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Abstract

Federated Learning is the current state of the art in supporting secure multi-party
machine learning (ML): data is maintained on the owner’s device and the updates
to the model are aggregated through a secure protocol [12]. However, this process
assumes a trusted centralized infrastructure for coordination, and clients must trust
that the central service does not use the byproducts of client data. In addition to
this, a group of malicious clients could also harm the performance of the model by
carrying out a poisoning attack. [25]

As a response, we propose Biscotti: a fully decentralized peer to peer (P2P)
approach to multi-party ML, which uses blockchain and cryptographic primitives
to coordinate a privacy-preserving ML process between peering clients. Our eval-
uation demonstrates that Biscotti is scalable, fault tolerant, and defends against
known attacks. For example, Biscotti is able to protect the privacy of an individ-
ual client’s update and the performance of the global model at scale when 30% of

adversaries are trying to poison the model [25].
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Lay Summary

The amount of data being generated is growing at an unprecedented rate. This data
holds insights that humans cannot extract alone. Machine learning is a technique
used to build models that capture insights from large amounts of data automatically.

However, current practices for machine learning require data to be centralized
in a single location. This centralization might be infeasible because data might be
of a private nature.

We design and implement Biscotti, a system that enables multiple parties to
build machine learning models collaboratively without relying on a centralized en-
tity for data collection or coordinating the model building process.

Biscotti protects the privacy of data providers during model building while
ensuring a group of malicious data providers cannot harm the performance of the
model. We evaluate Biscotti and show that it outperforms current collaborative
machine learning systems in simultaneously protecting against privacy and security

threats.
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Chapter 1

Introduction

A common thread in machine learning (ML) applications is the collection of mas-
sive amounts of training data, which is often centralized for analysis. However,
when training ML models in a multi-party setting, users must share their poten-
tially sensitive information with a centralized service.

Federated learning [12, 32] is a prominent solution for high scale secure multi-
party ML: clients train a shared model with a secure aggregator without revealing
their underlying data or computation. But, doing so introduces a subtle threat:
clients, who previously acted as passive data contributors, are now actively in-
volved in the training process [25]. This presents new privacy and security chal-
lenges.

Prior work has demonstrated that adversaries can attack the shared model through
poisoning attacks [10, 40], in which an adversary contributes adversarial updates
to influence shared model parameters. Adversaries can also attack the privacy of
other clients in federated learning. In an information leakage attack, an adversary
poses as an honest client and attempts to steal or de-anonymize sensitive training
data through careful observation and isolation of a victim’s model updates [24, 33].

Solutions to these two attacks are at tension and are inherently difficult to
achieve together: client contributions or data can be made public and verifiable
to prevent poisoning, but this violates the privacy guarantees of federated learning.
Client contributions can be made more private, but this eliminates the potential

for accountability from adversaries. Prior work has attempted to solve these two



attacks individually through centralized anomaly detection [48], differential pri-
vacy [4, 20, 22] or secure aggregation [12]. However, a private and decentralized
solution that solves both attacks concurrently does not yet exist. In addition, these
approaches are inapplicable in contexts where a trusted centralized authority does
not exist. This is the focus of our work.

Because ML does not require strong consensus or consistency to converge [43],
traditional strong consensus protocols such as Byzantine Fault Tolerant (BFT) pro-
tocols [15] are too restrictive for machine learning workloads. To facilitate private,
verifiable, crowd-sourced computation, distributed ledgers (blockchains) [38] have
emerged. Through design elements, such as publicly verifiable proof of work,
eventual consistency, and ledger-based consensus, blockchains have been used for
a variety of decentralized multi-party tasks such as currency management [23, 38],
archival data storage [5, 35] and financial auditing [39]. Despite this wide range of
applications, a fully realized, accessible system for large scale multi-party ML that
is robust to both attacks on the global model and attacks on other clients does not
exist.

We propose Biscotti, a decentralized public peer to peer system that co-designs
a privacy-preserving multi-party ML process with a blockchain ledger. Peering
clients join Biscotti and contribute to a ledger to train a global model, under the as-
sumption that peers are willing to collaborate on building ML models, but are un-
willing to share their data. Each peer has a local data set that could be used to train
the model. Biscotti is designed to support stochastic gradient descent (SGD) [14],
an optimization algorithm that iteratively selects a batch of training examples, com-
putes their gradients with respect to the current model parameters, and takes steps
in the direction that minimizes the loss function. SGD is general purpose and can
be used to train a variety of models, including neural networks [17].

The Biscotti blockchain coordinates ML training between the peers. Peers in
the system are weighed by the value, or stake, that they have in the system. Inspired
by prior work [23], Biscotti uses proof of stake in combination with verifiable
random functions (VRFs) [34] to select key roles that help to arrange the privacy
and security of peer SGD updates. Our use of stake prevents groups of colluding
peers from overtaking the system without a sufficient stake ownership.

With Biscotti’s design our primary contribution is to combine several prior



techniques into one coherent system that provides secure and private multi-party
machine learning in a highly distributed setting. In particular, Biscotti prevents
peers from poisoning the model through the Multi-KRUM defense [11] and pro-
vides privacy through differentially private noise [4] and Shamir secrets for secure
aggregation [47]. Most importantly, Biscotti combines these techniques without
impacting the accuracy of the final model, achieving identical model performance
as federated learning.

We evaluated Biscotti on Azure and considered its performance, scalability,
churn tolerance, and ability to withstand different attacks. We found that Biscotti
can train an MNIST softmax model with 200 peers on a 60,000 image dataset in
64 minutes, which is 14x slower than a similar federated learning deployment.
Biscotti is fault tolerant to node churn every 15 seconds across 100 nodes, and
converges even with such churn. Furthermore, we show that Biscotti is resilient to
information leakage attacks [33] that require knowledge of a client’s SGD update

and a label-flipping poisoning attack [25] from prior work.



Chapter 2

Challenges and Contributions

We now describe the key challenges in designing a peer to peer (P2P) solution for
multi-party ML and the key pieces in Biscotti’s design that resolve each of these
challenges.

Sybil attacks: Consistent hashing using VRF’s and proof of stake.

In a P2P setting adversaries can collude or generate aliases to increase their
influence in a sybil attack [19].

Biscotti uses a consistent hashing protocol based on the hash of the last block
and verifiable random functions (VRF’s) (see Appendix A.4) to select a subset of
peers that are responsible for the different stages of the training process: adding
noise to updates, validating an update, and securely aggregating the update. To
mitigate the effect of sybils, the protocol selects peers proportionally to peer stake.
A peer’s stake is reputation that the peer acquires by contributing in the system.
This ensures that an adversary cannot increase their influence in the system by
creating multiple peers without increasing their total contribution/ stake.
Poisoning attacks: update validation using KRUM. In multi-party ML, peers
possess a relatively disjoint and private sub-set of the training data. As mentioned
above, privacy can be exploited by adversaries to provide cover for poisoning at-
tacks.

In multi-party settings, known baseline models are not available to peers, so
Biscotti validates an SGD update by evaluating an update with respect to the up-
dates submitted by other peers. Biscotti validates an SGD update using the Multi-



KRUM algorithm [11], which rejects updates that push the model away from the
direction of the majority of the updates. More precisely, in each round, a com-
mittee of peers is selected to filter out poisoned updates by a majority vote and
each member of the committee uses Multi-KRUM to filter out poisoned SGD up-
dates. Multi-KRUM guarantees to filter out f out of n malicious updates such that
2f+2 < n. We demonstrate that by using Multi-KRUM, Biscotti can handle poi-
sonous updates from up to 30% malicious clients.

Information leakage attacks: random verifier peers and differentially pri-
vate updates using pre-committed noise. By observing a peer’s SGD updates
from each verification round, an adversary can perform an information leakage
attack [33] and recover details about a victim’s training data. (For details on infor-
mation leakage attacks, see Appendix A.5)

Biscotti prevents such attacks during update verification in two ways. First,

it uses a consistent hashing on the SHA-256 hash of the last block to ensure that
malicious peers cannot deterministically select themselves to verify a victim’s gra-
dient. Second, peers send differentially-private updates [4, 20] to verifier peers:
before sending a gradient to a verifier, pre-committed e-differentially private noise
is added to the update, masking the peer’s gradient in a way that neither the peer
nor the attacker can influence or observe(See Figure 2.2). By verifying noised SGD
updates, peers in Biscotti can verify the updates of other peers without observing
their un-noised versions.
Utility loss with differential privacy: secure update aggregation and crypto-
graphic commitments. The blockchain-based ledger of model updates allows for
auditing of state, but this transparency is counter to the goal of privacy-preserving
multi-party ML. For example, the ledger trivially leaks information if we store
SGD updates directly.

Verification of differentially private updates discussed above is one piece of
the puzzle. The second piece is secure update aggregation: a block in Biscotti does
not store updates from individual peers, but rather an aggregate that obfuscates
any single peer’s contribution during that round of SGD. Biscotti uses a verifiable
secret sharing scheme [27] to aggregate the updates so that any individual update
remains hidden through cryptographic commitments (For a background, see Ap-
pendix A.3).
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to the updates in the ledger. Biscotti, which aggregates non-noisy up-
dates, has the best utility (lowest test error).
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Figure 2.2: Visualized privacy trade-off for curves in Figure 2.1.

However, secure aggregation can be either done on the differentially-private
updates or the original updates with no noise. This design choice represents a
privacy-utility tradeoff in the trained model. By aggregating differentially-private
updates the noise is pushed into the ledger and the final model has lower utility.

By aggregating original updates we can achieve utility that is identical to feder-



ated learning training. Figure 2.1 illustrates this trade-off for learning a softmax
model to recognize hand-written digits. The model is trained using the MNIST
dataset over 100 iterations for different values of €. Smaller € means more noise
and more privacy, but lower utility, or test error. The bottom-most line in the Fig-
ure is Biscotti, which aggregates original updates: a design choice that we have
made to prioritize utility. By default Biscotti uses a batch value of 35. Figure 2.2
illustrates the privacy-utility trade-off visually for batches of size 35 with noisy
updates as compared to Biscotti (right-most image), which aggregates un-noised
updates. The images are reconstructed using an information leakage attack [33]
on the aggregated gradients of two different machine learning models. The top
row of images are constructed from aggregated gradients of the MNIST model
with respect to the 0 digit class. The bottom row shows results for a softmax model
trained to recognize gender from faces using the Labelled Faces in the Wild (LFW)
dataset. The pictures are reconstructed with respect to the female class. These re-
sults demonstrate that although aggregation protects individual training examples
it does reveal information about how a certain class looks like on average in the ag-
gregate. Differential private noise needs to be included in the aggregate to provide
this additional level of protection. However, our design favours utility, therefore

we choose to remove the noise before aggregating the updates in the ledger.



Chapter 3

Assumptions and Threat Model

Like federated learning, Biscotti assumes a public machine learning system which
peers can join/leave anytime. Biscotti assumes that users are willing to collaborate
on building ML models, but are unwilling to directly share their data when doing
so [32]. This need for collaboration arises because a model trained only on an
individual peer’s data would exhibit poor performance, but a model trained by all

participants will have near-optimal performance.

3.1 Design assumptions

Proof of stake.

Peers in Biscotti need to arrive at a consensus on the state of the model for each
round of training. Proof of Stake (POS) [23, 28] is a recently proposed consensus
mechanism for cryptocurrencies. Consensus using POS is fast because it delegates
the consensus responsibility to a subset of peers each round. The peers responsible
are selected each round based on the amount of stake that they possess in the sys-
tem. In cryptocurrencies, the stake of a peer refers to the amount of value (money)
that a peer holds. POS relies on the assumption that a subset of peers holding a sig-
nificant fraction of the stake will not attempt to subvert the system. For a detailed
background on Proof of Stake , please refer to Appendix A.6.

In Biscotti, we define stake as a measure of peer’s contribution to the system.

Peers acquire stake by by providing SGD updates or by facilitating the consensus



process. Thus, the stake that a peer accrues during the training process is pro-
portional to their contribution to the trained model. We assume that all nodes can
obtain the fraction of stake of any other peer using a function from the current stake
of the blockchain. In addition to this, we also assume that at any point in time more
than 70% of the stake in the system is honest and that the stake function is prop-
erly bootstrapped. The initial stake distribution at the start may be derived from
an online data sharing marketplace, a shared reputation score among competing
agencies or auxiliary information on a social network.

Blockchain topology. Each peer is connected to some subset of other peers in a
topology that allows flooding-based dissemination of blocks that eventually reach
all peers. For example, this could be a random mesh topology with flooding, similar
to the one used for block dissemination in Bitcoin [38]. Peers that go offline during
training and join later are bootstrapped on the current state of the blockchain by
other peers in the system.

Machine learning. We assume that ML training parameters are known to all peers:
the model, its hyperparameters, its optimization algorithm and the learning goal
of the system (these are distributed in the first block). In a non-adversarial set-
ting, peers have local datasets that they wish to keep private. When peers draw
a sample from this data to compute an SGD update, we assume that this is done
uniformly and independently [13]. This ensures that the Multi-KRUM gradient

validation [11] is accurate.

3.2 Attacker assumptions

Peers may be adversarial and send malicious updates to perform a poisoning at-
tack on the shared model or an information leakage attack against a target peer
victim. In doing so, we assume that the adversary may control multiple peers in a
sybil attack [19] but does not control more than 30% of the total peers. Although
peers may be able to increase the number of peers they control in the system, we
assume that adversaries cannot artificially increase their stake in the system except
by providing valid updates that pass Multi-KRUM [11].

When adversaries perform a poisoning attack, we assume that their goal is to

harm the performance of the final global model. Our defense relies on filtering

9



out malicious updates that are sufficiently different from the honest clients and are
pushing the global model towards some sub-optimal objective. For the purposes of
this work, we limit the adversaries only to a label flipping poisoning attack [25]
in which they mislabel a certain class in their dataset causing the model to learn to
misclassify it. This does not include attacks on unused parts of the model topol-
ogy, like backdoor attacks [6], attacks based on gradient-ascent [37] techniques or
adaptive attacks based on knowledge of the poisoning defense [9].

When adversaries perform an information leakage attack, we assume that they
aim to learn properties of a victim’s local dataset. Due to the vulnerabilities of
secure aggregation, we do not consider information leakage attacks with side in-
formation [21, 45] and class-level information leakage attacks on federated learn-

ing [24], which attempt to learn the properties of an entire target class.

10



Chapter 4
Design

Biscotti implements peer-to-peer ML trained using SGD. For this process, Bis-
cotti’s design has the following goals:

e Convergence to an optimal global model (the model trained without adver-
saries in a federated learning setting)

e Poisoning is prevented by verifying peer contributions to the model

e Peer training data is kept private and information leakage attacks on training
data are prevented

e Colluding peers cannot gain influence without acquiring sufficient stake

Biscotti meets these goals through a blockchain-based design that we describe

in this section.
Design overview. Peers join Biscotti and collaboratively train a global model.
Each block in the distributed ledger represents a single iteration of SGD and the
ledger contains the state of the global model at each iteration. Figure 4.1 overviews
the Biscotti design with a step-by-step of illustration of what happens during a
single SGD iteration in which a single block is generated.

In each iteration, peers locally compute SGD updates (step (1) in Figure 4.1).
Since SGD updates need to be kept private, each peer first masks their update using
differentially private noise. This noise is obtained from a unique set of noising
peers for each client selected by a VRF [34] (step (2) and (3)).

The masked updates are validated by a verification committee to defend against

poisoning. Each member in the verification committee signs the commitment to

11
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Figure 4.1: The ordered steps in a single iteration of the Biscotti algorithm.

the peer’s unmasked update if it passes Multi-KRUM (step (4)). If the majority of
the committee signs an update (step (5)), the signed update is divided into Shamir
secret shares (step (6)) and given to a aggregation committee. The aggregation
committee uses a secure protocol to aggregate the unmasked updates (step (7)).
All peers who contribute a share to the final update along with the peers chosen for
the verification and aggregation committees receive additional stake in the system.

The aggregate of the updates is added to the global model in a newly created
block which is disseminated to all the peers and appended to the ledger (step (8)).
Using the updated global model and stake, the peers repeat (step (1)).

Next, we describe how we bootstrap the training process.

4.1 Initializing the training

Biscotti peers initialize the training process using information in the first (genesis)
block. We assume that this block is distributed out of band by a trusted authority
and the information within it is reliable. The centralized trusted authority only
plays the role of facilitating and bootstrapping the training process by distributing
the genesis block that makes public information available to all peers in the system.
It is not entrusted with individual SGD updates of the peers that could potentially
leak private information of a peer’s data. Each peer that joins Biscotti obtains the

following information from the genesis block:

12
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Figure 4.2: Block contents at iteration t. Note that w, is computed using
wy—1 + Xw, where w;_; is the global model stored in the block at it-
eration t — 1 and j is the set of verifiers for iteration ¢.

o Initial model state wg, and expected number of iterations T

e The commitment public key PK for creating commitments to SGD updates
(see Appendix A.3)

e The public keys PK; of all other peers in the system that are used to create
and verify signatures during verification.

e Pre-commitments to 7 iterations of differentially private noise {; r for each
SGD iteration by each peer (see Figure 4.4 and Appendix A.2)

o The initial stake distribution among the peers

e A stake update function for updating a peer’s stake when a new block is
appended

4.2 Blockchain design

Distributed ledgers are constructed by appending read-only blocks to a chain struc-
ture and disseminating blocks using a gossip protocol. Each block maintains a
pointer to its previous block as a cryptographic hash of the contents in that block.

Each block in Biscotti (Figure 4.2) contains, in addition to the previous block

13



hash pointer, an aggregate (Aw) of SGD updates from multiple peers and a snapshot
of the global model w; at iteration ¢. Newly appended blocks to the ledger store the
aggregated updates ) Aw; of multiple peers. To verify that the aggregate was hon-
estly computed, individual updates need to be made part of the block. However,
storing them would leak information about private training data of the individu-
als. We solve this problem by using polynomial commitments. [27]. Polynomial
commitments take an SGD update and map it to a point on an elliptic curve. (see
Appendix A.3 for details). By including a list of commitments for each peer i’s
update COMM (Awy;) in the block, we can provide both privacy and verifiability of
the aggregate. The commitments provide privacy by hiding the individual updates
yet can be homomorphically combined to verify that the update to the global model
by the aggregator }° Aw; was computed honestly. The following equality holds if
the list of committed updates equals the aggregate sum:

COMM()_Aw;) = HCOMM(Awi) (2)

The training process continues for a specified number of iterations 7" upon
which the learning process is terminated and each peer extracts the global model
from the final block.

4.3 Using stake for role selection

For each iteration in Biscotti, a consistent hashing protocol weighted by stake des-
ignates roles (noiser, verifier, aggregator) to some peers in the system. The protocol
ensures that the influence of a peer is bounded by their stake (i.e. adversaries cannot
trivially increase their influence through sybils). Peers can take on multiple roles
in a given iteration but cannot be a verifier and aggregator in the same round. The
verification and aggregation committees are the same for all peers but the noising
committee is unique to each peer.

Biscotti uses consistent hashing to select peers for the verification and aggre-
gation committees (Figure 4.3). The initial SHA-256 hash of the last block is
repeatedly re-hashed: each new hash result is mapped onto a hash ring where por-

tions of the ring are proportionally assigned to peers based on their stake. The peer
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Figure 4.3: Biscotti uses a consistent hashing protocol based on the current
stake to determine the roles for each iteration.

in whose space the hash lies is chosen for the verifier/aggregator role. The pro-
cess is repeated until you get verifier/aggregator committees of the right size. This
provides the same stake-based property as Algorand [23]: a peer’s probability of
winning this lottery is proportional to their stake. Since an adversary cannot pre-
dict the future state of a block until it is created, they cannot speculate on outputs
of consistent hashing and strategically perform attacks.

Unlike verification and aggregation, the noising committee is different for each
peer for additional privacy. Each peer can arrive at a unique committee for itself
via consistent hashing by using a different initial hash. The hash computed should
be random yet globally verifiable by other peers in the system. In Biscotti, a peer
computes this hash by passing their secret key SK; and the SHA-256 hash of the last
block to a verifiable random function (VRF). By virtue of the peer’s secret key, the
hash computed is unique to the peer resulting in distinct committees for different
peers. The VRF hash is also accompanied by a proof that can be combined with a

peers public key allowing others peer to determine that the correct noise providers
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are selected by the peer.

At each iteration, peers run the consistent hashing protocol to determine whether
they are an aggregator or verifier. Peers that are part of the verification and aggre-
gation committees do not contribute updates for that round. Each peer that is not
an aggregator or verifier computes their set of noise providers. The contributing

peers then obtain noise to hide their updates by following the noising protocol.

4.4 Noising protocol

Sending a peer’s SGD update directly to another peer may leak sensitive informa-
tion about their private dataset [33]. To prevent this, peers use differential privacy
to hide their updates prior to verification by adding noise sampled from a normal
distribution. This ensures that each step is (€, 0) differentially private by standard
arguments in [20]. (see Appendix A.2 for formalisms).
Using pre-committed noise to thwart poisoning. Attackers may maliciously use
the noising protocol to execute poisoning or information leakage attacks. For ex-
ample, a peer can send a poisonous update Aw ison, and add noise Cp that unpoi-
sons this update to resemble an honest update Aw, such that Aw,;s0n + Cp = Aw.
By doing this, a verifier observes the honest update Aw, but the poisonous update
AW poison 1s applied to the model because the noise is removed in the final aggregate.
To prevent this, Biscotti requires that every peer pre-commits the noise vector
g for every iteration 7 € [1..T] in the genesis block. Since the updates cannot be
generated in advance without the knowledge of the global model, a peer cannot
effectively commit noise that unpoisons an update. Furthermore, Biscotti requires
that the noise that is added is taken from a different peer than the one creating the
update. This peer is determined using a noising VRF and further restricts the con-
trol that a malicious peer has over the noise used to sneak poisoned updates past

verification.

Using a VRF-chosen set of noisers to thwart information leakage. A further
issue may occur in which a noising peer A and a verifier B can collude in an in-
formation leakage attack against a victim peer C. The noising peer A can commit

a set of zero noise that does not hide the original gradient value at all. When the
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victim peer C sends its noised gradient to the verifier B, B performs an information
leakage attack on client C’s gradient back to its original training data. This attack
is viable because the verifier B knows that A is providing the random noise and A
provides zero noise.

This attack motivates Biscotti’s use of a private VRF that selects a group of
noising peers based on the victim C’s secret key. In doing so, an adversary cannot
pre-determine whether their noise will be used in a specific verification round by
a particular victim, and also cannot pre-determine if the other peers in the noising
committee will be malicious in a particular round. Our results in Figure 6.10 show
that the probability of an information leakage is negligible given a sufficient num-

ber of noising peers.

Protocol description. For an ML workload that may be expected to run for a
specific number of iterations 7', each peer i generates T noise vectors {; and com-
mits these noise vectors into the ledger, storing a table of size N by T (Figure 4.4).
When a peer is ready to contribute an update in an iteration, it runs the noising VRF
and contacts each noising peer k, requesting the noise vector {; pre-committed in
the genesis block COMM ;). The peer then uses a verifier VRF to determine the
set of verifiers. The peer masks their update using this noise and submits to these
verifiers the masked update, a commitment to the noise, and a commitment to the
unmasked update. It also submits the noise VRF proof that attests to the verifier

that its noise is sourced from peers that are a part of their noise VRF set.

4.5 Verification protocol

The verifier peers are responsible for filtering out malicious updates in a round
by running Multi-KRUM on the received pool of updates and accepting the top
majority of the updates received each round. Each verifier receives the following
from each peer i:

e The masked SGD update: (Aw; + Y, &)

e Commitment to the SGD update: COMM (Aw;)

e The set of k noise commitments:
{COMM(,),COMM(G), ...,COMM (&) }
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peer 2 peers
comm(noisel ) - comm(noiseR)
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Figure 4.4: Peers commit noise to an N by T structure. Each row i contains
all the noise committed by a single peer i, and each column ¢ contains
potential noise to be used during iteration . When committing noise at
an iteration i, peers execute a VRF and request Cl.k from peer k

e A VRF proof confirming the identity of the k noise peers

When a verifier receives a masked update from another peer, it can confirm
that the masked SGD update is consistent with the commitments to the unmasked
update and the noise by using the homomorphic property of the commitments [27].

A masked update is legitimate if the following equality holds:

COMM (Aw;+ Y §i) = COMM (Aw;) « [ JCOMM (AL
k k

Once the verifier receives a sufficiently large number of updates R, it proceeds

with selecting the best updates using Multi-KRUM, as follows:

e For every peer i, the verifier calculates a score s(i) which is the sum of eu-
clidean distances of i’s update to the closest R — f — 2 updates. It is given
by:

s(i) = Xiyj 1 (Awi+ X Gin) — (Awj + X4 8i) I

where i — j denotes the fact that (Aw; + Y, C;«) belongs to the R — f —2
closest updates to (Aw; + Y, x Gix)-
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e The R— f peers with the lowest scores are selected while the rest are rejected.

e The verifier signs the COMM (Aw;) using its public key for all the updates

that are accepted.

To prevent a malicious sybil verifier from accepting all updates of its colluders
in this stage, we require a peer to obtain signatures from majority of the verifiers
to get their update accepted. Once a peer receives a majority number of signatures

from the verifiers, the update can be disseminated for aggregation.

4.6 Aggregation protocol

All peers with a sufficient number of signatures in the verification stage submit
their SGD updates for aggregation which will be eventually appended to the global

model. The update equation in SGD (see Appendix A.1) can be re-written as:

AWyerified
Wil = Wy + Z Aw;
i=1
where Aw; is the verified SGD update of peer i and w; is the global model at itera-
tion ¢.

However, individual updates contain sensitive information and cannot be di-
rectly shared for aggregation. This presents a privacy dilemma: no peer should
observe an update from any other peer, but the sum of the updates must be stored
in a block.

The objective of the aggregation protocol is to enable a set of m aggregators,
predetermined by consistent hashing, to compute } ; Aw; without observing any in-
dividual updates. Biscotti uses a technique that preserves privacy of the individual
updates if at least half of the m aggregators participate honestly in the aggrega-
tion phase. This guarantee holds if consistent hashing selects a majority of honest
aggregators, which is likely when the majority of stake is honest.

Biscotti achieves the above guarantees using polynomial commitments (see
Appendix A.3) combined with verifiable secret sharing [47] of individual updates.

The update of length d is encoded as a d-degree polynomial, which can be broken
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down into n shares such that (n = 2% (d+1)). These n shares are distributed equally
among m aggregators. Since an update can be reconstructed using (d + 1) shares, it
would require 75 colluding aggregators to compromise the privacy of an individual
update. Therefore, given that any majority of aggregators is honest and does not
collude, the privacy of an individual peer update is preserved.
A peer with a verified update already possesses a commitment C = COMM (Aw;(x))

to its SGD update signed by a majority of the verifiers from the previous step. To
compute and distribute its update shares among the aggregators, peer i runs the

following secret sharing procedure:

1. The peer computes the required set of secret shares s,,; = {z,Aw;(z)|z € Z}
for aggregator m. In order to ensure that an adversary does not provide
shares from a poisoned update, the peer computes a set of associated wit-
nesses wit,, ; = {COMM (¥, (x))|¥,(x) = %ZAW(Z)}. These witnesses will
allow the aggregator to verify that the secret share belongs to the update Aw;
committed to in C. It then sends < C, s, ;, wit,, ; > to each aggregator along

with the signatures obtained in the verification stage.

2. After receiving the above vector from peer i, the aggregator m runs the fol-

lowing sequence of validations:

(a) m ensures that C has passed the validation phase by verifying that it has

the signature of the majority in the verification set.

(b) m verifies that in each share (z, Aw;(z)) € s,,; Aw;(2) is the correct eval-
uation at z of the polynomial committed to in C. (For details, see Ap-
pendix A.3)

Once every aggregator has received shares for the minimum number of updates
u required for a block, each aggregator aggregates its individual shares and shares
the aggregate with all of the other aggregators. As soon as a aggregator receives
the aggregated d + 1 shares from at least half of the aggregators, it can compute the
aggregate sum of the updates and create the next block. The protocol to recover

i1 Aw; is as follows:
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1. All m aggregators broadcast the sum of their accepted shares and witnesses
< Xy Sy Ly Wil >

2. Each aggregator verifies the aggregated broadcast shares made by each of
the other aggregators by checking the consistency of the aggregated shares

and witnesses.

3. Given that m obtains the shares from %5 aggregators including itself, m can in-

terpolate the aggregated shares to determine the aggregated secret }.7_; Aw;

Once m has figured out } i ; Aw;, it can create a block with the updated global
model. All commitments to the updates and the signature lists that contributed
to the aggregate are added to the block. The block is then disseminated in the
network. Any peer in the system can verify that all updates are verified by looking
at the signature list and homomorphically combine the commitments to check that
the update to the global model was computed honestly (see 4.2). If any of these
conditions are violated, the block is rejected.

4.7 Blockchain consensus

Because consistent hashing based subsets are globally observable by each peer,
and based only on the SHA-256 hash of the latest block in the chain, ledger forks
should rarely occur in Biscotti. For an update to be included in the ledger at any
iteration, the same noising/verification/aggregation committees are used. Thus,
race conditions between aggregators will not cause forks in the ledger to occur as
frequently as in e.g., BitCoin [38].

When a peer observes a more recent ledger state through the gossip protocol,
it can catch up by verifying that the computation performed is correct by running
the consistent hashing protocol for the ledger state and by verifying the signatures
of the designated verifiers and aggregators for each new block.

In Biscotti, each verification and aggregation step occurs only for a specified
duration. Any updates that are not successfully propagated in this period of time
are dropped: Biscotti does not append stale updates to the model once compet-

ing blocks have been committed to the ledger. This synchronous SGD model is

21



acceptable for large scale ML workloads which have been shown to be tolerant
of bounded asynchrony [43]. However, these stale updates could be leveraged in

future iterations if their learning rate is decayed [17]. We leave this for future work.
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Chapter 5
Implementation

We implemented Biscotti in 4,500 lines of Go 1.10 and 1,000 lines of Python 2.7.12
and released it as an open source project!. We use Go to handle all networking and
distributed systems aspects of our design. We used PyTorch 0.4.1 [41] to generate
SGD updates and noise during training. By building on the general-purpose API
in PyTorch, Biscotti can support any model that can be optimized using SGD. We
use the go-python v1.0 [3] library to interface between Python and Go. Since go-
python does not support Python >= 2.7.12 therefore we were limited to using
Python 2.7 for our implementation.

We use the kyber v.2 [2] and CONIKS 0.1.1 [1] libraries to implement the cryp-
tographic parts of our system. We use CONIKS to implement our VRF function
and kyber to implement the commitment scheme and public/private key mecha-
nisms. To bootstrap clients with the noise commitments and public keys, we use
an initial genesis block. We used the bn256 curve API in kyber for generating our
commitments and public keys that form the basis of the aggregation protocol and
verifier signatures. For signing updates, we use the Schnorr signature [46] scheme
instead of ECDSA because multiple verifier Schnorr signatures can be aggregated
together into one signature [31]. Therefore, our block size remains constant as the

verifier set grows.

Uhttps://github.com/DistributedML/Biscotti
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Chapter 6

Evaluation

We had several goals when designing the evaluation of our Biscotti prototype. We
wanted to demonstrate that (1) Biscotti is robust to poisoning attacks, (2) Biscotti
protects the privacy of an individual client’s data and (3) Biscotti is scalable, fault-
tolerant and can be used to train different ML models.

For experiments done in a distributed setting, we deployed Biscotti to train an
ML model across 20 Azure A4m v?2 virtual machines, with 4 CPU cores and 32
GB of RAM. We deployed a varying number of peers in each of the VMs. The
VM’s were spread across six locations: West US, East US, Central India, Japan
East, Australia East and Western Europe. We measured the error of the global
model against a test set and ran each experiment for 100 iterations. To evaluate
Biscotti’s defense mechanisms, we ran known inference and poisoning attacks on
federated learning [25, 33] and measured their effectiveness under various attack
scenarios and Biscotti parameters. We also evaluated the performance implications
of our design by isolating specific components of our system and varying the com-
mittee sizes with different numbers of peers. For all our experiments, we deployed
Biscotti with the parameter values in Table 6.3 unless stated otherwise.

We evaluated Biscotti with logistic regression and softmax classifiers on the
Credit Card and MNIST dataset respectively. The softmax classifier contains a
one layer neural network with a binary cross entropy loss at the end. However,
due to the general-purpose PyTorch API, we claim that Biscotti can generalize to

models of arbitrary size and complexity, as long as they can be optimized with
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Dataset | Model Type | Train/Test Examples | Params (d)
Credit Card LogReg 21000/9000 25
MNIST Softmax 60000/10000 7850

Table 6.1: The dataset/model types used in the experiments

Model/Dataset | Batch Size | Learning Rate | Momentum
Credit Card/LogReg 10 0.01 0
MNIST/Softmax 10 0.001 0.75

Table 6.2: The hyperparameters used in the experiments

SGD and can be stored in our block structure. We evaluate logistic regression with
a credit card fraud dataset from the UC Irvine data repository [18], which uses an
individual’s financial and personal information to predict whether or not they will
default on their next credit card payment. We evaluate softmax with the canonical
MNIST [30] dataset, a task that involves predicting a digit based on its image.

The MNIST and Credit Card datasets have 60,000 and 21000 training exam-
ples respectively. We used 5-fold cross validation on the training set to decide
on hyperparameters of batch size, momentum and learning rate indicated in Table
6.2. The MNIST/Credit Card models were tested using a separately held-out test
set of 10,000 and 9000 examples respectively. For all experiments, the training
dataset was divided equally among the peers unless stated otherwise. As a result,
each client possesses 600 training examples for MNIST and 210 examples for the
credit card dataset. The size of dataset/training examples per peer is small for our
experimental setting and might not be representative of large-scale datasets.

In summary, Table 6.1 and 6.2 show the datasets, types of model, number of
training examples, the number of parameters d in the models and the hyperparam-
eters that were used in our experiments.

In local training we were able to train a model on the Credit Card and MNIST

datasets with accuracy of 98% and 92%, respectively.
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Parameter Default Value

Privacy budget (&) 2
Delta (5) 1073
Number of peers 100
Number of noisers 2
Number of verifiers 3
Number of aggregators 3

Number of samples needed for | 70
Multi-KRUM (R)
Adversary upper bound (f < RT*Z) 33

Number of updates/block (u = %) 35

Initial stake Uniform, 10 each
Stake update Linear, + 5

Table 6.3: The default parameters used for all our experiments, unless stated
otherwise.

6.1 Minimum committee size to prevent collusion

In Biscotti, the verification and aggregation stages involve committees that use a
majority voting scheme to reach consensus. By making these committee sizes large
enough, we can prevent an adversary controlling a certain fraction of the stake from
acting maliciously. An adversary having the majority vote can act maliciously
by accepting poisoned updates or recovering an individual peer’s updates during
aggregation. In this section, we carry out an analysis of the least committee size
needed such that the probability of an adversary having the majority is below a
threshold.

Using the consistent hashing protocol, the probability of a peer being selected
is proportional to their stake. Hence, the probability p of an adversary having the

majority in a committee size k can be calculated by:

p= ( i ; (IIC) s'(1—5)*

ik
l*j"!‘

where s is the fraction of stake controlled by the adversary.

By assuming that p follows a binomial distribution, we obtain a loose upper
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bound for an adversary controlling the majority in Biscotti. A binomial distribu-
tion assumes sampling peers with replacement allowing a peer to be elected more
than once in the committee. Since Biscotti limits a peer to only one vote in the com-
mittee, the actual probability of the adversary controlling the majority in Biscotti
is less than p.

Since p is an upper bound, we can safely use it to calculate the smallest com-
mittee size that bounds p below a threshold(z). To obtain the minimum committee
size for p, we use a brute force approach and try out different committee sizes and
pick the least size that causes p to fall below the threshold.

Figure 6.1 plots the minimum committee size needed against adversarial stake
for probability thresholds of 0.01, 0.05 and 0.001 respectively. The minimum com-
mittee size is independent of the number of nodes and grows exponentially with
adversarial stake in the system. Since our experimental evaluation is limited to
training for a 100 rounds, the probability threshold of an adversary controlling the
majority ¢ needs to be less than 0.01. For this threshold, a committee size of 26

protects against an adversary controlling 30% of the stake in the system.

6.2 Tolerating poisoning attacks

In this section, we evaluate Biscotti’s performance when we subject the system to
a label flipping poisoning attack as in Huang et.al [25]. We investigate the different
parameter settings required for Biscotti to successfully defend against a poisoning
attack and then evaluate how well it performs under attack from 30% malicious
nodes compared to a Federated Learning baseline.

Attack Rate vs Received Updates. Biscotti requires each peer in the verification
committee to collect a sufficient sample of updates before running Multi-KRUM.
We evaluated the effect of collecting varying percentages of total updates in each
round on the effectiveness of Multi-KRUM with different poisoning rates for the
MNIST dataset. To ensure uniformity and to eliminate latency effects in the col-
lection of updates, in these experiments the verifiers waited for updates from all
peers that are not assigned to a committee and then randomly sampled a specified
number of updates. In addition, we also ensured that all verifiers deterministically

sampled the same set of updates by using the last block hash as the random seed.
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Figure 6.1: Size of committee needed such that the probability of an adver-
sary successfully colluding is below a threshold.
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Figure 6.2: Evaluating the effect of the number of sampled updates each
round on KRUM’s performance.

This allows us to investigate how well Multi-KRUM performs in a decentralized
ML setting like Biscotti unlike the original Multi-KRUM paper [11] in which up-
dates from all clients are collected before running Multi-KRUM.

To evaluate the success of an attack, we define attack rate as the fraction of
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Figure 6.3: KRUM’s performance in defending against a 30% attack on the
MNIST dataset for different settings of € noise.

target labels that are incorrectly predicted. An attack rate of 1 specifies a successful
attack while a value close to zero indicates an unsuccessful one.

Figure 6.2 show the results. As the percentage of poisoners in the system in-
creases, a higher fraction of updates need to be collected for Multi-KRUM to be
effective (to achieve a low attack rate). A large sample ensures that the poisoners
do not gain majority in the set being fed to Multi-KRUM, otherwise Multi-KRUM
cannot prevent poisoned updates from leaking into the model. The results show
that each round updates need to be selected from 70% of the peers to prevent poi-
soning from 30% of the nodes.

Attack Rate vs Noise. To ensure that updates are kept private in the verification
stage, differentially private noise is added to each update before it is sent to the
verifier. This noise is parametrized by the € and & parameters. The d parameter
indicates the probability with which plain e-differential privacy is broken and is
ideally set to a value lower than 1/|d| where d is the dimension of the dataset.
Hence, we set & to be 107> in all our experiments. € represents privacy-loss and a
lower value of € indicates that more noise is added to the updates. We investigate
the effect of the € value on the performance of Multi-KRUM with 30% poisoners
in a 100-node deployment with 70 received updates in each round on the MNIST
dataset. Figure 6.3 shows that KRUM loses its effectiveness at values of € < 1 but
performs well on values of € > 2.

Biscotti vs Federated Learning Baseline. We deployed Biscotti and federated
learning and subjected both systems to a poisoning attack while training on the
Credit Card and MNIST datasets. Using the parameters from the above exper-
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Figure 6.4: Federated learning and Biscotti’s test error on the CreditCard
dataset with 30% of poisoners.

1.04

Test Error
o o o©
JI> [e)] (0]

o
(N)

—— Federated Learning - No Poison

Federated Learning - 30% Poison
Biscotti - 30% Poison

0.0
0

20

40

60 80

Training Iterations

Figure 6.5: Federated learning and Biscotti’s test error on the MNIST dataset

with 30% of poisoners.

iments, Biscotti sampled 70% of updates and used a value of 2 for the privacy

budget

E.

We introduced 30% of the peers into the system with the same malicious
dataset: for credit card they labeled all defaults as non-defaults, and for MNIST
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Figure 6.6: Attack rate comparison of federated learning and Biscotti’s on the
MNIST dataset with 30% of poisoners.
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Figure 6.7: Federated learning and Biscotti’s test error on the MNIST dataset
with 30% of poisoners with larger committee size.

these peers labeled all 1s as 7s. Figure 6.4 and 6.5 shows the test error for both
datasets as compared to federated learning. The results show that for both datasets
the poisoned federated learning deployment struggled to converge. By contrast,
Biscotti performed as well as the baseline un-poisoned federated learning deploy-
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Figure 6.8: Attack rate comparison of federated learning and Biscotti’s on the
MNIST dataset with 30% of poisoners with larger committee size.

ment on the test set.

We show the attack rate in Biscotti and Federated Learning for MNIST in Fig-
ure 6.6. For the credit card dataset, the attack rate is the same as the test error
since there is only one class in the dataset. The figure illustrates that in federated
learning, since no defense mechanisms exist, a poisoning attack creates a tug of
war between honest and malicious peers. On the other hand, in Biscotti the attack
rate settles after some initial jostling.

The jostling results in Biscotti taking a larger number of iterations to converge
than un-poisoned federated learning. The convergence is slower for Biscotti be-
cause a small verification committee of 3 peers was used for this experiment. A
smaller committee size allowed the poisoning peers to control a majority in the
committee frequently and accept updates from fellow malicious peers. Biscotti
finally converged because the honest peers gained influence over time thereby re-
ducing the chance of malicious peers from taking control of the majority vote each
round. In this experiment, the stake of the honest clients went from 70% to 87%.

To demonstrate the effect of the committee size on convergence under attack,
we run the same experiment for the MNIST dataset with an increased committee

size of 26 peers. As shown in Section 6.1, a committee size of 26 provides protec-
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tion against an adversary controlling 30% of the stake in the system. Since peers
part of committees do not contribute updates in that particular round, 100 nodes
is not enough to collect 70% of updates needed to protect against Multi-KRUM.
Therefore, for this experiment we increased the number of nodes to 200. The re-
sults in Figure 6.8 shows that Biscotti converges in the same number of iterations
as unpoisoned Federated Learning with an increased committee size. Figure 6.8
shows that the attack rate stays less than 24.9% after the first 5 iteration because

the poisoners were unable to get their updates accepted during the training process.

6.3 Privacy evaluation

In this section, we evaluate the privacy provided by secure aggregation in Biscotti.
We subject Biscotti to an information leakage attack [33] and demonstrate that
the effectiveness of this attack decreases with the number of securely aggregated
updates in a block. We also show that the probability of a successful collusion
attack to recover an individual client’s private gradient decreases as the size of the
committees grows.
Information leakage from aggregated gradients. We subject the aggregated gra-
dients from several different datasets to the gradient-based information leakage
attack described in [33]. We invert the aggregated gradient knowing that the gradi-
ent for the weights associated with each class in the fully connected softmax layer
is directly proportional to the input features. To infer the original features, we take
the gradients from a single class and invert them with respect to all the classes in
the CIFAR-10 (10 classes of objects/animals) and LFW datasets(2 classes male/fe-
male). We also invert the gradients for three classes (0,3,5) on the MNIST dataset.
We visualize the gradient in grayscale after reshaping to the original feature di-
mensions in Figure 6.9. The aggregated gradient will have data sampled from a
mixture of classes including the target class. Our results show that having a larger
number of participants in the aggregate decreases the impact of this attack. As
shown in Figure 6.9, as the number of aggregates batched together increases, it
becomes harder to distinguish the individual training examples.

By default Biscotti aggregates/batches 35 updates. Figure 6.9 illustrates how

the individual class examples from the inverted images are difficult to determine.
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Figure 6.9: The results of an information leakage attack on different number
of aggregated gradients for different classes.
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Figure 6.10: Probability of a successful collusion attack to recover an indi-
vidual client’s gradient.

It might be easy to infer what a class looks like from the inversions. But if the class
does not represent an individual’s training set, secure aggregation provides privacy.
For example, in LFW we get an image that represents what a male/female looks
like but we do not gain any information about the individual training examples.
Hence, the privacy gained is dependent on how close the training examples are to
the class representative.

Recovering a client’s individual gradient.

We also evaluate a proposed attack on the noising protocol, which aims to de-
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anonymize peer gradients. This attack is performed when a verifier colludes with
several malicious peers. When bootstrapping the system, the malicious peers pre-
commit noise that sums to 0. As a result, when a noising committee selects these
noise elements for verification, the masked gradient is not actually masked with
any € noise, allowing a malicious peer to perform an information leakage attack on
the victim.

We evaluated the effectiveness of this attack by varying the proportion of ma-
licious stake in the system and calculating the probability of the adversary being
able to unmask the updates for various sizes of the noising committee. A mali-
cious peer can unmask an update if it controls all the noisers for a peer and has
atleast one verifier in the verification committee. Figure 6.10 shows the probability
of a privacy violation as the proportion of adversarial stake increases for noising
committee sizes of 3, 5 and 10 respectively.

When the number of noisers for an iteration is 3, an adversary needs at least
15% of stake to successfully unmask an SGD update. This trend continues when
5 noisers are used: over 30% of the stake must be malicious. When the number
of noisers is 10 (which has minimal additional overhead according to Figure 6.12),
privacy violations do not occur even with 50% of malicious stake. By using a
stake-based consistent hashing to select noising clients, Biscotti prevents adver-
saries from performing information leakage attacks on other clients unless their

proportion of stake in the system is overwhelmingly large.

6.4 Performance, scalability and fault tolerance

In this section, we evaluate the overhead of each stage in Biscotti and investigate
the effect on the overhead as the number of peers increase. In addition to this, we
also measure the effect on Biscotti’s performance as we scale the size of differ-
ent committees. We compare the performance of Biscotti on federated learning.
Finally, we see if churn has any effect on Biscotti’s convergence.

Performance cost break-down. In breaking down the overhead in Biscotti, we
deployed Biscotti over a varying number peers in training on MNIST. We cap-
tured the total amount of time spent in each of the major phases of our algorithm

in Figure 4.1: collecting the noise from each of the noising clients (steps (2) and
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Figure 6.11: Breakdown of time spent in different mechanisms in Biscotti
(Figure 4.1) in deployments with varying number of peers.

@), executing verification via Multi-KRUM and collecting the signatures (steps
(4) and (5)) and securely aggregating the SGD update (steps (6) and (7)). Fig-
ure 6.11 shows the breakdown of the average cost per iteration for each stage under
a deployment of 40, 60, 80 and 100 nodes over 3 runs. During this experiment, the
committee sizes were kept constant to the default values in Table 6.3.

The results show that the cost of each stage is almost constant as we vary the
number of peers in the system. Biscotti spends most of its time in the aggregation
phase since it requires the aggregators to collect secret shares of all the accepted
updates and share the aggregated shares with each other to generate a block. The
noising phase is the fastest since it only involves making a round trip to each of
the noisers while the verification stage involves collecting a predefined percent-
age (70%) of updates to run Multi-KRUM in a asynchronous manner from all the
nodes. The time per iteration also stays fairly constant as the number of nodes in
the system increase.

Scaling up committee sizes in Biscotti. We evaluate Biscotti’s performance as we
change the size of the noiser/verifier/aggregator sets. For this we deploy Biscotti
on Azure with the MNIST dataset with a fixed size of 100 peers, and only vary the

number of noisers needed for each SGD update, number of verifiers used for each
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Figure 6.12: The average amount of time taken per iteration with an increas-
ing number of noisers, verifiers, or aggregators.

verification committee, and the number of aggregators used in secure aggregation.
Each time one of these sizes was changed, the change was performed in isolation;
the rest of the committees used a set of 3. Figure 6.12 plots the average time taken
per iteration over 3 runs of the system.

The results show that increasing the number of noisers, verifiers and aggregator
sets increases the time per iteration. The iteration time increases slightly with
noisers because it requires contacting additional peers for the noise. Increasing
the aggregators leads to a larger overhead because the secret shares are shared
with more aggregators and recovering the aggregate requires coordination among
more peers. Lastly, a large number of verifiers results in frequent timeouts in the
mining stage. Verifiers wait for the first 70 updates and select 37 updates while
miners wait for shares from the first 35 updates before initiating the aggregate
recovery process. With an increased verifier set, the size of the intersection of
updates accepted by majority verifiers falls frequently below 35 because each of
them run Multi-KRUM on a different set of updates. Hence, the aggregators wait
until a timeout for 35 updates when the actual number of updates accepted during
the round is less. Since the timeout is a constant value of 90 seconds, the verifier

overhead does not increase significantly when increasing the verifier set from 10 to
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Figure 6.13: Comparing the time to convergence of Biscotti to a federated
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Figure 6.14: Comparing the iterations to convergence of Biscotti to a feder-
ated learning baseline.

26. However, this increased verifier overhead could be lowered by decreasing the
number of updates that aggregators wait for before starting the coordination.

Baseline performance
We execute Biscotti in a baseline deployment and compare it to the original
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Figure 6.15: The impact of churn on model performance.

federated learning baseline [32]. We run Biscotti with 5 noisers, 26 verifiers and
26 aggregators. As demonstrated earlier, these committee sizes provide a guarantee
of protecting against an adversary holding 30% stake from unmasking updates in
the noising (Section 6.3) and aggregation stages (Section 6.1). They also ensure
convergence under poisoning from an attack by 30% of the nodes. (Section 6.2)
The MNIST dataset [30] into 200 equal partitions, each of which was shared with
an honest peer on an Azure cluster of 20 VMs, with each VM hosting 10 peers.
These Biscotti/Federated Learning peers collaborated on training an MNIST soft-
max classifier, and after 100 iterations both models approached the global opti-
mum. To ensure a fair comparison, the number of updates included in the model
each round are kept the same. Federated Learning selects 35% nodes at random
out of 200 for every round and receives updates from them while Biscotti includes
the first 35% verified updates in the block. The convergence rate over time for
both systems is plotted in Figure 6.13 and the same convergence over the num-
ber of iterations is shown in Figure 6.14. In this deployment, Biscotti takes about
13.8 times longer than Federated Learning (20.8 minutes vs 266.7 minutes), yet
achieves similar model performance (92% accuracy) after 100 iterations.

Training with node churn. A key feature of Biscotti’s P2P design is that it is
resilient to node churn (node joins and failures). For example, the failure of any
Biscotti node does not block or prevent the system from converging. We evaluate
Biscotti’s resilience to peer churn by performing a Credit Card deployment with
100 peers, failing a peer at random at a specified rate. For each specified time
interval, a peer is chosen randomly and is killed. In the next time interval, a new
peer joins the network and is bootstrapped, maintaining a constant total number of

100 peers. Figure 6.15 shows the rate of convergence for varying failure rates of
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4, 2, and 1 peer(s) failing and joining per minute. When a verifier or an aggregator
fails, Biscotti defaults to the next iteration after a timeout, so this does not harm
convergence.

Even with churn Biscotti is able to make progress towards the global objective.
We found that Biscotti is resilient to churn rates up to 4 nodes per minute (1 node

joining and 1 node failing every 15 seconds).
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Chapter 7

Limitations

KRUM limitations. For KRUM to be effective against a large number of poison-
ers, it needs to observe a large number samples in each round. This may not always
be possible in a decentralized system where there is node churn. In particular, this
may compromise the system because adversaries may race to contribute a major-
ity of the samples. In addition to this, Multi-KRUM could also reject updates of
peers that have different data from the rest of the peers e.g only one peer has 1’s in
the system. We did not face this issue in our experiments because we partitioned
the data uniformly. However, Biscotti is compatible with other poisoning detec-
tion approaches and can integrate any poisoning detection mechanism which uses
SGD updates and does not require individual update histories. For example, in a
previous version of Biscotti we used RONI [8] to validate updates.

Deep Learning. We showed that Biscotti is able to train a softmax and logistic
regression model with 7,850 and 25 parameters respectively. But, Biscotti might
not scale to a large deep learning model with millions of parameters due to the
communication overhead. Strategies to reduce this might require learning updates
in a restricted parameter space or compressing model updates [29]. We leave the
training of deep learning models with Biscotti to future work.

Leakage from the aggregate model. Since there is no differential privacy added
to the updates present in the ledger, Biscotti is vulnerable to attacks that exploit
privacy leakage from the model itself [21, 45]. Apart from differential privacy,
these attacks can also be mitigated by adding proper regularization [33, 45] like
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dropout, or they may be irrelevant if a class does not represent an individual’s
training data.

Stake limitations. The stake that a client possesses plays a significant role in
determining the chance that a node is selected as a noiser/verifier/aggregator. Our
assumption is that a large stake-holder will not subvert the system because (1) they
accrue more stake by participating and (2) their stake is tied to a monetary reward
at the end of training. However, a malicious client could pose honest and accrue
stake for a pre-defined period of time and then turn malicious to subvert our system.
We leave the design of a robust stake mechanism that protects against such attacks

to future work.
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Chapter 8

Related Work

Biscotti’s novelty lies in its ability to simultaneously handle poisoning attacks and
preserve privacy in a P2P multi-party training context.

Securing ML. Similar to KRUM, AUROR [48] and ANTIDOTE [44] are alterna-
tive techniques to defend against poisoning that rely on anomaly detection. AU-
ROR has been mainly proposed for the model averaging use case and uses k-means
clustering on a subset of important features to detect anomalies. ANTIDOTE uses
a robust PCA detector to protect against attackers trying to evade anomaly-based
methods.

Other defenses like TRIM [26] and RONI [8] filter out poisoned data from a
centralized training set based on their impact on performance on the dataset. TRIM
trains a model to fit a subset of samples selected at random, and identifies a training
sample as an outlier if the error when fitting the model to the sample is higher than
a threshold. RONI trains a model with and without a data point and rejects it if it
degrades the performance of the classifier by a certain amount.

Finally, Baracaldo et al. [7] employ data provenance as a measure against poi-
soning attacks by tracking the history of the training data and removing information
from anomalous sources.

Poisoning attacks. Apart from label flipping attacks [25] we evaluated, gradient
ascent techniques [26, 37] are a popular way of generating poisoned samples one
sample at a time by solving a bi-level optimization problem. Backdoor attacks have

also been proposed to make the classifier misclassify an image if it contains certain
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pixels or a backdoor key. Defending against such attacks during training is a hard
and open problem in the literature.

Privacy attacks. Shokri et. al [50] demonstrated a membership inference attack
using shadow model training that learns if a victim’s data was used to train the
model. Follow up work [45] showed that it is quite easy to launch this attack in a
black-box setting. In addition, model inversion attacks [21] have been proposed to
invert class images from the final trained model. However, we assume that these
are only effective if a class represents a significant chunk of a person’s data e.g.,
facial recognition systems.

Additional security work in federated learning has required that public key in-

frastructure exists which validates the identity of users [12], but prior sybil work
has shown that relying on public key infrastructure for user validation is insuffi-
cient [52, 53].
Privacy-preserving ML. Cheng et al. recently proposed the use of TEEs and
privacy-preserving smart contracts to provide security and privacy to multi-party
ML tasks [16]. But, some TEEs have been found to be vulnerable [51]. Another
solution uses two party computation [36] and encrypts both the model parameters
and the training data when performing multi-party ML.

Differential privacy is often applied to multi-party ML systems to provide pri-
vacy [4, 22, 49]. However, its use introduces privacy-utility tradeoffs. Biscotti
uses differential privacy during update validation, but does not push noise into the

trained model, thus favouring utility.
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Chapter 9

Conclusion

The emergence of large scale multi-party ML workloads and distributed ledgers
for scalable consensus have produced two rapid and powerful trends. Biscotti’s
design lies at their confluence. To the best of our knowledge, this is the first system
to provide privacy-preserving peer-to-peer ML through a distributed ledger, while
simultaneously considering poisoning attacks. And, unlike prior work, Biscotti
does not rely on trusted execution environments or specialized hardware. In our
evaluation we demonstrated that Biscotti can coordinate a collaborative learning
process across 100 peers and produces a final model that is similar in utility to state
of the art federated learning alternatives. We also illustrated its ability to withstand
poisoning and information leakage attacks, and frequent failures and joining of
nodes (one node joining, one node leaving every 15 seconds).

Our Biscotti prototype is open source, runs on commodity hardware, and inter-

faces with PyTorch, a popular framework for machine learning.
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Appendix: Supporting Materials

A.1 Federated learning and distributed stochastic gradi-
ent descent

Given a set of training data, a model structure, and a proposed learning task, ML
algorithms frain an optimal set of parameters, resulting in a model that optimally
performs this task. In Biscotti, we assume stochastic gradient descent (SGD) [14]
as the optimization algorithm.

In federated learning [32], a shared model is updated through SGD. Each client
uses their local training data and their latest snapshot of the shared model state to
compute the optimal update on the model parameters. The model is then updated
and clients update their local snapshot of the shared model before performing a
local iteration again. The model parameters w are updated at each iteration i as

follows:

1
Wil =Wy — N (Aw; + Z VI(wr,xi,i)) (la)
b (xi,yi)EB:

where 1), represents a degrading learning rate, A is a regularization parameter that
prevents over-fitting, B; represents a gradient batch of local training data examples
(xi,y;) of size b and VI represents the gradient of the loss function.

SGD is a general learning algorithm that can be used to train a variety of mod-
els, including neural networks [14]. A typical heuristic involves running SGD for
a fixed number of iterations or halting when the magnitude of the gradient falls
below a threshold. When this occurs, model training is considered complete and

the shared model state wy is returned as the optimal model w*.
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In a multi-party ML setting federated learning assumes that clients possess
training data that is not identically and independently distributed (non-IID) across
clients. In other words, each client possesses a subset of the global dataset that
contains specific properties distinct from the global distribution.

When performing SGD across clients with partitioned data sources, we redefine

the SGD update A;,;w, at iteration ¢ of each client i to be:

Ai,th:ATlthﬁL% Z Vl(wg,x,y) (lb)

(xvy) €Bi;

where the distinction is that the gradient is computed on a global model wg, and
the gradient steps are taken using a local batch B;; of data from client i. When all
SGD updates are collected, they are averaged and applied to the model, resulting
in a new global model. The process then proceeds iteratively until convergence.
To increase privacy guarantees in federated learning, secure aggregation proto-
cols have been added to the central server [12] such that no individual client’s SGD
update is directly observable by server or other clients. However, this relies on a
centralized service to perform such an aggregation and does not provide security

against adversarial attacks on ML.

A.2 Differentially private stochastic gradient descent

We use the concept of (&, ) differential privacy as explained in Abadi et al. [4].
Each SGD step becomes (€,0) differentially private if we sample normally dis-
tributed noise as shown in Algorithm 1. Each client commits noise to the genesis
block for all expected iterations 7. We also requires that the norm of the gradients
be clipped to have a maximum norm of 1 so that the noise does not completely
obfuscate the gradient.

This precommited noise is designed such that a neutral third party aggregates
a client update A;;w, from Equation (1b) and precommitted noise {; from Algo-
rithm 1 without any additional information. The noise is generated without any
prior knowledge of the SGD update it will be applied to while retaining the com-

putation and guarantees provided by prior work. The noisy SGD update Ewg
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Data: Batch size b, Learning rate 1), Privacy parameters (€, §), Expected
update dimension d
Result: Precommited noise for an SGD update & VT
for iterationt € [1..T] do
// Sample noise of length d for each expected
sample in batch
for Example i € [1..b] do

Sample noise {; = .#'(0,0°1) where o = |/2log'2 /e
end
G="1y.¢

Commit &, to the genesis block at column ¢.

end
Algorithm 1: Precommiting differentially Private noise for SGD, taken from
Abadi et al. [4].

follows from aggregation:

Ai’twg = A,'./;Wg + C[

A.3 Polynomial commitments and verifiable secret shar-
ing

Polynomial Commitments [27] is a scheme that allows commitments to a secret
polynomial for verifiable secret sharing [47]. This allows the committer to dis-
tribute secret shares for a secret polynomial among a set of nodes along with wit-
nesses that prove in zero-knowledge that each secret share belongs to the commit-
ted polynomial. The polynomial commitment is constructed as follows:

Given two groups G| and G, with generators g; and g, of prime order p such
that there exists an asymmetric bilinear pairing e : G; X G, — Gp for which the
t-SDH assumption holds, a commitment public key (PK) is generated such that
PK = {g,g“,g(“)z,...,g(“)t} € th“ where « is the secret key. The committer

can create a commitment to a polynomial @ (x) = tj:O () jxj of degree t using the
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commitment PK such that:

deg(9) ;
COMM(PK,¢(x)) = ] (s*)%

j=0

Given a polynomial ¢ (x) and a commitment COMM (¢ (x)), it is trivial to verify
whether the commitment was generated using the given polynomial or not. More-
over, we can multiply two commitments to obtain a commitment to the sum of the

polynomials in the commitments by leveraging their homomorphic property:

COMM (91 (x) + ¢2(x)) = COMM (¢1(x)) x COMM (¢(x))

Once the committer has has generated COMM (¢ (x)), it can carry out a (n,?) -
secret sharing scheme to share the polynomial among a set of n participants in such
a way that in the recovery phase a subset of at least ¢ participants can compute the
secret polynomial. All secret shares (i, ¢ (i)) shared with the participants are evalu-
ations of the polynomial at a unique point i and are accompanied by a commitment
to a witness polynomial COMM (y;(x)) such that y;(x) = w By leveraging
the divisibility property of the two polynomials {¢(x), y(x)} and the bilinear pair-
ing function e, it is trivial to verify that the secret share comes from the committed
polynomial [27]. This is carried out by evaluating whether the following equality
holds:

o
? (i
(COMM(9i(x)),2) = e(COMM(Y(), " F)e(g1,g2)""
If the above holds, then the share is accepted. Otherwise, the share is rejected.
This commitment scheme is unconditionally binding and computationally hid-
ing given the Discrete Logarithm assumption holds [27]. This scheme can be eas-
ily extended to provide unconditional hiding by combining it with another scheme

called Pedersen commitments [42] however we do not implement it.
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A.4 Verifiable random functions

A verifiable random function VRFy(x) is a function that takes in as input a random
seed (x) and a secret key (sk). Subsequently, it outputs two values: a hash and a
proof. The hash output is a hashlen-bit-long value that is uniquely determined by
the sk therefore is unique to a peer. The proof allows anyone with the peer’s public
key (pk) to check that the hash has indeed been generated by a client who holds
the private key. Therefore, it provides each client in the system to deterministically
produce a hash that cannot be faked and is unique to the client for that seed value.

In Biscotti, a VRF is used to select a unique committees that provides noise to
a peer for protecting its update. A peer uses as inputs to the VRF its own secret
key and the SHA-256 hash of the previous block. To select a committee, the hash
output of the VRF is input to a consistent hashing procedure. The hash output from
the VRF is mapped to a hash ring where each peer is assigned a space proportional
to their stake. (See Figure 4.3). The peer in whose portion of the ring the hash lies
is selected as part of the committee. The process is repeated until the peer gets a

committee of the right size.

A.5 Information leakage attacks

When doing collaborative learning, each client computes their gradients by back-
propagating the loss through the entire network from the last layer to the first layer.
The gradient for a layer is computed by using the layer’s features and the error
from the preceding layer. If the layers are sequential and fully connected, then the

output for layer /;, 1 is computed as follows:

hip1 = Wi hl

where W, is the weight matrix.

Hence, the gradient of the error with respect to W; is computed as follows:
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dE _ dE

— = h
aw, ~ dhyy
Note that the gradient of the weights j—vﬁ is computed by using the inner prod-

ucts from the layer above and also the features of that particular layer. Therefore,
the values of the gradients of the first layer will be proportional to the input fea-
tures. By exploiting this property, observation of gradient updates can be used to
infer feature values, which are in turn based on the participants private training
data.

In the information leakage attack that we launch on Biscotti, we select the
values of the gradient in the first layer that correspond to a certain class, rescale the

values to lie between (0,255) and visualize the resulting image.

A.6 Proof of stake

Blockchain based systems need a mechanism to prevent any arbitrary peer from
proposing blocks and extending the chain at the same time. Otherwise, anyone
can extend the blockchain and nothing would stop the blockchain from developing
forks at a rate equal to the number of users and there will be no consensus eventu-
ally. A rate limiting solution is needed to prevent the ledger from being extended
infinitely by all the peers. Proof of Work (POW) and Proof of Stake (POS) are two
popular solutions to this problem.

Proof of Work uses a puzzle to solve the rate limiting problem but it has its
limitations. Peers who want to propose the next block have to solve a hard cryp-
tographic puzzle that is trivial to verify by other peers. The peer that solves the
puzzle first gets to propose the next block. The puzzle acts as a rate limiter because
by creating new identities (Sybils) peers do not gain any advantage in being the
next proposer. In addition to preventing Sybils, it acts as a probabilistic back off
mechanism that tries to limit forks in the system. It does not completely eliminate
forks and users have to wait for a certain amount of time (6 blocks in Bitcoin) be-
fore their transaction is confirmed as accepted. This leads to long wait times (60

minutes for Bitcoin) for transactions to be accepted. Furthermore, it is also energy
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consuming since it takes a lot of computational power to solve the puzzles. Despite
its limitations of long wait times and high energy consumption, POW is a widely
used solution.

To mitigate the problems of Proof of Work, Proof of Stake has been recently
proposed as an alternate. POS based systems assign the responsibility of proposing
blocks each round to specific peers. The probability that a peer will be selected
to propose is proportional to the value (stake) that they have in the system. In
cryptocurrencies, the stake of a peer is equal to the amount of money that they have
in the system. Based on the distribution of stake at that particular time, a predefined
algorithm is used to choose a peer/subset of peers that is responsible for proposing
the next block. The algorithm ensures that that at any time a group of malicious
nodes holding a certain amount of stake in the system cannot act maliciously and
take over the system. All other users observe the protocol messages, which allows
them to learn the agreed-upon block.

For cryptocurrencies, Algorand [23] is a popular proposal for a proof of stake
based system. In Algorand, each peer is assigned a priority for two particular roles:
block proposal and block selection. To determine their priority for a particular role,
each peer runs a verifiable random function (VRF’s) (see A.4) using their private
key, the role (selection/proposal) and a random seed which is public information
on the blockchain. The VRF outputs a pseudo-random hash value that is passed by
the user through cryptographic sortition to determine their influence in proposing
or selecting a block for that particular round. At a high level, the cryptographic
sortition is a random algorithm that assigns each user a priority such that the pri-
ority assigned is proportional to the user’s account balance. If the user’s priority is
above a threshold, they are selected for that particular role. Subsequently, all users
assigned a proposal role, propose a block based on the user’s priority. To reach
consensus on a single block proposal, peers assigned the selection role agree on
one proposal for the next block using a multi-step Byzantine Agreement protocol.
In each step, the peers responsible for that step vote for a proposal until in some
step enough users have agreed on a proposal. This proposal becomes the next block
in the chain.

Similar to Algorand, Biscotti uses verifiable random functions to assign roles

to peers in the system. However, instead of using the cryptographic sortition al-
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gorithm, Biscotti uses a consistent hashing protocol described in Section 4.3 to
select a peer for a role such that the probability of getting selected for a role is
proportional to the peer’s stake. In Biscotti, we define stake to be the reputation

that a peer acquires over the training process by contributing updates.
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