = NJK. 0

Proposition 2 (Sticky Sampling). Suppose a client is sampled at the current
round. Using sticky sampling, the client in the sticky group is sampled with a

probability of (N_S)Ki(K_C)S(K(Nc;SK) (1_%)%1“[(_0)2(1_ %ig)”’l)

after r rounds. As expected, the client trains a model every N/K rounds.

13



3.2. Mask Shifting

Proof. In the sticky group, a client is sampled or moved to the non-sticky
group with the probability of % and %, respectively. And, a client is
sampled from the non-sticky group with probability %

There are two strategies to sample a client that has participated in model
training. First, it is sampled from the sticky group, where the probability
is %(%)“1 after r rounds. Second, it is sampled from the non-sticky
group, indicating the client is moved out of the sticky group in the middle.
Therefore, the probability is Z:;ll(l - ][\(,:g)i_l . %:g -(SEYK)T_Z'_1 . (Kch) =
(N_S()[I({:%)j_c)s ((1— %:g)’”*l — (S_TK)’”*l). By summing up these two prob-
abilities, we can obtain the desired result. Furthermore, similar to Proposi-

tion [1, we can calculate the value of averaged sampled rounds. O

Discussion According to the proof of Proposition [2, the probability of a
client in the sticky group being sampled after r rounds is greater or equal to

%( %)’”_17 which is the probability that it is still sampled from the sticky
S(N—K K \r—
group. Then, for r € {1,...,1+ L(log g—%) / (log N((S_KDJ}, %(STK)’” 1

is greater or equal to %(1 — %)“1, the probability that a client is sampled

after r rounds in uniform sampling (Proposition .

3.2 Mask Shifting

Sticky sampling allows clients in a sticky group to be sampled more fre-
quently. However, sticky sampling alone is insufficient. As we have seen in
Figure[2.2] a client re-sampled after 10 rounds still needs to download around
50%-80% of the global model on average. This is because the masked updates
of two successive rounds (e.g., At and Atﬂ) have little overlap.

We solve this issue by designing a gradual mask shifting strategy, that
prevents the mask from changing too quickly while ensuring that the total
compression ratio is maintained. Figure [3.2] illustrates our mask shifting
design. We construct a shared mask with compression ratio gsp, (with ggp, <
q), which is represented using a bitmap shared with selected clients in M* €
B¢ in round ¢. Clients send their update for parameters in M?, as well as a
q — qshr Proportion of locally important parameters. The server will use M?
as well as locally important parameters to calculate the model update, and to
shift M! to obtain M+, while keeping a large overlap between consecutive
masks.

Algorithm [3] details the mechanism, with sticky sampling from Algo-
rithm 2| used to select clients in lines 5| and 28| The server first synchronizes

14



3.2. Mask Shifting

Shared mask Round ¢ Round t + 1 Round ¢ 4 1
Qonr = 9% global model shared mask g. = 9%| | 9lobal model
Compute Sparse > Compute .
| | Shared mask Round ¢ Clients | | Local client 7 mask || Client 7 masked | |
Gshr = 9% global model q— qshr = 1% param gradients
L o Shared mask Round ¢ L | Local client K mask || Client K masked | |
Gshr = 9% global model q— qsnr = 1% param gradients

(a) Server sends shared mask and
latest model state to clients

(b) Clients send their local masks and
masked model updates to server

Figure 3.2: Mask shifting design with ¢ = 10% and g, = 9%.

the global model w! with sampled clients and distributes M? to them ( hne.
In line the client ¢ calculates the shared local gradient At shy a8 M to AL
where © sets those positions that are not covered by the masks to zero. Next,
the algorithm computes unique local gradients Al uni DY selecting a (¢ —qspr)
proportion of the largest values in other (prev1ously masked) positions, to
provide more local information to the server (line . Finally, client ¢ sends
Af o and Al uni 1O the server.

Durlng aggregation the central server uses sticky sampling importance
weights v/! given in . The server first computes the shared update

(] S’ Z T
Aghr based on all client (weighted) updates, and the update based on unique
local information by selecting the (¢ — gspr) proportion of largest overall
(weighted) gradients (line [23). Formally, each quantity is computed as:

shr Z z shr Z z shr (33)
ieC IER
B 001y g (zu At Y Afum> .1
ieC 1€ER

These updates are combined and update the global model (line 24). Finally,
the shared mask is updated by selecting a share ¢y, of parameters with the
largest update values in the combined update (line . Since the new mask
M1 will be used to compute AP*! the overlap of two successive model
updates At and A1 is at least Qshr-

15



3.2. Mask Shifting

Algorithm 3: GlueFL

Output: w’
1 fort«+ 1toT do

2 /* Server:sticky sampling */
3 Randomly select |C| = C clients from S;
4 Randomly select |R| = K — C clients from N \ S;
5 Set of sampled clients L <~ CUR ;
6 Synchronize w! with K by sending model updates;
7 Send shared mask M! to i € K;
8 /* Client:local training */
9 for i € K in parallel do
10 w§’0 —wt ;
11 fore<0to E—1do
12 ‘ wzt»’eJrl — Wf’e — 'yg?e ;
13 end
14 /* Client:masking */
15 Al whP — w0,
16 A;Shr — Mo AL
17 Ag,um — tOp(q_qShr)(—!Mt ® Af) ;
18 end
19 /* Server:aggregation */
20 Receive Ag,shw Af,um from worker i € K ;
21 Compute Aihr via Equation (3.3) ;
22 Compute Af . via Equation (3.4) ;
23 | A« AL, AL
24 witl « wt 4+ At
25 /* Server:update shared mask */
26 MH_I — tOsthr (AZhr + Azm) )
27 /* Server:update sticky group S */
28 Randomly remove K — C clients in S\ C ;
29 S+—SUR;

30 end




3.3. Adapting other Techniques to Work with GlueFL

3.3 Adapting other Techniques to Work with
GlueFL

We further improve the performance of GlueFL by adapting common FL
techniques to sticky sampling and mask shifting |7, 10, 29, 33, 35, 42].

Shared Mask Regeneration Previous work [7, 10] showed that model
parameters converge at different rates. Meanwhile, a parameter that has
converged may become unstable in later rounds. For example, according to
[7], it is possible that some 10% of parameters are unstable in both round ¢
and ¢ + 1, while another 5% parameters are only unstable in round ¢ + 1. In
this case, a small (¢ — gsp) (e.g., 2%) value will slow down convergence, as
the shared mask fails to cover the gradients of the unstable 5% of parameters
and a large (¢ — gsnr) (e.g., 10%) value incurs more bandwidth cost.

To address this, we use a small (¢ — gsp,) value while re-generating the
entire shared mask M* every I rounds. To regenerate, we set ge,, = 0 and
update M! as topqshr(Azm) (Algorithm 3| line . Although this process
introduces more downstream overhead in the next few rounds, it speeds up
training and reduces overall bandwidth.

Error-Compensation Compression methods, such as quantization and
sparsification, slow down model convergence due to the loss of information
in client updates [29, 35, 42]. Error-compensation is a technique to alleviate
this problem, first proposed to accelerate convergence in 1-bit SGD [33].
The key idea is for clients to (1) remember their local compression error
(the difference between their true update and what is actually sent to the
server), and (2) add it into the next round’s computed local gradient before
compression. In GlueFL, we apply error compensation as:
e(t)
Al Al D pg® (3.5)

7
v

where v} is the aggregation weight applied at step ¢ for client i (i.e., vas if

they are in the sticky group, I/f’r otherwise; their exact values are defined
in §3.1), ¢(t) indicates the step-index when client ¢ was last selected, and

hf(t) the compensation vector for client i in round ¢(¢). After that, the
client computes Al , and Al (Algorithm |3, lines } Then, the

i,shr 2, unt
+ Al

compensation vector is calculated as bt = Al — (Al s i)

i,shr
The reason for scaling with hf(t) in Equation 1) is to ensure that client
i’s compensation is consistent with the aggregation in sticky sampling. As

17



3.3. Adapting other Techniques to Work with GlueFL

the compensation only applies to a client’s local gradient before masking, this
optimization does not introduce extra bandwidth and improves convergence
performance.

18



Chapter 4

Convergence Analysis

From a theoretical perspective, we show that GlueFL without masking can
achieve convergence at a rate of O(1/+v/T) for smooth non-convex functions
under two assumptions ( states our result and their interpretation,
with details in

4.1 Assumptions

We make a standard assumption that clients sample a mini-batch in each
local update such that the computed gradient is equal to the true gradient
in expectation |17, 22, 37, 41, 44]. That is, E¢,~p,V fi(w,&) = VF;(w) for
all workers 7 € {1,..., N} and the model w € R?, where & and D; represent
the mini-batch and the local training set, respectively.

We make two more assumptions:

Assumption 1 (Bounded Local Variance). There exists a constant o > 0,
such that the variance of each local gradient estimator is bounded by,

Ee,op, |V fi(w,&) — VE(w)| < 0, Vi€ [N].

We also assume that the local objective functions (i.e., F1,..., Fy) and
their derivatives are Lipschitz continuous.

Assumption 2 (Continuity and Smoothness). The local objective functions
are L.-continuous and Lg-smooth.

4.2 Convergence Result

Here we analyze the convergence rate of sticky sampling (Algorithm [2)) on
non-convex local objective functions. See for the complete proof.
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4.3. Proof of Theorem 2

uppose Assumptions and@ hold, and set the

Theorem 2 (Convergence).
= Zp; and yf’r = %pi. Let the learning rate be

aggregation weights as 1/58

Qln

1 K

V:\/M'm (1)

Algorithm |2 is such that:

i H|1? = 2y A K
te{rﬂ,l,r,l,T}HVF(w)‘b_O(\/(l—i_E) KT>+O<TA> (4.2)

where A = £ (%2 + (];[(:SC)Q) (Zfil p?) We treat Ls, L., and F(w!) — F*
as constants.

This result gives a convergence rate for reaching a fixed point during
model training.

Comparison with FedAvg. If all clients have equal weights, (i.e.,
D = % for all workers i € {1,..., N}), and the sticky group does not exist
(i.e., S = 0), the algorithm reduces to FedAvg, and A = 1. As we can
see, when we set the number of local updates E > o2 and T is sufficiently

1
KT
state-of-the-art works on convergence of FedAvg as described in Sticky-
sampling introduces a variance cost (the %2 + (]IV(__%)Z term in A) to remain
unbiased under non-uniform client sampling. Next, we show empirically that
this is a favorable trade-off given the bandwidth savings enabled by sticky

sampling (§5)).

large, the convergence result is led by O ( ) This is comparable to the

4.3 Proof of Theorem

In this section, we theoretically analyze the convergence rate of sticky-
sampling in GlueFL on non-convex functions, under Assumptions [1 and
The conclusion has been mentioned in Theorem [2. The proof follows the
same template as those of [4, 17, 37, 44], and proceeds as follows: (1) we use
Lemma 1| to bound the expected progress in each step ( by a sum of
two terms. (2) We bound the first term through a bound on local updates
(8 and our unbiased aggregation. (3) We bound the second term by
adapting a bound on the norm between two consecutive models to account
for our aggregation weights (§4.3.5)). (4) We use the bound on the expected
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4.3. Proof of Theorem 2

progress in each step in a telescopic sum to bound the overall progress over
training (§4.3.3)).
We first present steps (1) and (4) in § and |4.3.3 which represent the

high level articulation of the proof, before presenting the lower level results

for steps (2) and (3) in § and

4.3.1 Some Useful Lemmas

In this section, we provide two useful lemmas, which will apply to our sub-
sequent analysis in §4.3. Lemma [I] is used to present the progress in one
single step in FL ( and Lemma 2| is used to bound the gap between
two successive global models (Lemma [4).

Lemma 1 (|4]). Suppose a function H is L.-continuous and Ls-smooth. For
any w,v € R, the following inequality holds for H.:
L,
IVH(w)ll2 < Le;  H(w) < H(v) + (VH(),w = v) + T |lw = v]3

Lemma 2 (Lemma 4 in [17]). Let e = {e1,...,e4} be a random variables in
R?, which are not assumed to be independent. If E [ei] = ei, and the variance

is bounded by E [H& - ezH%} < 0%, we have:

a 2 a 2
E Zsi < Zei +a?0?
i=1 2 =1 2
If we further suppose that E [g;|ei—1,...,€1] = e€;, in which case the {e; —

ei} form a martingale difference sequence, and the bound of the variance
E [Haz - e,Hg} < 02 holds, we have the following, tighter bound:

a
D i
i=1

E

a
D e
i=1

2
<2
2

2
+ 200>
2

4.3.2 Progress in one single step

We first bound the expected progress after one step of the model update.

. _ t .
By definition, w't! = w! — 43", . v/ S E L gh®, where v} can be either

Vis or Vfﬂ, depending on the client’s membership. Since all local objective
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4.3. Proof of Theorem 2

functions are Lgs-smooth, the global objective F' is Lg-smooth as well. Thus,
according to Lemma [, we have:

Eypvye [F (whth) } — F(w') < By (VE(wh), wit! — wh) (4.3)
(oft
Ly t+1 ]2
+ 5 Boppe [ W — W (4.4)
Q2

where E; ;; means the expected value at round (¢ + 1), condition on all
information at round ¢, including the model w' and the participants C'~1.
The expectation is over the randomness of client selection (K!) and batch
selection at the client’s (§; ~ D; from §

We first provide the upper bound analysis for term Qp. Intuitively,
our unbiased aggregation combines with a technical client local drift bound
adapted from previous work (§ to decompose this term. Remember
that as Theorem |1| indicates, our weighted update is an unbiased estimate
of the true update over all clients. That is:

N
Et+l|t |:‘?Vt+1 - Wt] = ]Et-l—l‘t [At] = ZPZEEZND’L [Af], (45)
=1

where we decomposed E;;j; in the randomness over client sampling,
and local updates. The expectation in the right-hand side is over the lo-
cal training steps of each client. Based on the form of local updates, we

have that E¢,.p, [WfE — Wt] = — Zf:_ol E¢,~p; [gfe] Considering the
unbiased estimation assumption mentioned in Section we have that
Ve,i : E¢op, [gf’e] = —VEF;(w/)]. Therefore, the term Q; above can

be bounded as follows:
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4.3. Proof of Theorem 2

Q1 =Ei 1 (VF(w'), wt! — wh) (4.6)
N E-1
= <VF(wt), ) pi (Z E¢,p, [gf’ﬂ) > (4.7)
i=1 e=0
N N Eflp
= —E- <ZpNE<wt>, > FEen [V (wf@) }> (4.8)
=1 i=1 e=0
N E—-1 2
vE 2 E pi .
= - IV, - 5 Z; > 5V (w) 2 (4.9)
~E N E71p' 2
+ 5 122 D B, [VAi(w') = Vi (wf’e) ] (4.10)
i=1 e=0 2
VE sy N E—-1 2
S-5 [VF(w)|5 — 5B Zz; 2 piVE; (W ’€> 2 (4.11)
’)/E N Eflp' . 9
? t e
+ 2'; 2 B | ‘sz(w )= Vi (W ) ‘2] (4.12)
VE 5 N E—-1 2
t,e
< - IVEe3 - ok ; > piVE (wh) 2 (4.13)
’YLE N E-1 . 9
+ 5 ; ;PingDl[ ’wt —wy N (4.14)

where the last equality follows from the fact that (a,b) = $a®+3 b2 3(a—
b)? and the assumption we make in §that Ee,wp, [V fi(w, {1)] = VF;(w);
the first inequality follows from Jensen’s Inequality because ZZ 1 ZE ! =
1; and the next inequality from the Lg-smoothness assumption.

Plugging Lemma 3| into the above bound for @1, and using Lemma [4] to
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4.3. Proof of Theorem 2

bound Qs, we have that:

By (F (W) = F (W) (4.15)
E 3y3E2L2
< — ZIVEwWh3+ 7T(EL +0?) (4.16)
LS'Y2 ? 2
+=5—E Z +Z< )p Eo (4.17)
zect 1€ER?
3'7 =) pRr2 Z 22 4 Z Cp? (4.18)
zest zeN\st
N E-1 2
- ( > Z Z ( ) (4.19)
1=1 e=0 2
4.3.3 Final Convergence Result
Let v < - By averaging the above inequality over ¢ from 1 to 7', we have:
L I
T ZEt+1\t(F(Wt+1) — F(w")) (4.20)
t=1
E 3V3E?L?
< —LHVF(wt)Hg + 2 (BLe+ %) (4.21)
s’y Eo s? N —5\? 9
ieCt 1€ER?E
L ’y 2per2 & N — S
+ ey Z ol (4.23)
t=1 zESt ’LGN\St
E 5E2L2
- —g—THVF(wt)Hg " ?”T(EL oY) (4.24)

Ly*E(o? + EL?) al
+ o7 Z (Z N p? Z ) (4.25)

where the last equation follows that (i) a client in the sticky group and

the non-sticky group with the probability of and NS , respectively; (ii)

a client is sampled from the sticky group and the non-sticky group with the
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4.3. Proof of Theorem 2

probability of and % g, respectively. Therefore, the convergence rate is
- APW) = F) 0o :
Z |IVE(w!)|3 < BT + 372 EL*(EL. + 0?) (4.26)
Loy(o? + EL?) (S? (N -9)2\ &
=l ~ <) <C+(K_C) > opf o (4.27)
i=1

By setting the learning rate as devised in Theorem [2, we can obtain the
desired result.
4.3.4 Bounded Gap between two successive local updates.

Lemma 3. Suppose, for alli € {1,..., N}, the local objective function F; is
Lc-continuous and Lg-smooth. Then, for all e € {0,..., E — 1}, we have

E|w)® —w'|3 < 3E (E42L2 +~%0?) (4.28)
Proof. As we know, the recurrence formula for wz’e = Wte v 'ygf’efl.

2

9

Through this relationship, we can bound for E Hwé’e -wW
2

t ‘

E|lwi® — w3 = Ellw; " —yg7 7 — w3 (4.29)
e u«:uw?’e—l —w! - AVE (w3 (4.30)

te 1—VF( te— 1)Hz (4.31)

<1+ El_l) Efwi ! — w3 (432)

+ By’ E|VE(w: |3 (4.33)

g7 = VE(w; 1)Hz (4.34)

() 1 _
< <1 + El) CElwh T = wh2 + EA2L2 4 4%0% (4.35)

e—1
1 P
=0
< 3E (E/*LZ 4+ ~%0%) (4.37)

In the above proof, equation (a) separates the mean and the variance, the
first inequality (b) uses (a +b)? < (1+ a)a® + (1 + )b, and the inequality
(c) follows Assumptions |1 and [2| O
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4.3. Proof of Theorem 2

4.3.5 Bounded gap between two successive global models

Inspired by the proof of Theorem 2 in [44], we derive the following lemma
to bound Q)2 accounting for GlueFL reweighted aggregation in Algorithm

Lemma 4. Suppose Assumptionl and@ hold. With Algorithm E by setting
the weights v} 5= Cpl and 1/ K sz mentioned in Section let a; =

Di Ef:ol VFz( w;®), the bound for two successive models should be

By W — w2 (4.38)
S \? N-8§ \?
§72EJ2Et+1|t (Z (sz'> + Z (K — sz'> )
ieCt 1E€ERE

N S
+ 7By | = E PiE’L: + —C E PiE’L: +
zest 1eEN\S?

(4.39)

Proof. As we know, the relationship between two successive models is

2
Eopape [[w' — WtHg (4.40)
2
_’7 IEt—i—1|t Z zszg +Z zrzg (441)
1eCt IERE e=0
< By (z@f,y s (vf,r)2> o (42)
ieCt iER!
E—1 E-1 2
+ B || Y vis D VEMW )+ D v > VE(w* (4.43)
ieCt e=0 i€ER?E e=0 2

where the inequality is based on Lemma [2. Next, we ignore the coefficient
and find the bound for the second term of Equation (4.43) by plain expanding
the term as proposed in [44]: Let a; = p; Zf:_ol VF;(w;®), and since yf,s =

26



4.3. Proof of Theorem 2

%pi and Vf’r = g—:gpi, we have

E-1 E-1 2
Eppige | Y vie Y VE(W)+ > vl Y VE(w) (4.44)
1eCt e=0 1E€ER? e=0 2
2
S N-S
= Et+1\t Z aaz‘ + Z mai (4.45)
ieCt 1ER?E 2
s P N-S |? S\?
B | |2+ i v X (8) e
ieCt 2 jeRre 2 i#jiject
C terms (K — C) terms c(c —‘lr) terms

B () e X (8) () s

i#5,0,JER?E 1€Ct jER?

(K —C)(K —C —1) terms C(K — C) terms
(4.46)

Before analyzing the bound of Equation (4.46)), we provide the constant
results for the following expectations:

1
E o3 = & 3 sl for i € &° (.47
seSt
1
E g2 = Sl fori € A\ S (4.43)
reN\S?
1
E (o, a;) = @ Z (g, ug,) ,for i, 5 € S (4.49)
51,82€St
1 .
E (v, o) = N9y Z (Qtry, ) for i, j € N\ S (4.50)
r1,r2€N\S?
1
E (q;, aj) = SV_35) Z (as,ap) ,fori e S j e N\S"  (4.51)

seSt,re N\St
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Therefore, the bound of Equation (4.46) is analyzed as follows:

S
Erafe|| ) 5o (4.52)
1eCt 1ER? 2
C [S\? , K—C [N-=5)\2 )
~ Eu (S-(C) Slalp+ 35 (7op) X Nl 459
1€S? 1EN\S?
cCc—-1) [(S)?
T—gr (C> Z (i, ) (4.54)
1,jES?
(K—cxK—c—n<N—sy
+ - — > laiy) (4.55)
(N —5) K-cC 1,JEN\S?
(K-C)C (S\(N-5 o
+%NT§E'C E=¢,) E: (ai, o)) (4.56)
€St jeN\St

c (S’ K-C(N-S)\?
~ (S-(C) Slelp+ 35 (gog) X Nl @50

€St ieN\S?

2
cC-1) (5)?
ieSt 2
9 2
(K-C)(K-C-1) (N—S)
s — > o (4.59)
(N -S) K-C st |,
(K-C)C (S\ [N-S
o = (2) (=2 e 4,
2r—ss o) gma) 2 (e (4.60)
€S FEN\St
2
S N-—-S
S Eipape (C Z levil3 + K_C levl3 + ) (4.61)
€St iEN\S? 2

<Et+1t( Zp2E2L2 K C Z pIE2L? 4

ieSt iEM\S!

N 2
z}u) (4.62)
i=1 2

where the first equation is due to the independent client sampling with re-
placement in both groups, and the last inequality follows Assumption
Therefore, with the result from Equation , we can obtain the desired
result based on Equation (4.43). O

28



Chapter 5

Experimental Evaluation

We evaluate GlueFL across several datasets and network distributions. Our
goal is to answer three questions:

1. What model accuracy does GlueFL achieve?
2. How does GlueFL impact bandwidth usage?

3. How quickly does the model converge with GlueFL?

5.1 Implementation

We build GlueFL on top of FedScale, a scalable and extensible open-source
FL library [19]. We implemented sticky sampling in ClientManager. We
also customized the Aggregator and Client to implement mask shifting.
While mask shifting introduces extra overheads to transmit sparse vectors,
we take care to minimize these overheads using coding strategies from pre-
vious work [32, 43]. For example, we communicate the sparse vector using
absolute positions or bitmaps.

Aggregation for Batch Normalization layers A Batch Normalization
(BN) layer contains five parameters:
e Trainable parameters: weight, bias

e Non-trainable summary statistics: running mean, running_var, and
num_batches_tracked

While GlueFL updates trainable parameters as all model parameters (Al-
gorithm , non-trainable parameters need to be treated differently. We
perform the aggregation of these non-trainable parameters v as follows:

Al vf’E — VE’O (5.1)
1
vith vt 4 % > Al (5.2)
i€k
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where Al represents the local change of v! on client 7 in round ¢. Note that we
do not perform re-weighting on A’ as this produces the best empirical results.
This aggregation rule is consistent with the FedScale implementation [19].

5.2 Experimental Setup

We deployed GlueFL on a set of VMs in one data-center with a total of
14 NVIDIA Tesla V100 GPUs. To reproduce real-world heterogeneous client
performance, we use FedScale’s client behavior trace and the NDT dataset |25]
to simulate the availability pattern and bandwidth capacity of clients, re-
spectively. To mitigate stragglers and offline clients, FedScale introduces an
over-commitment (OC) variable [3] which we set to 1.3 in all experiments.
That is, we sample 1.3 x K clients in each round and use the first K uploaded
updates.

Datasets and Models We use three datasets: FEMNIST [6], Openlm-
age [18], Google Speech [39]. The first two datasets are frequently used for
image classification and consist of 640K and 1.3M colored images, respec-
tively. Google Speech is a dataset with 105K speech samples. We partition
the data using FedScale’s real-world non-iid client-data mapping [19] and
remove those clients that have fewer than 22 samples as the default set-
ting in FedScale. In total, we use 2,800, 10,625, and 2,066 clients in our
experiments, respectively. The models we use are ShuffleNet [46] and Mo-
bileNet [31] for both FEMNIST and Openlmage, and ResNet-34 [13] for
Google Speech. We set the number of sampled clients K = 30, 100, and 30
for FEMNIST, Openlmage, and Google Speech, respectively.

Baselines We compare GlueFL with FedAvg [24], the most widely used FL
algorithm with no model compression methods. We also compare GlueFL
with STC [32] and APF |7], which are the state-of-the-art sparsification and
parameter freezing strategies, respectively.

Metrics We measure the total data volume and total training time to
address Q2 and Q3, respectively. We also analyze the downstream bandwidth
and download time. For download time, we pick the slowest client in each
round and sum up their download time. To address Q1, similar to Oort [20],
we average the test accuracy over 5 rounds and report the results when the
averaged accuracy first reaches the target accuracy.
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5.2. Experimental Setup

Table 5.1: Downstream transmission Volume (DV, in x10? GB) and Total
transmission Volume (TV) for training different models/datasets. We mea-
sure Top-1 accuracy for FEMNIST and Google Speech, and Top-5 accuracy
for OpenImage [19]. We set the target accuracy to be the highest achievable
accuracy by all approaches. Our target accuracies are comparable with pre-
vious work [19, 20]. The best results are in bold.

Target Model FedAvg STC APF GlueFL
Acc. DV (TV)||DV (TV)|DV (TV)|DV (TV)
ShuffleNet 2.6 (4.6) || 2.6 (3.4)] 23 (3.2)[2.2 (3.1)
MobileNet 1.2 (2.1) || 1.5 (1.9) | 1.5 (2.0) | 0.9 (1.4)
ShuffleNet 25.2 (45.0)|[33.9 (50.0)|27.1 (43.1)|21.3(31.4)
MobileNet 17.4 (31.1)||16.7 (24.5)|20.3 (30.9)[14.9(22.1)

Google Speech 2,066  61.2% ResNet-3412.8 (23.0)(|13.5 (18.5)|15.8 (21.9)| 7.2 (12.5)

Dataset  # Clients

FEMNIST 2,800 73.3%

Openlmage 10,625 66.8%

Table 5.2: Download Time (DT, in hours) and Total training Time (TT)
for training different models/datasets. The best results are in bold.

Target FedAvg STC APF GlueFL

Dataset  # Clients A Model
¢c. DT (TT)||DT (TT)|DT (TT)|DT (TT)
ShuffleNet 2.7 (7.6) || 2.7 (5.7)| 2.3 (5.7)|2.2 (5.3
FEMNIST 2,800  73.3% — " @6 (5.7) (5.7 (5-3)
MobileNet 1.5 (4.6) || 1.7 (3.9) | 1.6 (4.5) | 0.8 (3.3)

ShuffleNet 11.2 (28.8)(|14.8 (29.9)|12.3 (29.8)| 8.0 (19.2)
MobileNet 7.1 (22.4)|| 7.1 (19.1)| 8.8 (21.0)| 5.8 (14.4)
Google Speech 2,066  61.2% ResNet-3420.1 (60.9)|/16.0 (42.3)|19.1 (54.1

Openlmage 10,625 66.8%

)[12.1(27.8)

Training Parameters Clients perform 10 local updates per round. We
use PyTorch’s SGD optimizer with a momentum factor of 0.9 for all tasks.
For FEMNIST, Openlmage, and Google Speech, the initial learning rate is
set to 0.01, 0.05, and 0.01, respectively, with a decay factor of 0.98 every 10
rounds. To obtain the best performance, we set the total mask ratio ¢ = 20%
for ShuffleNet, and ¢ = 30% for MobileNet and ResNet-34 in STC. For APF,
we set the threshold for effective perturbation, which reflects the compression
ratio, to 0.1 for all tasks. The remaining STC and APF parameters are set to
their optimal values |7, 32]. For GlueFL, the default sticky group parameters
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5.3. Performance Results

are S = 4K and C = 4K/5. For ShuffleNet, the default mask shifting
parameters are ¢ = 20% and g, = 16%. For MobileNet and ResNet-34,
we set ¢ = 30% and qgp, = 24%. We use I = 10 to regenerate the shared
mask every 10 rounds. We choose these values as they produce the best
performance across most tasks.

5.3 Performance Results

Communication costs Tables 5.1l and 5.2/ list the data volume and train-
ing time for FedAvg (baseline), STC, APF, and GlueFL (our framework). It
shows that STC and APF outperform FedAvg as they require less bandwidth
to reach the target accuracy, reducing volume by 8% on average. However,
STC and APF consume substantial downstream bandwidth. For example,
when training MobileNet on FEMNIST, STC only takes 40 GB to upload
gradients but uses 150 GB for downstream synchronization. GlueFL reduces
downstream bandwidth (Table : for Openlmage, GlueFL provides a sav-
ing of 15% compared with FedAvg, while for Google Speech GlueFL saves
42%. We further compare the performance of GlueFL with STC and APF.
In each case, while consuming nearly the same amount of upstream band-
width (note upstream bandwidth volume = TV-DV in Table [5.1), GlueFL
uses the least downstream bandwidth across all three datasets. For example,
when training MobileNet on Openlmage, APF, STC, and GlueFL all con-
sume around 900 GB to upload gradients. However GlueFL lowers download
bandwidth by 11% and 26% as compared with STC and APF, respectively.
This is because STC and APF do not bound the changes of masks in a
communication round and the update size rapidly increases.

Wall-clock Time Table 5.2] indicates that downstream bandwidth is the
bottleneck. For example, when training MobileNet on FEMNIST, FedAvg
uses 32% of its total training time for model synchronization while STC uses
43%. GlueFL reduces total training time by reducing downstream bandwidth
and saving download time, which speeds up the training by 15% and 26% as
compared with STC and APF.

5.4 Sensitivity Analysis

We evaluate the influence of GlueFL parameters on training performance
on FEMNIST with ShuffieNet and Google Speech with ResNet-34. Similar
to §5.3, we use K = 30. When evaluating one parameter, we use defaults
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Figure 5.1: Effect of aggregation weights Vis and Vit,r: GlueFL (Equal) is
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Figure 5.2: Effect of sticky group size S.

for the others (see §5.2). For each setting, we run GlueFL for 1,000 rounds
and report the average test accuracy over 20 rounds with respect to the
cumulative downstream bandwidth.

Effect of aggregation weights v/, and v{, Figure H demonstrates
the impact of two settings of aggregation weights on training performance:
equal (ie., vj, = v;, = 1/K) and unbiased (see . Overall, unbiased
aggregation weights lead to similar or better convergence speed for the same
amount of cumulative downstream bandwidth usage. In the case of Google
Speech, unbiased aggregation was able to achieve convergence while saving

41% of downstream bandwidth.
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Figure 5.4: Effect of shared mask ratio ggp..

Sticky sampling parameters S and C' Figure shows the impact of
sticky group size S on training performance. Typically, a larger sticky group
size means more diverse training data for the sticky clients and indirectly
better accuracy at the cost of more communication. It follows that choos-
ing an appropriately large S is important for optimizing performance. For
instance, the S = 120 setting for Google Speech reached the target accuracy
with almost 20% less downstream communication compared with S = 60.
However, the same S is unable to help GlueFL achieve a speedup for FEM-
NIST.

Next, we evaluate the impact of the sticky sampling parameter C' (Fig-
ure . C' clients in the sticky group are sampled and (K — C) clients are
replaced by clients from the non-sticky group. Across C = 6,18, and 24 in
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Figure [5.3] we do not observe a large improvement in accuracy for smaller
C. By contrast, C = 6 adds 76% download bandwidth in each round as
GlueFL is unable to capitalize on the savings from sticky sampling due to
more new clients. This indicates that a large C does not harm accuracy and
saves more bandwidth.

Mask shifting parameter ¢y, Figure 5.4 shows the effect of the shared
mask ratio gsp, on performance. On average, a higher value (ggp, = 16%)
does not cause accuracy to drop substantially and is preferable as GlueFL
uses the least downstream bandwidth to reach the convergence accuracy of
FedAvg. This is because GlueFL optimizes mask shifting with shared mask
regeneration and error compensation.

5.5 Network Environment

To further test our framework on high-throughput environments, we repeated
the experiment in Tables and on commercial 5G [28] and Google
Cloud [27] with the default settings for GlueFL (see §5.2)). Figure[5.5/shows
the total share of download, upload, and computation time for the three
environments.

According to Figure[5.5(a), transmission time remains a bottleneck in the
end-user edge devices environment as shown in Table 5.2l We attribute this
to low-bandwidth clients. The ratio of download to upload time increases
as we introduce compression. Since clients usually download faster than
upload [1, 25]: new clients in FedAvg spend 70% more time uploading than
downloading the same-sized update. However, for STC and APF, download
time takes on average 8% longer than upload, confirming the discussion in
To address this limitation, GlueFL saves downstream bandwidth and
reduces download time by at least 42% as compared with other approaches.
This is because clients in the sticky group are required to download less
updates and are therefore less likely to become stragglers.

In 5G and intra-datacenter networks, computation dominates the per-
round training time. Yet, straggler clients still exist and they ultimately
determine the end-to-end training time.

5.6 Ablation Study

We described two optimization techniques in shared mask regeneration
and error-compensation. The first technique regenerates the shared mask
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Figure 5.5: Average share of time spent per round downloading (grey), up-
loading (red) and computing (blue).

M? every I rounds and the second technique adds a re-scaled compensation
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Figure 5.7: Effect of error-compensation.

vector h;o(t) to local updates Ag. In this section, we conduct ablation studies
to evaluate the effect of these techniques.

We run GlueFL on FEMNIST with ShuffleNet and Google Speech with
ResNet-34. In each round, the server samples 30 clients out of 2,800 clients
(for FEMNIST) and 30 clients out of 2,066 clients (for Google Speech). For
each experiment, we run 1,000 rounds and measure the downstream band-
width and test accuracy. While GlueFL consists of both sticky sampling and
mask shifting, we only change the corresponding part in mask shifting and
keep other training settings the same as §5.2,

Shared Mask Regeneration As described in §3.3, we set gsp, = 0 and

regenerate the shared mask as M* < top,,, (Al .) every I rounds. A larger
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I value indicates that M? will be regenerated less frequently. We do not
regenerate M! when I = oo.

In Figures 5.6(a)|and |5.6(b), we plot results for three I values: 10, 20, co.
Both figures show that setting I = 10 achieves the best overall performance,
saving around 22% downstream bandwidth at the target accuracy for Google
Speech. The impact of I on FEMNIST training in Figure m is less
pronounced but the I = 10 setting still has the best accuracy. Thus, in
practice, we need to set an appropriate I value (e.g., 10) to avoid a drop in
accuracy.

Error-Compensation In we noted that error compensation can be
used to accelerate convergence when applying compression methods in FL
training. GlueFL re-scales the compensation vector hf(t), following Equa-
tion , to make it compatible with sticky sampling. In this section,
we report on experiments for three error compensation settings: no com-
pensation (None), compensation without re-scaling (EC), compensation
with re-scaling (REC). The convergence results are shown in Figures
and . Both figures show that removing re-scaling from error compen-
sation immediately breaks GlueFL and harms the convergence performance.
This demonstrates that it is necessary to apply re-scaling with error com-
pensation.

5.7 Availability and Stragglers

In §5.2 we discussed a default value of 1.3 for over-commitment. This means
that GlueFL will sample 0.3 x K additional clients to mitigate stragglers and
clients that might become unavailable (e.g., go offline). In this section, we
explore different values and strategies in over-commitment for GlueFL.

In GlueFL’s default setting, the over-commitment applies to both sticky
group S and non-sticky group A"\ S. The server will sample 0.3 x K x (C/K)
and 0.3 x K x (1—(C/K)) additional clients from S and N\ S, respectively.
However, as GlueFL only includes the fastest K — C clients in all sampled
non-sticky clients to S in each round, clients in § are less likely to become
stragglers. It follows that we can improve the over-commitment strategy by
sampling fewer additional clients in S while sampling more additional clients
from N\ S.

Table presents the results from using four over-commitment strate-
gies for training ShuffleNet on FEMNIST. Similar to previous tasks: we select
30 clients out of 2,800 clients in each round and we choose another 9 (i.e.,
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Table 5.3: Downstream transmission Volume (DV, in x10? GB), Download
Time (DT, in hours), Total transmission Volume (TV) and Total train-
ing Time (TT) for training ShuffleNet on FEMNIST with different over-
commitment (OC) settings.

(a) Results of different over-commitment strategies with a constant
over-commit value (1.3)

OC Strategy (S:N\S) DV TV DT TT

10% 1:8 21 31 06 27
30% 3:6 22 30 09 31
50% 5:4 21 29 13 38
C/K (Default) 7:2 22 31 22 53

(b) Results for different over-commitment values
with a constant strategy (row 1 in Table |5.3(a))

OC Value DV TV DT TT

1.0 1.5 23 320 678
1.1 22 31 35 107
1.2 22 30 1.0 39
1.3 21 31 06 27
14 29 37 05 26
1.5 31 40 05 24

0.3 x 30) clients for over-commitment. We report transmission volume and
training time when the model reaches the target test accuracy of 73.3%. In
the table, the OC strategy row of 10% means that 1 (i.e., 0.3x30x10%), and
8 (i.e., 0.3%x30x (1—10%)) additional clients are sampled from S and '\ S,
respectively. The results show that by choosing fewer additional clients from
the sticky group, GlueFL consumes less training time without increasing the
downstream bandwidth volume.

Next, we use the best setting of 10% (from Table to evaluate
different OC values. Table m shows the results for OC values of 1.0
to 1.5. With increasing OC values, we find that training time decreases
faster than downstream volume increases. As an example, when OC value is
changed from 1.0 to 1.3, training time is decreased by 96% and downstream
volume increases by 40%. However, increasing the OC value from 1.3 to
1.5 only reduces 11% training time while consuming 47% more downstream
volume. In practice, one should set the OC value carefully to balance the
trade-off between bandwidth and training time.
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Chapter 6

Related Work

The synchronization bottleneck is an established problem in FL. Existing
solutions fall into roughly two categories: (1) use client sampling to constrain
the number of clients in each round; and, (2) compress model data with
strategies like sparsification and parameter freezing.

Client sampling. FedAvg proposed a uniform sampling of clients to
participate in each round. Uniform sampling has been shown to be biased,
and multinomial distribution (MD) sampling was proposed to address this
issue [21]. Clustered sampling [9] reduced the variance of client update ag-
gregation by improving client representation. Oort [20] introduced a practi-
cal client selection algorithm, which considers both data utility and clients
speed.

Sparsification. The idea of sparsification is to send only the most in-
formative gradients. Gaia [14] transfers gradients whose absolute or relative
values are larger than a given threshold. Stich et al. [34] proposed Top-K
that, given a compression ratio, selects a fraction of gradients based on their
absolute values to meet the ratio. STC [32] extended Top-K to FL training
and also uses server-side compression.

Parameter freezing. Parameter freezing reduces bandwidth by freez-
ing the gradients that converged. Brock et al. [5] proposed FreezeOut, which
gradually froze the first few layers of a deep neural network that were ob-
served to converge first. However, it has a coarse layer-based granularity and
it degrades accuracy. APF [7] improves on FreezeOut by freezing at a fine
granularity and achieves a communication speed-up while preserving model
convergence.

Our goal with GlueFL is to coherently combine client sampling with
model compression. To our knowledge, we are the first to propose a com-
bination that is unbiased, achieves high accuracy, and lowers downstream
bandwidth usage.

40



Chapter 7

Conclusions

We proposed GlueFL, a framework to optimize downstream bandwidth in
cross-device FL. GlueFL uses sticky sampling for client selection and mask
shifting for model compression to mitigate the low download bandwidth of
FL clients. We also provide a theoretical convergence guarantee for GlueFL.
In comparison with FedAvg, GlueFL achieves similar accuracy while decreas-
ing total training time by 36% and uses 22% less downstream bandwidth.
GlueFL also outperforms STC [32] and APF [7].
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