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Abstract

Distributed systems are notoriously difficult to get right: the inherently asynchronous

nature of their execution gives rise to a fundamentally non-deterministic system.

Previous work has shown that the use of formal methods to reason about distributed

systems is a promising area of research. In particular, model-checking allows de-

velopers to verify system models against a correctness specification by performing

an exhaustive search over the system’s possible executions. However, the transi-

tion from a trusted specification to a valid implementation is a manual, error-prone

process that could introduce subtle, hard to find bugs.

In this work, we aim to bridge this gap by automatically translating a speci-

fication into an implementation that refines it. Specifically, we leverage the clear

separation between application-specific logic and abstract components in the Mod-

ular PlusCal language to define an interface that concrete implementations must

follow in order to implement the abstractions. Our evaluation shows that this ap-

proach is able to handle complex specifications and generate systems that preserve

the correctness properties verified via model-checking.
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Lay Summary

Distributed systems are at the heart of many online services that people use every

day, such as email, file storage, and messaging. Despite this pervasiveness, dis-

tributed systems are complex to build and often fail in unexpected ways. These

failures may lead to service outages and even data loss, impacting all users of the

service. There has been increasing interest in the application of formal methods

as an alternative to deal with the complexity of a distributed system. In particular,

model checking is a technique that allows system designers to verify the correct-

ness of a model by performing exhaustive testing. However, the transition from the

model to a correct implementation is manual and can introduce bugs, even if the

model is believed to be correct. In this work, we propose a technique to bridge this

gap by automatically translating from a trusted model to a correct implementation

of a distributed system.
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Chapter 1

Introduction

Engineering performant and correct distributed systems is a hard task, despite their

ubiquitous presence in systems behind popular software services offered by com-

panies like Google, Amazon, Netflix, and many others. One of the main reasons

that makes writing distributed systems difficult is the inherently concurrent and

asynchronous environment in which they are deployed: processes execute on dif-

ferent machines and independently from one another, networks connecting these

processes may fail, drop, or reorder packets; and, individual nodes may crash at

any time. This dynamic setting gives rise to a fundamentally non-deterministic

system, in which it is not possible to predict the exact sequence of events for a

given input. As a consequence, distributed systems running in production today

often have critical bugs that lead to degraded performance [11], service outage

[3, 15] and even data loss [12].

Due to the asynchronous nature of distributed systems, protocol designers face

the challenging task of reasoning about concurrent execution. Even when com-

munication protocols are formally specified, they may make certain assumptions

about the execution environment that do not hold in practical systems. This gap

forces engineers to fill in the missing pieces and potentially introduce bugs in the

process [6]. Practical distributed systems resort to adding error handling code in

an ad-hoc manner, making it more difficult to correspond the implementation with

the original protocol description; this has the undesirable consequence of making

protocol changes a significantly harder and more error-prone process.
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These difficulties have motivated the research community to look for and de-

vise a number of solutions. In particular, the use of formal verification methods

in the context of distributed systems is an area of active research. For instance,

model-checking is a technique that can be used to exhaustively explore a distributed

system’s model in order to find violations of correctness properties of the system.

The main advantage of model checking is its ability to uncover bugs hiding in cor-

ner cases of a protocol or implementation, testing scenarios that manually written

tests would generally not exercise [20]. In addition, model checkers are also able

to provide a trace when a property is violated, making it easier for the developer to

understand how the system reached an invalid state.

Many model checking languages and tools exist. TLA+ [26] is a declarative

specification language that allows developers to formalize the behavior of their

systems as a collection of steps and transitions between them. PlusCal [27] is a

specification language built on top of TLA+ that makes it easier to specify systems

in a procedural style: more specifically, users can specify how different processes

in a system interact using familiar control flow constructs such as if statements

and while-loops. Protocol designers using TLA+ or PlusCal can write properties

about their system and verify that they hold for every possible execution inter-

leaving by using the TLC model checker. This gives them more confidence about

the correctness of the protocol. Both TLA+ and PlusCal, however, only describe

a system abstractly: implementation details are intentionally not included in the

specification.

Despite being a useful tool to find subtle bugs in distributed systems, model

checking suffers from a major drawback: state-space explosion. Complex sys-

tems generally have very large state spaces that grow exponentially with respect

to certain parameters of the model (for example, the number of replicas in a clus-

ter). This is even more pronounced if a concrete implementation, rather than an

abstract specification, is being explored since it has more states, many of which are

irrelevant to the high level properties of the distributed protocol the developer is in-

terested in. By checking only a model, the protocol designer is able to leave certain

implementation details abstract, focusing exploration on protocol-specific behav-

ior and reducing the state space. The obvious downside of this approach is that the

process of writing an implementation of the protocol model that was checked is a

2



manual, error-prone process and bugs could be introduced during translation.

In this work, we aim to bridge the gap between the design and verification of

a distributed protocol specification and the construction of a correct implementa-

tion for the model. More specifically, we use a variant of PlusCal called Modular

PlusCal (MPCal for short) to mechanize the translation from a verified model to

an implementation that exhibits the same behavior. In other words, the imple-

mentation is a refinement of the model. This is achieved by exploiting Modular

PlusCal’s clear separation between the specification of a system’s behavior and the

implementation details that are modeled abstractly. By providing developers with

concrete implementations of abstract components typically found in a distributed

system specification (for instance, network models, file systems, time, etc), we are

able to generate implementations of model-checked specifications that have perfor-

mance comparable to handwritten systems. Figure 1.1 depicts the different stages

of the process in this workflow.

In summary, this thesis makes the following contributions:

• The definition of a general application programming interface (API) that

gives users the ability to create their own abstractions in Modular PlusCal

and define how they match to concrete implementations.

• A compiler from Modular PlusCal specifications to implementations in the

Go programming language, and a distributed execution environment that

includes concrete implementations for common abstractions needed in dis-

tributed applications and protocols. This work was developed as part of the

PGo [39] compiler1.

• An evaluation of distributed systems generated from specifications and how

they compare against handwritten systems in terms of execution time and

source code complexity.

1PGo is open source and is available at https://github.com/ubc-nss/pgo.
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Figure 1.1: PGo workflow proposed in this thesis. Programmers specify their
distributed protocols or applications using the Modular PlusCal lan-
guage. PGo translates that specification into PlusCal, allowing devel-
opers to compile it to TLA+ and model-check it against relevant system
properties. Once the specification is believed to correctly describe the
system, PGo can automatically generate an implementation that exhibits
the same behavior as the abstractly defined specification. The developer
provides concrete implementations for the components that were left
abstract in the specification and is able to run the system in a distributed
environment.
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Chapter 2

Background

This work builds on top of multiple languages, tools and concepts previously de-

signed and built to solve specific problems. In this chapter, we briefly outline the

most important ideas this work is based on. Section 2.1 describes model-checking,

a technique used to verify whether a model satisfies a certain correctness specifica-

tion; sections 2.2 and 2.3, respectively, present an overview of TLA+ and PlusCal,

two specification languages that can be used to model arbitrary systems; section

2.4 describes Modular PlusCal, a variant of PlusCal used in this work. Finally, sec-

tion 2.5 introduces PGo, a compiler from specifications to implementations. The

work described in this thesis is part of the PGo compiler.

2.1 Model Checking
Model checking is a technique to algorithmically determine whether a model of a

system satisfies a certain correctness specification. Models are typically expressed

as a transition relation that defines the states that a system can be in, as well as how

the transitions between them may occur. Model checking performs an exhaustive

search over the state space of a system in order to determine whether the correct-

ness specification is satisfied on every possible execution. When an execution is

found to violate a correctness property, model checking has the ability to produce a

counterexample, in the form of an execution trace, that informs the system designer

how the system reached an invalid state.
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Correctness specifications are written as properties about the system. In order

to prove correctness of the model with respect to these properties, it is common

to divide them into two categories: safety and liveness properties [23]. Informally

speaking, safety asserts that bad states are not reachable from the initial state; live-

ness properties express that the system must eventually do something good. This

categorization is useful because different techniques are used to prove each type of

property, and previous work has shown that every property can be constructed as

a conjunction of safety and liveness properties [2]. Figure 2.1 lists some examples

of safety and liveness properties in the context of distributed systems.

A note on wording: it is common to refer to a model and correctness properties

of a system as its “specification”. Unless otherwise stated, this is the interpretation

used in this thesis when referring to a specification of a system.

∀ j∈ JobSet : ( j /∈DOMAIN(AssignedJobs))∨(∃n∈NodeSet : AssignedJobs( j)= n)

(a) Safety property: every job is either not scheduled yet, or assigned to a valid node in the
cluster. This property must hold for every reachable state in the system.

♦(∀ j ∈ JobSet : ∃n ∈ NodeSet : AssignedJobs( j) = n)

(b) Liveness property: eventually (♦), all jobs must be assigned to a valid node in the
cluster. Note that satisfying the safety property above does not guarantee this fact, since a
scheduler that never schedules any job trivially satisfies the safety requirement.

Figure 2.1: Examples of safety and liveness properties in the context of dis-
tributed job scheduling. In this model, AssignedJobs is a map from
job to node identifiers; and JobSet and NodeSet represent the set of
jobs to be scheduled and nodes in the cluster, respectively.

The biggest issue with model checking as a correctness verification technique

is state-space explosion. Complex systems have state space that grows exponen-

tially with respect to data-structure sizes and parameters of the model. This is

exacerbated when execution is concurrent (such as in distributed systems): model

checking needs to explore every possible execution interleaving, further increasing

the state space.

A complementary approach to traditional model checking is bounded model
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checking (BMC) [5]. In this approach, the transition relation is unfolded a fixed

number of times k, conjoined into a single formula and the search for a violating

trace is given to a satisfiability (SAT) solver. While this approach is useful for

finding shallow bugs, it is generally incomplete.

Many techniques exist that aim to alleviate the problem of state-space explo-

sion without bounding the search depth. Partial-order reduction [10, 13] groups

transitions into equivalence classes and avoids exploring interleavings that do not

matter to prove correctness. Abstraction can also significantly reduce the state

space by treating certain aspects of a system abstract: instead of exploring all states

associated with the steps required to perform a certain task, abstraction allows the

system designer to express the same behavior as an abstract component. TLA+

is one example of a specification language that allows systems to be specified at

arbitrary levels of abstraction. This work aims to match the use of abstractions

in model checking with concrete implementations that exhibit the same behavior,

specifically in the context of distributed systems.

2.2 TLA+

TLA+ [26] is a declarative specification language designed by Leslie Lamport. Its

main goal is to allow the specification of practical systems on top of a simple, yet

rigorous mathematical foundation. TLA+ is based on Lamport’s Temporal Logic

of Actions (TLA) [25], a variant of Pnueli’s Temporal Logic [35] and uses first-

order logic and set theory to formalize mathematics.

Typical specifications in TLA+ consist of a definition of the system’s initial

state as well as the transition relation that describes the possible ways that the sys-

tem can make progress. The transitions between states define atomic steps in the

system and a sequence of them form a behavior of the system. TLA+ was specif-

ically designed to allow the description of what the system does in all its possible

behaviors, as well as the verification of its functional properties. Other kinds of

properties, such as average runtime performance or probabilistic guarantees, are

not supported by the underlying formalism.

TLA+ has seen greater adoption in an industrial setting than most distributed

system verification tools [9, 34]. Two important factors contribute to this success:
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its effectiveness at describing concurrent and asynchronous systems, very impor-

tant for the specification of practical distributed systems; and the development of

TLC, a model checker for the TLA+ language that is capable of verifying both

safety and liveness properties.

Figure 2.2 uses the distributed job scheduler example from Figure 2.1 and il-

lustrates how distributed systems can be modeled using TLA+ and how properties

about the system are translated from the mathematical notation used previously.

Figure 2.2: Definition of the distributed job scheduler example in TLA+. To
make the example more interesting, the scheduler here is modeled to
load jobs from some source and schedule them concurrently (expressed
as a disjunction in the definition of Next). The safety and liveness
properties of Figure 2.1 are redefined here using TLA+ syntax.

One advantage of TLA+ is that it allows the description of some behavior both

in terms of what a component is supposed to do as well as how that task is ac-

8



complished. This powerful notion of abstraction (or refinement) enables a TLA+

specification to describe a system at different levels of detail and is at the core of

the formalism.

2.3 PlusCal
PlusCal [28] is another specification language designed by Leslie Lamport. It is an

algorithm description language that enables correctness verification. PlusCal can

be compiled to TLA+, has precise semantics and, due to its integration with TLA+,

allows the designer to specify a system at different levels of abstraction.

PlusCal changes the way that specifications are written from a declarative to

a procedural style in order to make it easier for engineers without a strong back-

ground in mathematics or formal verification to start specifying their systems with-

out a lot of training. Listing 2.1 uses PlusCal to model the previous job scheduler

example.

1 (* same constants as defined in Figure 2.2 *)

2
3 --algorithm JobScheduler {

4 variables AssignedJobs = [job \in JobSet |-> Unassigned],

5 LoadedJobs = << >>;

6
7 macro Assign(job) {

8 (* assigns a job to a node *)

9 with (node \in NodeSet) { AssignedJobs[job] := node };

10 }

11
12 macro LoadJob() {

13 (* loads a new job *)

14 }

15
16 process (Scheduler = 0) {

17 schedule:

18 either { LoadJob() }

19 or { with (job \in LoadedJobs) { Assign(job) } };

20 }

21 }

Listing 2.1: Job scheduler in the PlusCal language.

PlusCal requires the user to structure a system being specified around labels

(such as schedule on Listing 2.1, line 17). The statements within a label are

9



the atomic steps in the model. Just like in TLA+, there is a tradeoff to be made

with respect to the use of labels in a model: the more concurrency (in the form

of interleavings) is allowed in the model, the closer it will be to a concrete envi-

ronment; however, this comes at the cost of exponential growth of the state space,

substantially increasing the model-checking time. It is up to the system designer

to decide how granular these atomic steps should be to meaningfully capture a

system’s behavior.

2.4 Modular PlusCal
Modular PlusCal is a variant of the PlusCal language developed as part of the PGo

project (see section 2.5). The language inherits PlusCal’s syntax, but adds a couple

of constructs to enable the separation between the description of the system and its

abstract components. Modular PlusCal can be compiled to PlusCal, which in turn

can be translated to TLA+ and model checked against system-specific properties.

Modular PlusCal introduces three important concepts:

Archetypes define the components of the system being specified. They are iso-

lated from one another and can only interact with the outside environment

(for instance, other archetypes) by making use of parameters passed to them.

Since these parameters typically represent the execution environment, they

are called resources in Modular PlusCal.

Mapping macros allow the system designer to specify how the parameters passed

to archetypes are abstractly modeled. They are expanded when the specifi-

cation is compiled to PlusCal.

Instances specify how archetypes are mapped to PlusCal processes for model-

checking purposes. Archetypes are given abstractions for every parameter

declared in its definition, as well as which mapping macros should be ap-

plied, if any.

In PlusCal, algorithm variables have global scope: every process in the system

can read and update their values; this is, in fact, the only way to express communi-

cation across two different PlusCal processes. Modular PlusCal, however, takes a

10



1 --mpcal JobScheduler {
2 mapping macro FIFOChannel {
3 read {
4 await Len($variable) > 0;
5 with (msg = Head($variable)) {
6 $variable := Tail($variable);
7 yield msg;
8 };
9 }

10
11 write {
12 await Len($variable) < BUFFER_SIZE;
13 yield Append($variable, $value);
14 }
15 }
16
17 archetype JobScheduler(ref connections)
18 variables j, targetNode;
19 {
20 schedule:
21 (* schedules a job ’j’ to a ’targetNode’ *)
22 sendJob:
23 connections[targetNode] := j;
24 }
25
26 variables AssignedJobs = [job \in JobSet |-> Unassigned],
27 (* incoming messages for scheduler: initially, no messages *)
28 network = [job \in NodeSet |-> << >>];
29
30 (* create an instance of the JobScheduler archetype with ID 0 *)
31 process (Scheduler = 0) == instance JobScheduler(network)
32 mapping network[_] via FIFOChannel;
33 }

Listing 2.2: Sending a job to an assigned node in Modular PlusCal.

different approach: archetypes do not have access to global state and can only man-

ifest externally visible changes by interacting with the parameters they are passed.

This separation makes it easier to use different communication abstractions without

significantly changing the system’s logic.

Listing 2.2 illustrates the concepts introduced in this section by having our job

schedulers communicate with one another over a network that is abstractly mod-

eled as a first-in, first-out (FIFO) sequence of messages (FIFOChannel mapping

macro, lines 2-15).

The specification in Listing 2.2 also demonstrates how parameters passed to

archetypes can be mapped as functions (network[ ] syntax on line 32). This
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distinction between archetype resources that are mapped as functions and those

that are not becomes relevant in the code generation process, as discussed in section

3.2.1.

Together, archetypes, mapping macros and instances enable the complete sep-

aration between the description of system behavior and implementation-specific

components that are intentionally left abstract in model checking. These primitives

also encourage a more modular specification construction by allowing abstractions

to be shared and reused across models. In this work, we leverage the clear separa-

tion between the system and its execution environment to generate efficient imple-

mentations of distributed systems specified in Modular PlusCal.

For a more comprehensive description of Modular PlusCal, consult the lan-

guage manual1.

2.5 PGo
PGo [39] is a source-to-source compiler from PlusCal specifications to Go imple-

mentations. It was developed with the same goal as this work: automatically gen-

erating an implementation for a model-checked specification. However, PGo was

initially focused only on concurrent systems and did not support the generation of

distributed systems.

While the idea of using of PlusCal to generate implementations of distributed

systems sounds promising, it presents a number of challenges in practice. First,

PlusCal requires that processes communicate by making updates to globally visible

data structures. In order to maintain PlusCal semantics, a concrete implementation

would need to provide the same globally accessible, distributed data structures, in-

curring a prohibitive performance penalty. In addition, system designers typically

wish to leave certain implementation-specific details abstract. For instance, it is

common to model whether a certain operation fails by using the either keyword

(introducing a non-deterministic choice). From the compiler’s perspective, there is

no way to find out the real component being abstracted away. The consequence of

this mismatch is that the developer is then required to manually edit the generated

source code to provide a concrete implementation for components that were left

1https://github.com/UBC-NSS/pgo/blob/v0.1.4/manual.pdf
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abstract in the specification. This process is error-prone and is precisely what PGo

proposes to reduce (or eliminate).

This work is part of the PGo compiler and adds support to the compilation of

specifications written in Modular PlusCal to Go implementations, focused on the

challenges of compiling distributed systems.
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Chapter 3

Compiling Modular PlusCal
Specifications

This chapter describes the challenges faced and techniques used in the process of

compiling distributed systems specified in Modular PlusCal into correct implemen-

tations of the model in the Go programming language. Section 3.1 introduces what

this process means by describing how valid behaviors of a system specified us-

ing Modular PlusCal are derived by the model checker; section 3.2 continues the

discussion by detailing the strategy used in this work to maintain the same execu-

tion semantics in the compiled implementation in Go. Section 3.3 describes how

archetypes can be seen as the API that can be used to interact with the system being

specified. Section 3.4 discusses the role of resources in the compilation process:

how they conform to a well-defined API, and challenges faced when resources are

mapped as functions. Section 3.5 introduces a common pattern in modeling long

running processes in PlusCal, and how it can be accommodated in the design pro-

posed in this work. Finally, section 3.6 discusses how failures can be dealt with if

the specification does not account for them.

3.1 Modular PlusCal Execution Semantics
Verifying whether a model described in Modular PlusCal satisfies a set of user-

defined correctness properties requires it to be model-checked. This process in-
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volves compiling the specification to PlusCal and translating that output to TLA+,

which is the language being model-checked by TLC (see diagram in Figure 1.1).

The algorithm used compute all behaviors expressed in a model (documented in

[26]) is, therefore, important to this work: in order to consider the generated im-

plementation correct with respect to the specification, we need to ensure that all

executions are possible behaviors defined by the specification.

To motivate the discussion, consider the specification in Listing 3.1. It de-

scribes how a producer adds jobs to a shared queue and consumers read jobs from

the queue and process them somehow. Since archetypes can only make externally

visible changes by performing operations on parameters passed to them, the queue

is passed to both the Producer and Consumer archetypes.

Modular PlusCal is an extension of PlusCal and inherits the same execution

semantics [27]. In summary, behaviors of a specification are derived as follows:

• Labels represent atomic steps (or actions) in the specification. The model

checker will only perform one atomic step at a time when exploring the state

space. Execution of an action consists of the evaluation of all statements

from that label to the next. Modular PlusCal enforces the same labeling rules

defined by PlusCal, which are documented in the language manual [29].

• For an action to be scheduled (and become an event in the behavior being

explored), it needs to be enabled. One scenario where a step is not enabled is

if it contains an await statement with a predicate that evaluates to FALSE.

For example, in Listing 3.1, the operations that the consumer performs on

the queue are defined by the AbstractQueue mapping macro (lines 40-

41). Since the doWork action (line 25) reads a job from the queue (line 26),

it will not be enabled if the queue is empty (line 4).

• All PlusCal processes run “concurrently”. This means that the model checker

will explore every possible interleaving of the atomic steps (labels) defined

in every process. In the context of Modular PlusCal, this implies that every

instance created in the model executes concurrently.
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1 --mpcal Queue {

2 mapping macro AbstractQueue {

3 read {

4 await Len($variable) > 0;

5 with (job = Head($variable)) {

6 $variable := Tail($variable);

7 yield job;

8 }

9 }

10
11 write {

12 await Len($variable) < QUEUE_SIZE;

13 yield Append($variable, $value);

14 }

15 }

16
17 mapping macro AbstractJob {

18 read { yield 0; }

19 write { yield $value }

20 }

21
22 archetype Consumer(queue)

23 variable job;

24 {

25 doWork:

26 job := queue;

27 (* do some work with ’job’ *)

28 }

29
30 archetype Producer(ref queue, jobs) {

31 enqueue:

32 while (TRUE) {

33 queue := jobs;

34 }

35 }

36
37 variable q = << >>,

38 job_stream;

39
40 process (ConsumerP = 0) == instance Consumer(q)

41 mapping q via AbstractQueue;

42
43 process (ProducerP = 1) == instance Producer(ref q, job_stream)

44 mapping q via AbstractQueue

45 mapping job_stream via AbstractJob;

46 }

Listing 3.1: A queue specification in Modular PlusCal
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3.2 Preserving Execution Semantics
From the rules outlined in section 3.1, we can conclude that a naı̈ve but correct

implementation of the system could rely on a runtime scheduler to decide the order

in which actions in the Modular PlusCal specification execute. This, however,

comes at a prohibitive performance cost, especially in the context of distributed

systems: no concurrency is allowed across different archetypes, even if they are

deployed separately and perform local computation that is not externally visible.

To allow concurrent execution of atomic steps defined in the Modular PlusCal

specification, we let the resources dictate the safety of concurrent execution. This

separates the discussion into two kinds of actions:

Labels that do not use any resource. Since resources are the only way an archetype

can interact with its environment, an action that does not make use of any

resource performs only local computation and is, therefore, safe to run con-

currently with other atomic steps.

Labels that use one or more resources. These are labels that potentially interact

with the environment. To ensure that execution semantics are preserved, the

implementation generated by PGo first acquires access to the resources used

in the label before the statements in the label are evaluated. An archetype

resource that requires exclusive access, then, can make sure that other pro-

cesses attempting to use the same resource will block until the resource be-

comes available again. We further refine this case by analyzing whether the

resource is being used in read-only mode, a property that can be statically

determined from the Modular PlusCal specification.

Resource acquisition has semantics that are specific to the environment they

represent: for instance, a resource that encapsulates shared state may use locks to

ensure that access is exclusive. Resources are acquired at the start of every label.

We analyze the specification and determine which resources are used in each ac-

tion, as well as the permissions necessary (read-only or read-write). The resulting

implementation, then, first acquires all resources that are used in the atomic step,

performs the operations defined in it, and releases the resources. However, this

process is unsafe: suppose two actions, A1 and A2, use resources r1 and r2, which
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require exclusive access. Also, suppose that concurrent execution of A1 and A2

leads to the following sequence of events:

• A1 acquires exclusive access to r1.

• A2 acquires exclusive access to r2.

• A1 attempts to acquire exclusive access to r2; it blocks because A2 already

has access to it.

• A2 attempts to acquire exclusive access to r1; it blocks because A1 already

has access to it.

In other words, acquiring all resources at the start of an action can lead to

deadlocks. For this process to be safe, resources need to be acquired in a consistent

order: if r1 and r2 are used in two different actions, they need to be acquired

always as either 〈r1,r2〉 or 〈r2,r1〉. This is ensured by enforcing that concrete

implementations of archetype resources are comparable to one another.

While we do not provide a proof that the concurrent execution model presented

here actually preserves the execution semantics of Modular PlusCal and the TLC

model checker, we sketch an informal reduction [32] argument, as has been done

in previous work [17]. Consider two actions running concurrently in an implemen-

tation of a Modular PlusCal specification. There are three cases to consider:

1. One of the labels does not use resources. This case is always safe to be

executed concurrently. Since local computation is not externally visible, we

argue that concurrent execution is equivalent to an execution where all of the

statements involved in the local computation step happen before (or after) the

other action’s statements. Both event orderings should have been explored

by TLC and are, therefore, possible behaviors of the system.

2. The labels use disjoint sets of resources. This case is always safe to be

executed concurrently. Since the actions interact with disjoint parts of the

environment (represented by the resources they use), concurrent execution

is equivalent to an execution where all statements in one label are evaluated

before (or after) the statements in the other. As with the previous scenario,

the model checker should have explored both possibilities.
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3. The labels use overlapping sets of resources. This case is not always safe to

be executed concurrently. However, with the strategy described above where

resources are first acquired before they are used, execution will run one of

the actions to completion first, and only then execute the statements in the

other; this sequential execution is similar to the execution model used by

TLC.

3.2.1 Resources Mapped as Functions

Archetype resources in Modular PlusCal can be mapped as functions (see section

2.4 for an example). If a resource r is mapped as a function, it will only be ex-

panded (according to the abstraction defined in the mapping macro) if it is used as

a function (i.e., r[expr]). This is useful, for example, if an archetype parameter

represents connections to a set of nodes (the number of which is a parameter of the

model) and, as a system designer, you intend to express the sending of a message

to a particular node in that set of connections.

Resources mapped as functions, however, pose a challenge to the compilation

strategy described in section 3.2. In particular, it becomes no longer possible to ac-

quire all resources used in an action before it executes because the argument passed

to the function may not be known when control reaches the start of the atomic

step. For example, consider the specification in Listing 2.2, where the network

resource passed to JobScheduler is mapped as a function. In the sendJob

action, the job j is sent to a targetNode; if the value of targetNode changes

in the action before it is used as an argument to connections, acquiring all

resources beforehand would lead to incorrect behavior. Listing 3.2 illustrates the

issue.

1 sendJob:

2 targetNode := targetNode + 1;

3 connections[targetNode] := j;

Listing 3.2: An example where it is not possible for an implementation to

acquire access to all resources before an action starts. targetNode is

mutated before it is used as an argument to connections; using its value

for resource acquisition before the action starts leads to incorrect be-

havior.
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Algorithm 1: Action Execution

actionCompleted = FALSE;
while ¬ actionCompleted do

Acquire all resources not mapped as functions in consistent order;
... action statements ...;
/* A resource mapped as function is required at

this point */
error = Acquire(resourceMappedAsFunction);
if error 6= NULL then

Abort all resources acquired so far;
if ShouldRetry(err) then

continue;
end
return error

end
... more action statements ...;
/* End of action */
Release all acquired resources;
actionCompleted = T RUE;

end

Figure 3.1: Executing an action that uses resources mapped as functions.

Due to the impossibility of acquiring all resources that are mapped as func-

tions before an atomic step begins, we resort to a best-effort approach. Resources

mapped as functions are acquired at the time of use; this guarantees that the values

of the arguments used are accurate. In addition, the implementation we generate

keeps track of all resources previously acquired in each step to make sure that no

resource is acquired twice in the same action. This approach, however, can lead to

deadlock: since resources are acquired at the time of use, we can no longer enforce

a consistent order as described in 3.2. To circumvent this issue, we allow resource

acquisition to fail and, when a failure is detected, we abort any changes made to the

environment and try again. Figure 3.1 specifies how an action in Modular PlusCal

is translated to a concrete implementation in light of the discussion presented here.

Since an action has no externally visible interactions with the environment be-

fore it completes, and the changes proposed here to support resources mapped as
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functions never leave the boundaries of a single action, we argue that the the exe-

cution model described in Figure 3.1 does not impact the reduction argument made

in section 3.2.

3.3 Archetypes as APIs
Modular PlusCal uses archetypes to describe the behavior of components in a sys-

tem; therefore, they can be seen as defining execution entrypoints of the system

being designed. For this reason, the implementations we compile transform each

archetype instantiated in the Modular PlusCal specification into a Go function.

Listing 3.3 shows the signatures of the resulting functions when the queue specifi-

cation in 3.1 is compiled.

1 package queue

2 import "pgo/distsys"

3 var QUEUE_SIZE int

4 func init() {

5 QUEUE_SIZE = 10

6 }

7 func Consumer(self int, queue distsys.ArchetypeResource) error {

8 // body

9 }

10 func Producer(self int,

11 queue distsys.ArchetypeResource,

12 jobs distsys.ArchetypeResource) error {

13 // body

14 }

Listing 3.3: Function signatures in Go when the specification in Listing 3.1

is compiled with PGo.

A few points are worth highlighting in this transition:

• The compiled code lives in a separate package (called queue in Listing

3.3). The developer wishing to use the the system compiled by PGo can

import this package and call the functions defined there, passing a concrete

implementation for every resource.

• TLA+ constants (parameters of the model) used in the specification are given

a concrete value when the user compiles their specification. All constants
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are assigned in the init function, which the Go runtime ensures will be

executed exactly once if the package is imported.

• Every function compiled for an archetype needs to be passed self as the

first argument. This is an implicit variable in PlusCal specifications that

contains the process identifier.

• For every parameter declared in the archetype definition, a corresponding

ArchetypeResource is expected in Go. Archetype resources have a

well defined interface (see section 3.4). It is up to the caller to ensure that the

concrete implementation passed in has the same semantics as the abstraction

used in the specification. The PGo runtime provides a number of commonly

used components in distributed systems, such as communication channels,

access to the file system, time, among others; their implementation is the

focus of Chapter 4.

• Functions derived from archetypes return errors. These errors are used to

indicate when the specification reached a state that cannot be mapped to

a state in the specification. For example, the AbstractQueue mapping

macro of Listing 3.1 does not specify what happens if the queue cannot be

accessed. However, a practical implementation may require that the queue be

stored across multiple servers, and a network failure could render the queue

unavailable. In these scenarios, the error is returned to the caller, that is then

responsible for determining what to do in response. Fault tolerance in this

setting is discussed in section 3.6.

Once the specification is compiled to a Go package, the user is required to write

the program’s main function. In general, this will involve writing “glue” code that

sets up the connections between processes and creates the concrete implementa-

tions for archetype resources. Most of the difficulties of this process, however, are

alleviated by the execution runtime provided by PGo.

3.4 Resources as Interfaces
Listing 3.1 defines two archetypes, Consumer and Producer. Both the queue

and the jobs that are submitted to it are abstractly modeled in the specification; the

22



system designer can still write and verify properties about how jobs are processed

without having to specify lower-level details of the queue. An implementation of

this specification, however, would need to inject a concrete implementation for

a queue and a stream of jobs to be processed. These could come from another

server, the file system, or another source: as long as the semantics provided by

the concrete implementation match the abstraction used in the specification, the

system’s behavior is preserved.

In order for the Modular PlusCal execution semantics to be preserved as de-

scribed in the previous section, however, the implementation of resources must

satisfy a set of functional requirements. For that reason, we view archetype re-

sources as implementations of a well-defined interface. Resources and resources

mapped as functions defined as Go interface types are provided in Listing 3.4.

1 type ArchetypeResource interface {

2 Acquire(access ResourceAccess) error

3 Read() (interface{}, error)

4 Write(value interface{}) error

5 Release() error

6 Abort() error

7 Less(other ArchetypeResource) bool

8 }

9
10 type ArchetypeResourceCollection interface {

11 Get(value interface{}) ArchetypeResource

12 }

Listing 3.4: Type definitions for archetype resources

The Go language considers that a type implements a certain interface if it de-

fines the same set of functions with matching signatures. A valid implementation

of an archetype resource, however, has to obey stronger rules. The precise mean-

ing and expectations for every function defined in the ArchetypeResource

interface in Listing 3.4 are described as follows:

Acquire is invoked when access to a resource is required in the execution of an

action. In the case of a resource mapped as a function, it is called imme-

diately before the statement that uses it. Acquire takes as parameter a

ResourceAccess struct that defines how the resource is used in the ac-

tion (for instance, read-only or read and write).
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Read is called when the archetype resource is used within an expression. The

return type of this function may be relevant depending on the expression in

which it is used: if the Modular PlusCal specification uses a resource r in

the expression r + 1, then the return of the Read function will be cast to

an integer in the code generated by PGo. It is up to the archetype resource

implementation to make sure that the types returned by this function are

compatible with the expectations of the caller.

Write is invoked when an archetype resource is used on the left side of a Modular

PlusCal assignment; the value being assigned corresponds to the value

argument that this function receives. If Write has to perform type-specific

operations, it needs to cast the received value to the appropriate type. It is up

to the resource implementation to ensure that casting is safe and compatible

with how the resource is used in the specification.

Release is called on all resources that are used in an action that is executed to com-

pletion. This is the only function in an archetype resource implementation

that is allowed to perform externally visible changes.

Abort is used when interactions performed with a resource (in the form of Read

and Write calls) need to be aborted. For instance, Figure 3.1 aborts re-

sources acquired until a certain point when an error occurs and the action

needs to be restarted. After Abort returns, the caller no longer holds access

to the resource.

Less defines how the archetype resource can be compared with another resource.

This allows PGo to generate code that acquires resources in a consistent

order, as discussed in section 3.2. The semantics of Less are defined by the

sort package of the Go language1.

Resources mapped as functions are seen as a map from a certain domain (spe-

cific to the environment they describe) to implementations of concrete resources.

They are defined as implementations of the ArchetypeResourceCollection

1https://golang.org/pkg/sort
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interface. The Get method is invoked when resource[expr] is used in a state-

ment: it is given the expression passed as argument and is expected to return an

implementation of an archetype resource. In addition, implementations should en-

sure that if Get is called multiple times with the same argument, it should return a

reference to the same resource implementation (and not copies of it).

3.4.1 Handling Errors

With the exception of Less, all functions that must be implemented by archetype

resources may return errors (Listing 3.4). To ensure that PGo generates correct im-

plementations, these functions can return two types of errors: AbortRetryError

and ResourceInternalError.

Archetype resource implementations may choose to request the current action

to be aborted: this avoids the deadlock issue described in section 3.2.1. When

another failure happens during the processing of an operation, the implementation

can also return internal errors: these represent unrecoverable situations and are

propagated back to the caller. Internal errors can be seen as the implementation

reaching states that are not part of any behavior in the specification. Table 3.1

describes some examples of the two different kinds of errors.

Error Examples
AbortRetryError Locking a resource that is already

locked; reading a network message
when none was received; sending a
message to a node that has no buffer

space to process it.
ResourceInternalError I/O error when reading a file or

socket; timeout when performing a
network operation.

Table 3.1: Possible errors an archetype resource implementation may return.

3.5 Long Running Processes
A common idiom when specifying how different components in a system inter-

act concurrently is to express them as long running PlusCal processes. This is
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especially important in the context of distributed systems: application designers

are interested in verifying that certain correctness properties are maintained when

the execution of multiple roles in the system (clients, servers, leaders, replicas)

is concurrent. In Listing 3.1, for example, the Producer process runs without

termination and keeps pushing jobs to the queue.

A more interesting case is illustrated in the definition of the Consumer pro-

cess in the same specification. The consumer reads the next job to be processed

in the queue, does some work, and terminates. While this might be the behavior

intended by the system designer specifying an API to interact with this system, it

causes subsequent jobs pushed by the producer to not be processed if all consumers

terminated. This need to model a system that is constantly pushing new jobs and

working on them concurrently, coupled with the fact that PlusCal does not support

“dynamic” process spawning leads to processes like Consumer to also be defined

as infinite loops.

This potential mismatch, however, can be unified using the notion of archetype

resources presented in this work. If the Consumer archetype is changed to be

executed in a loop that is conditioned by an argument passed to it, the developer

is able to have an infinite loop for model checking purposes, and still be able to

control the execution of the resulting function as if it were a regular, one-off call.

Listing 3.5 describes the proposed change.

1 archetype Consumer(queue, startSignal)

2 variable job;

3 {

4 consumerLoop:

5 while (startSignal) {

6 doWork:

7 job := queue;

8 (* do some work with ’job’ *)

9 }

10 }

11
12 instance (ConsumerP = 1) == instance Consumer(queue, TRUE)

13 mapping queue via AbstractQueue;

Listing 3.5: Updating the definition of the Consumer archetype to run in a

loop: the consumer processes jobs as long as a signal sent to it is true.

When using the code generated by PGo for the consumer process as defined in
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the previous listing, the developer can call the Consumer function generated by

the compiler in the background, passing as startSignal an implementation that

blocks when attempted to be acquired. When the user actually wishes to process

a job in the queue, the resource unblocks and returns true, allowing execution

to continue. Fortunately, the Go language makes this straightforward: functions

can be executed in the background with Go routines, and channels have the exact

semantics described here and can be used as a concrete implementation of the

startSignal parameter.

3.6 Dealing with Failures
The possibility of failure is one of the reasons that make writing correct distributed

systems challenging. In most cases, the system needs to detect when a failure

happens and perform some recovery procedure to continue making progress. In

addition, different systems can choose to support different failure models: for in-

stance, a protocol may be designed to accommodate crash-stop failures, but not

Byzantine failures [30].

Systems compiled by PGo are as fault-tolerant as the specification itself: in par-

ticular, if the system uses abstractions that model the possibility of failure and the

system is designed to tolerate them, the generated implementation should be able

to present the same behavior, provided the archetype resource implementations

exhibit the same semantics as the abstraction. Consider Listing 3.1 and suppose

the user is interested in writing a property that states that every job pushed by the

producer is eventually processed by the consumer in the correct way. While this

property may hold for the specification in Modular PlusCal, it would not hold in

a concrete implementation if the consumer node were to crash, for example; note

that if a similar event happened in the specification, the liveness property stated

before would be violated.

Providing language-level support for fault-tolerance is currently future work in

this project. However, the proposed design and execution model leaves a few op-

tions for users that intend to design fault-tolerant systems. We discuss two possibil-

ities to handle failures in the current design: dealing with failures when interacting

with the environment; and recovering from crash-stop failures.
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3.6.1 Recovering from Errors in the Environment

As described in section 3.3, the functions used to interact with an archetype can

return errors; when these indicate an error situation that is not part of the abstraction

in the specification, the error is returned to the program’s main function, which is

manually written by the user.

Consider the definition of the Producer archetype in Listing 3.1, and suppose

that the implementation of the queue passed to it issues a network call to push jobs

to a replicated object store. A user could recover from failures of this remote

store by inspecting any errors returned by the corresponding function, choosing a

different replica when a failure is detected, and restarting the function. Listing 3.6

illustrates how this could be achieved in Go.

1 queueObj := RemoteQueueAt(master)

2 jobStream := NewJobStream()

3
4 // queue.Producer should run indefinitely unless an error occurs

5 for {

6 err = queue.Producer(queueObj, jobStream)

7 switch err.cause.(type) {

8 case *object_store.MasterTimeout:

9 master = electNewMaster()

10 queueObj = RemoteQueueAt(master)

11
12 case *job_stream.IOError:

13 // deal with job stream error

14 }

15 }

Listing 3.6: Recovering from a failure by restarting

The pattern illustrated here can be used to detect multiple kinds of errors and

recover from them appropriately, as the previous code snippet shows: a failure

in the job stream can also be detected and potentially recovered from, depending

on the semantics of the implementation passed to the Producer function. To

make this process easier, the implementation generated by PGo will make sure that,

when an error that is returned to the user occurs, all resources previously acquired

are aborted before the function returns; this guarantees that no externally visible

behavior is observed if the failure happens while executing a statement halfway in

an atomic step. Despite this fact, the system should be prepared to be restarted at
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arbitrary points: while this may be the case for some specifications, PGo requires

that the user design the system for that possibility.

3.6.2 Crash Failures

Many reasons could lead to a system crashing: hardware faults, power failures,

bugs in the software stack (operating system, programming language runtime,

an archetype resource implementation), among others. While entirely supporting

crash recovery in a system requires the specification to be aware of the fact that

applications may stop at arbitrary points in time, the user is capable of performing

recovery under certain circumstances using the application design proposed in this

work.

One way to add fail-stop tolerance to a specification that does not model crashes

is to hide their occurrence completely. If the crashed process can be restarted in a

different machine where it left off, the failure can become invisible to the other pro-

cesses in the system. To illustrate this mechanism, consider how a user may specify

their system to capture local state (Listing 3.7) and allow it to be recovered.
1 archetype Producer(ref queue, jobs, ref context)

2 variable nextJob;

3 {

4 producerLoop:

5 while (TRUE) {

6 readJob:

7 if (context.action = "readJob") {

8 nextJob := jobs;

9 context := [action |-> "processJob", job |-> nextJob];

10 }

11 processJob:

12 if (context.action = "processJob") {

13 (* process job in ’context.job’ *)

14 }

15 }

16 }

Listing 3.7: Capturing local state in a context object in order to make it ac-

cessible in the event of a crash.

By having execution be dictated by a context, the user is able to start computa-

tion at arbitrary steps in the definition of the Producer archetype. Specifically,

if the implementation of the context object passed to the producer updates the state
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in a persistent store, an external monitor process can detect failures in the producer

node and start another instance of the same function. Since the context is stored in

a different source, it can be read by the new instance, and execution may resume.

Note that while the approach above is sufficient to handle fail-stop failures in

most circumstances, it still requires careful, manual error handling from the devel-

oper. In particular, if the crash happens during the process of releasing resources,

the system could be left with a partial state change leading to behavior that is

not part of the model-checked specification. In this scenario, the programmer is

required to correct these inconsistencies before attempting a restart. While the

execution runtime could help in the recovery process by providing stronger trans-

action semantics with a write-ahead log implementation [33], this is currently not

supported.
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Chapter 4

Execution Runtime

In this chapter, we discuss the runtime support provided by PGo to applications

that were compiled from Modular PlusCal specifications. In section 4.1, we de-

scribe the protocol used to make sure all components of the system are connected

and start execution at the same time. PGo also provides some implementations of

commonly used resources in distributed applications: distributed global state can

be easily used as a resource (section 4.2); and direct communication channels are

also provided as a convenience to applications based on message-passing (section

4.3). Finally, section 4.4 provides an overview of other resources provided by the

PGo runtime and how they can be used by system designers when compiling their

specifications into executable implementations.

4.1 Synchronized Start
When a Modular PlusCal specification is compiled to TLA+ and model-checked,

all enabled states are scheduled infinitely often if they remain enabled (assuming a

weak fairness model; for a longer discussion of fairness in TLA+, see [26]). In an

effort to replicate this behavior in the context of a distributed system, we provide

tools for the developer to enforce a distributed barrier, allowing all components

of the system to start at the same time. For example, in the context of the queue

specified in Listing 3.1, synchronization could enforce that the producer does not

inundate the queue with jobs before consumers are ready to process them.
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PGo provides an implementation of a distributed barrier that also makes sure

that every component is connected to each other. Figure 4.1 shows one execution

of the protocol to illustrate how it works.

Figure 4.1: Synchronization protocol provided by the PGo runtime to allow
applications to optionally coordinate their start.
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As used here, a process loosely corresponds to a component in the system

being designed. Since archetypes define the API that developers use to interact

with the system, there is no one-to-one correspondence between their definitions

and processes: there could be multiple archetypes associated with the same com-

ponent, likely executing in the same host when deployed. Processes are, in gen-

eral, deployed on different hosts, although that is not a requirement of the model.

In the context of the queue specification of Listing 3.1, processes P1, P2 and

P3 in the diagram of Figure 4.1 could be Consumer(0), Consumer(1) and

Producer(2), respectively (numbers in parentheses are the process identifiers;

the implicit self variable in PlusCal specifications).

One arbitrary process in the system is assigned the role of coordinator of the

synchronization protocol. The coordinator process does not need to be the first

process to be executed: in Figure 4.1, for example, process P2 is chosen to be the

coordinator, but P1 is the one that comes online first. When it tries to reach the

coordinator, the call fails; processes keep trying to reach the coordinator until they

eventually succeed. Once every process reported that they have connected to every

other node in the system, the coordinator is responsible for informing them that

they may start execution of their respective functions.

The messages exchanged during the synchronization protocol are briefly de-

scribed below:

DIAL. When processes are created, they attempt to send a DIAL message to the

coordinator, including the network address where they are deployed. As de-

scribed previously, a failure in this process causes processes to keep trying

to contact the coordinator until they finally succeed. The coordinator ac-

knowledges DIAL messages, and processes then wait for a message from

the coordinator.

{ P1, ..., Pn }. As soon as the coordinator receives DIAL messages from

every process, it sends a list of network addresses where every other process

in the system active. This list is aggregated from the DIAL messages that

the coordinator received from every process.

CONNNECTED. When a process receives the list of other processes in the system
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from the coordinator, it establishes a connection with them. When that is

completed, a CONNECTED message is sent to the coordinator to indicate

that the process is ready to start execution any time.

START. When the coordinator received CONNECTED messages from every pro-

cess, it is then responsible for informing the processes that they may start

execution of their functions in the system. The coordinator sends a START

message to every process to express that intent.

4.2 Distributed Global State
As described in section 2.4, communication between processes in PlusCal happens

via updates on global state; while Modular PlusCal makes it easier to use different

communication abstractions, relying on global state can be more convenient for

some applications. For this reason, PGo provides an implementation of distributed,

shared state that developers can use as archetype resources in implementations.

This component can be especially useful if the system has already been specified

in PlusCal, where communication is achieved via updates on global state, but the

system designer wishes to translate it to a Modular PlusCal specification in order to

more clearly separate implementation-specific concerns from protocol definition.

The implementation of global state in PGo assigns an owner to every object

stored; however, object ownership is a dynamic property. Nodes may become own-

ers of objects they use (if, for example, a series of operations will be performed on

them over a short period of time) and ownership can be controlled via application-

specific policies. The design and implementation is similar to, and inspired by,

previous work in distributed object systems and programming languages [19, 33].

4.2.1 Data Store

Global state in the system is stored in each node’s data store. A node’s data store

represents the global state information that each node knows about at an arbitrary

point in time. In particular, it includes the name associated with a portion of the

state; the believed owner of that variable: i.e., the node that knows its current value;

and the value of the variable. Figure 4.2 illustrates a snapshot of the data stores in
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(a) P1
(b) P2 (c) P3

Figure 4.2: State of the data stores in every node in a system at a certain point
in time. A value is only associated with a global variable if the node
owns the data. Ownership information may be outdated: for instance,
P3 believes that history is owned by P1 when it is, in fact, owned by P2
at this moment.

a system with three processes and three global variables.

The most important aspects of how the data store is managed are summarized

below:

A process is aware of the data it owns. There is always at most one process that

believes to own a variable of the global state. More specifically, for every

variable in the global state, there is either exactly one process where the

owner column of the corresponding data store entry points to itself; or own-

ership is being transferred to another node. In the period it takes for the

ownership transfer message to reach the new owner, no node owns the data.

No data is kept for state that is not owned. If a node does not own a variable in

the global state, it keeps no value associated with it (even if it owned the

value before), avoiding inconsistency and unnecessary memory use. If an

operation on an object that is not owned is required, the caller needs to obtain

a reference from the owner before the operation can be performed.

Ownership information may be outdated. When the ownership of an object is

moved from one process to another, the update is not visible to other pro-

cesses that were not involved in the exchange. For this reason, ownership

information in the data store may be outdated; in particular, processes that

receive requests for a reference to variables that they no longer own respond

with the node that is believed to own the variable at that moment (that is,
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their current owner entry for the variable in their data store). The requester

then updates its own data store and repeats the process until it finally gets a

reference to the object.

Global state can hold data of arbitrary types. The types of the values associ-

ated with each variable in the global state are not maintained by the data

store. Instead, these values are serialized and need to be converted to their

appropriate types by the caller (if they wish to perform operations on them).

In practice, the implementation relies on the gob1 serialization format, and

supports the same sets of types and values.

Migration can be controlled via application-specific policies. When a request for

a reference to a variable reaches the process that owns that state, it can choose

to move ownership to the caller. Applications can provide their own policies

to determine when moving should be allowed by implementing a simple in-

terface (see Listing 4.1). The PGo runtime provides two simple migration

policies, allowing processes to always (or never) migrate the data to the re-

quester.

1 type MigrationStrategy interface {

2 // ShouldMigrate is called when a process ‘requester‘ is attempting

3 // to get a reference to a varible of the given ‘name‘.

4 ShouldMigrate(name, requester string) bool

5 }

Listing 4.1: Applications can provide a custom migration policy in the form

of a definition of a ShouldMigrate function, defined when the user cre-

ates the global state resource.

4.2.2 Protocol

This section describes the underlying protocol that implements the semantics of

the data store and object ownership described in 4.2.1. One of the key ideas be-

hind the protocol is that references are obtained in lexicographical order of their

1https://golang.org/pkg/encoding/gob/
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names. This notion is similar to acquiring archetype resources in consistent order

as described in section 3.2 and avoids deadlocks under concurrent execution.

When a reference to a variable is obtained by a process, it causes subsequent

requests for the same variable (from the same or other processes) to block until

the reference is released. In other words, only one process in the system can have

access to shared state at a time.

We discuss the protocol by overviewing three examples of its execution in in-

creasing levels of complexity. In the diagrams that follow, arrows represent net-

work calls performed from one process to another; straight vertical lines represent

process execution over time.

Scenario 1: Borrowing a Single Variable (Figure 4.3) In this scenario, node P1

wants to grab a reference to (borrow) variable a, which is believed to be

owned by node P2. P2 turns out to actually have the ownership of a, so it

returns a reference to it back to P1. The green line in P1 indicates the time

during which it has exclusive access to a and runs application specific logic.

In the meantime, a third node, P3, wishes to get access to a too. However,

since that variable is currently borrowed to P1 (the entry in the data store is

locked), the call is blocked (red line on P3). When P1 is done using variable

a, it sends a RELEASE message to P2. At that point, the entry for variable a

is unlocked, and P2 can now borrow variable a to P3, which had been waiting

for it.

Scenario 2: Multiple Variables and Outdated Ownership (Figure 4.4) This sce-

nario illustrates how a node may combine requests for references to different

variables in the same message. P1 wants to borrow variables a and b, which

it believes are owned by node P2. When P2 receives the request, it notices

that it indeed owns variable a, but not variable b – it was previously moved

to node P3. Therefore, P2 returns a reference to variable a (allowing P1 to

use it) and indicates that b has moved to process P3. When receiving the re-

sponse, P1 updates its data store to indicate that b is owned by P3 and moves

on to request access to b from it. P3 grants it access, and P1 is able to use a

and b exclusively (green line in the diagram). Once P1 has used a and b, it

can release the references that it borrowed – first to P2 (for variable a) and
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Figure 4.3: Borrowing a single variable from another process.

then to P3 (for variable b).

Scenario 3: Ownership Move (Figure 4.5) This scenario is more complex and

involves a number of complicated conditions. The order of events depicted

in the diagram are:

• Process P1 wants to have exclusive access to variables a, b and c,

which it believes are owned by node P2.

• Node P2, when receiving the request, consults its data store and realizes
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Figure 4.4: Requesting multiple references in the same message. In this ex-
ample, P2 no longer owns variable b, and it informs P1 that the new
owner is believed to be P3.

that while it does own variables a and c, variable b was previously

moved to P3. In addition, it decides to move ownership of variable a to

P1. In the diagram, a*: OK indicates that P2 returned a reference to a,

including ownership of it.

• Since b has moved to P3 (according to P2), a reference to c cannot be

returned to P1 at this point. Exclusive access to variables need to be

acquired in lexicographical order to avoid deadlocks. That’s what c:

SKIP in the diagram indicates.

• When receiving the reply from P2, P1 notices that it received a refer-

ence to a that includes ownership of the variable. It updates its data
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store to indicate that it now owns variable a and acknowledges P2 that

it successfully received ownership of a and is ready to handle requests

related to a.

• In the meantime, however, process P3 wishes to have exclusive access

to a, which it believes is owned by P2 (and it indeed was until moments

ago, before P2 decided to move ownership of a to P1). Since P2 knows

that an ownership move of a is currently underway, it blocks until an

acknowledgment from P1 is received.

• P1 sends an ACK(a) message to P2, indicating that ownership move is

completed. Once that message is received, P2 is ready to tell P3, which

had been waiting, that a moved to P1.

• P1 continues its Acquire process (this interaction started with P1

needing exclusive access to a, b and c). Since it already has access

to a (and owns it), it moves on to request b from P3, and eventually

receives a reference from it.

• In the meantime, P3 itself wants access to variable a, which it now

knows that it’s owned by P1. Since P1 itself is currently using a exclu-

sively for its own purposes, that request is blocked (red line on P3 in

the diagram).

• Finally, P1 requests variable c to P2, which then returns a reference to

it (without ownership this time). Since P1 has now exclusive access to

a, b and c, it can now run its application logic (green line on P1 in the

diagram).

• Once the P1’s computation is over, it has to release the references it pre-

viously acquired. Variable a is now owned by it, so a local RELEASE

call is performed. As soon as that is done, a reference to variable a can

be returned to P3, who had been waiting for some time. P1 then moves

on to release b (from P3) and c (from P2).
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Figure 4.5: A complex interaction between processes P1, P2 and P3 where
ownership is moved and concurrent access to global variables needs to
be resolved. Names in curly braces indicate which variables are owned
by the processes at different times.
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4.3 Communication Channels
The global state infrastructure provided by PGo exposes a shared-memory abstrac-

tion to the resulting distributed system: every process can read state that is shared,

and updates are immediately visible after the corresponding action completes. De-

spite its simple semantics, distributed global state can come at a significant per-

formance cost. A high contention environment, where multiple processes race to

read and write shared state, can slow the system down, leading to degraded per-

formance. In the context of distributed systems, however, it is common to think of

the interactions between the components of a system in terms of the messages they

exchange. To support this common pattern, PGo provides an archetype resource

implementation that allows processes to send messages to one another.

Message-passing support in PGo aims to be an implementation of a communi-

cation channel with TCP-like semantics: messages are received in the order they

were sent; no messages are lost, duplicated or corrupted. Each process communi-

cates with other components in the system by posting messages to their mailbox;

the idea is inspired by how actors communicate in an actor-based model [1, 18].

The communication abstraction targeted by this implementation, in the form of a

Modular PlusCal mapping macro, is defined in Listing 4.2. Figure 4.6 illustrates a

system of three processes using the message-passing implementation described in

this section.

Figure 4.6: Three processes connected to each other. Each have a local mail-
box of fixed capacity; when processes want to communicate, they send
a message that is appended to the receiver’s mailbox.
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1 mapping macro ReliableMailboxes {

2 read {

3 await Len($variable) > 0;

4 with (msg = Head($variable)) {

5 $variable := Tail($variable);

6 yield msg;

7 };

8 }

9
10 write {

11 await Len($variable) < CAPACITY;

12 yield Append($variable, $value);

13 }

14 }

15
16 variable connections = [id \in NodeIds |-> << >>];

17
18 process (P \in NodeIds) == instance SomeArchetype(connections)

19 mapping connections[_] via ReliableMailboxes;

Listing 4.2: Definition of the message-passing abstraction supported by the

PGo runtime.

The implementation of this mailbox-based resource is a simple wrapper on top

of the underlying TCP stack. However, it is important to notice two important

aspects of the ReliableMailboxes abstraction as defined previously:

• A PlusCal process that attempts to read a message from its mailbox is not en-

abled until there is at least one message to be read. To preserve these seman-

tics, the implementation provided by PGo employs the following strategy: if

an attempt to read a message is made when the mailbox of the corresponding

process is empty, the Read call fails with an AbortRetryError, causing

the action to be restarted. With enough time, the expected message should

eventually reach the running process (as this was behavior tested in the spec-

ification).

• Similarly, a process that attempts to send a message to another process (post

a message to the target’s mailbox) will not be enabled if the destination mail-

box is full (number of queued messages is equal to CAPACITY). In practice,

the mailbox capacity is set to relatively low values for model checking pur-

poses (to avoid exponential state-space growth) but can be set to arbitrarily

43



large values in a real implementation. PGo’s strategy for this case is to have

the receiver return an error to the caller when a message cannot be received

due to a full mailbox The Write call on the connection, then, fails with

AbortRetryError, causing the action to be restarted. Eventually, the re-

ceiver has processed enough messages to allow the sending of the message.

4.4 Other Common Resources
Apart from valid implementations of the archetype resource API (discussed in sec-

tion 3.3) for the communication of two processes across the network, this work

also provides a number of other implementations that are useful for building real

systems. In this section, we briefly describe some of them.

File System Access. Reading and writing to persistent storage is a common con-

cern that is abstracted away in specifications written in Modular PlusCal.

One way to reconcile these abstractions and a concrete implementation is by

passing a file system parameter to archetypes and mapping it as a function.

The PGo runtime provides a FileSystemResource that implements the

ArchetypeResourceCollection interface (see Listing 3.4). When

given an arbitrary path in the system, this implementation is able to read and

write files on behalf of the application and has the semantics expected by the

resource API.

Locally Shared Data. Since archetypes can be seen as defining the API used to

interact with the system, it is possible that multiple of the generated Go func-

tions will be invoked in the same OS process. If they need to share data while

executing concurrently (for instance, in different Go routines), they need to

make sure their use of shared data is consistent with their atomic steps. PGo

provides an implementation of local, shared data that processes can use in

order to preserve Modular PlusCal execution semantics.

Time. Time is another entity that is represented abstractly in Modular PlusCal

specifications. One alternative to model time is to pass an argument that is

abstracted as a simple counter in the specification; however, a concrete im-
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plementation can use PGo’s TimeResource object that returns the current

time when read.
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Chapter 5

Implementation

In this chapter, we briefly describe implementation details of the techniques de-

scribed in previous chapters. Section 5.1 outlines the changes in the PGo compiler

performed in this work, and section 5.2 discusses updates in the execution runtime.

Table 5.1 summarizes the implementation effort involved in this work.

Component Language Modules LOC

Compiler
Java

Archetype Resource Usage Analysis 538
Go Code Generation 2658

Local State Snapshots 379
Total 3575

Runtime
Go

Synchronized Start 275
Distributed Global State 724

Communication Channels 453
Other Archetype Resources 267

Total 1719

Table 5.1: Lines of code (LOC), excluding comments and blank lines,
changed for the components of PGo updated in this work.

5.1 PGo Compiler
This work was implemented as an extension of the PGo compiler. Support for the

verification of the Modular PlusCal language already existed, by translating it to

PlusCal. The changes performed to support this work involved:
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Static analysis of the specification. Once the Modular PlusCal model is parsed,

we traverse the abstract syntax tree (AST) to determine which archetype re-

sources are used in each atomic action. The compiler uses this information in

order to generate code that calls the Acquire function with the appropriate

ResourceAccess object (see Listing 3.4).

Code generation. A new compilation pass was added to PGo that transforms the

Modular PlusCal AST into a Go AST. This involves: implementing the action

execution algorithm described in Figure 3.1; acquiring (releasing) archetype

parameters on the start (end) of every action; creating a snapshot of local

state at the start of every label so that actions can be restarted; and trans-

forming resource reads and writes into appropriate calls to the archetype

resource API. In addition, we also keep track of every resource mapped as a

function that is acquired in each action to avoid acquiring the same resource

twice (since they are not statically distinguishable).

5.2 Distributed Runtime
Specifications of distributed systems compiled with PGo rely on a runtime to pre-

serve the execution semantics of the specification. This work extended the PGo

runtime by including the definitions of archetype resources presented in Chapter 3,

as well as multiple implementations of the interface (described in Chapter 4). All

inter-process communication, necessary to provide synchronized start (4.1), global

state (4.2) and communication channels (4.3), is built on top of Go’s RPC library1.

1https://golang.org/pkg/net/rpc/
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Chapter 6

Evaluation

In this chapter, we provide an evaluation of the techniques and mechanisms de-

scribed in the previous chapters. In particular, we are interested in answering the

following questions:

1. Is the implementation sufficiently robust to support the compilation of com-

plex specifications?

2. Do systems produced by PGo have behavior that is defined by the specifica-

tion?

3. What is the performance of systems compiled by PGo and how does it com-

pare with similar, handwritten implementations?

Section 6.1 addresses the first question by describing the specifications com-

piled in this work and their complexity. Section 6.2 discusses whether the resulting

system has behaviors that are valid according to the specification. Finally, section

6.3 describes performance measurements and discusses results.

6.1 Specification Complexity
Our evaluation is based on two models of distributed systems written in Modular

PlusCal. Table 6.1 summarizes their complexity. The behavior defined by each

model is described below:
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Load Balancer. This model defines the interaction between three components of

a system: a set of clients, a set of servers, and a load balancer. Clients send

requests for files to the load balancer, which in turn redirects them to one of

the servers. The load balancer chooses the server to redirect requests to in

a round-robin fashion. While simple, this specification illustrates the use of

communication channels across all components defined in the model; and,

the use of a file system abstraction coupled with the corresponding resource

provided by the PGo runtime allowing clients to request real files under the

directory that the servers are running on.

Replicated Key-Value Store. This model defines the behavior of a key-value store

with serializable key-value consistency semantics. It specifies a replicated

state machine (RSM) that uses Lamport logical clocks [24] to determine or-

dering and stability, as described in [36]. In summary, this setting allows

all replicas to be consistent without ever communicating with one another.

Clients broadcast write (Put) operations to all replicas and send periodic

clock-update messages. Clients are also allowed to disconnect: in this case,

their clocks are no longer considered by the replicas when determining mes-

sage stability.

Specification Archetypes Abstractions #Lines
load balancer 3 2 79
replicated kv 5 6 291

Table 6.1: Complexity of the specifications used in the evaluation. Abstrac-
tions are counted based on the number of implementation-specific con-
cerns that were not included in the model, each expressed as one or mul-
tiple mapping macros; #Lines includes lines of Modular PlusCal, exclud-
ing comments and blank lines.

PGo was able to compile both specifications, generating a function for each

archetype defined in the models. A main function was manually written for each

system that bootstraps the synchronized start protocol described in section 4.1 and

provides concrete implementations for the abstractions used in the models. Both

implementations use communication channels (section 4.3) to send messages be-
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tween processes. Table 6.2 summarizes the output produced by PGo, and the effort

required to get a running system from the generated code.

Specification Generated LOC Manual LOC
load balancer 494 85
replicated kv 3395 234

Table 6.2: Generating a running implementation from the models evaluated.
Generated LOC indicates lines of code produced by PGo from the
archetype definitions; Manual LOC counts lines of code manually writ-
ten to bootstrap the system. Both numbers exclude comments and blank
lines.

6.2 Semantic Equivalence
While a proof that the systems we generated are semantically equivalent to the

Modular PlusCal models is beyond the scope of this work, we were interested in

having higher confidence that the resulting systems meet basic functional require-

ments. For this reason, we wrote a set of tests that exercised different aspects of

each system.

For the load balancer, we performed a series of operations with different num-

bers of clients and servers, each requesting different files. Concurrency across

requests was also tested. At the end of the process, we verified that: every client

received a response for the requests it made; the contents of the responses are as

expected (matching the underlying file system); and that each server handled the

correct number of requests. In all cases, the resulting implementation presented

expected behavior.

The replicated key-value store was tested similarly. We wrote a test genera-

tor that produces a sequence of operations to be performed by clients; keys and

values are combinations of randomly generated bytes of configurable length. We

performed tests with variable numbers of clients and replicas and also in highly

concurrent environments where every operation is happening concurrently (in a

separate Go routine). We verified that: every client terminated successfully; and

that the database was consistent and identical on every replica at the end of the

process. We found the system to behave as expected on every scenario and to be,
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to the best of our knowledge, a correct implementation of the model.

6.3 Performance Comparison
We ran performance evaluations of both the load balancing system as well as the

replicated key-value store against handwritten implementations. The manual im-

plementation of the load balancer was written by the author with the goal of eval-

uating this work. The manual implementation of the key-value store was the best

performing student implementation of the same system, which was a required as-

signment of the graduate course on Distributed Systems at UBC, offered in the

winter term of 2019. Table 6.3 shows the effort required in the manual implemen-

tation of both models.

Specification LOC
load balancer 156
replicated kv 406

Table 6.3: Effort required to implement both models evaluated in this work,
in terms of the number of lines of code involved. Numbers exclude com-
ments and blank lines.

6.3.1 Experimental Setup

All tests described in this section were performed by deploying all system pro-

cesses in the same host; this is to reduce the impact of network latency and jitter

in the numbers we aggregate and focus evaluation on overheads added by the PGo

runtime. The host machine features an eight-core i7 1.80GHz processor with 16GB

of memory and runs Linux 4.20.7. We used Go version 1.10.3. All numbers re-

ported in the following graphs are averages of ten executions.

6.3.2 Results

The load balancer system was run in two different scenarios: single client and

multi-client. In both cases, clients performed multiple requests in sequence and

waited for a response. The load balancer redirects requests to one of three servers.

The files requested were randomly selected from a collection of previously down-
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Figure 6.1: Execution time for the load balancer system, with one or multiple
clients performing 10 (left) or 100 (right) requests per client.

Figure 6.2: Time it takes for three clients to perform 100 operations, first
sequentially (left), and then with Go routines (right).

loaded web pages from popular websites. In the multi-client scenario, ten clients

make requests concurrently to the load balancer. Figure 6.1 shows execution time

for the two scenarios for different numbers of requests performed. The system

compiled by PGo does not scale as nicely as the handwritten implementation due

to the performance penalty incurred by the action restart mechanism described in

Chapter 3.

The replicated key-value store was tested in an environment with two replicas

and three clients. Each client performed one hundred randomly generated opera-

tions. Keys were set to be 32 bytes long and values 64 bytes long. Clock updates

happened every 100ms. In addition, we tested both sequential and concurrent ex-
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ecution within a client: in concurrent mode, every operation runs in a separate Go

routine. Since the Get and Put operations in the replicated key-value store require

a response from the replica, we create a new mailbox whenever a client performs

one of these operations. Figure 6.2 illustrates the results obtained in this experi-

ment. As can be seen, the system compiled by PGo works correctly even under

a highly concurrent environemnt. Although more extensive performance tests are

needed to make conclusive claims, these preliminary results indicate that PGo has

performance that is comparable to handwritten implementations in most cases but

that may degrade if actions need to be restarted multiple times.
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Chapter 7

Discussion

In this chapter, we address limitations of the proposed design and current imple-

mentation, and discuss future work.

Compilation is not verified. To trust that the specification meets the correctness

properties and that the implementation refines the specification, the follow-

ing need to be trusted: the TLC model checker, the PGo compiler, the Java

compiler and runtime, the Go compiler and runtime, and the operating sys-

tem. In addition, the archetype resources passed to the functions generated

by PGo need to be correct implementations of the abstractions used in the

specification. Providing stronger correctness guarantees of the compilation

from Modular PlusCal to Go remains future work.

Fault tolerance. As discussed in section 3.6, there are limited ways to deal with

failures while preserving the execution model followed in this work. How-

ever, they require significant effort from the developer, who needs to adapt

both the specification and the implementation. PGo could make the pro-

cess easier by providing fault-tolerance models built into the Modular Plus-

Cal language: the compiler generates an abstraction of the failure model

to PlusCal, allowing the designer to verify that the system is correct under

that failure model. PGo can also provide implementations of fault-tolerant

components that developers can use, matching abstract failure models with

resilient implementations the same way that environment abstractions are
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matched with concrete implementations in this work. This remains as future

work.

Unsupported TLA+ expressions. As described in Chapter 2, TLA+ is a declar-

ative specification language. Some expressions are very high level and dif-

ficult to translate to a concrete implementation (for example, the CHOOSE

operator that selects an element from a set that satisfies a series of condi-

tions). Further work needs to be done to support a larger portion of TLA+.

Performance. While systems compiled with PGo have behavior that is defined by

the specification they originated from, performance is an area that still needs

further work. In particular, the process of aborting and retrying an atomic ac-

tion is expensive, as local state needs to be reverted and recomputed. Instead

of restarting an action from scratch, PGo could leave local state unmodi-

fied and just attempt to re-acquire all archetype resources used in the action.

This, however, assumes that local computation is deterministic, which may

not always be the case.

Fairness considerations. PlusCal processes (i.e., instances of Modular PlusCal

archetypes) can be scheduled under unfair, weak, or strong fairness levels

(for discussion and definitions, see [26]). Correctness properties written by

the system designer may only hold under a specific fairness assumption. The

PGo compiler and runtime take a best-effort approach to allow actions to be

scheduled infinitely often if they remain enabled. However, many schedul-

ing decisions are still made by the Go runtime, which is known to favor

performance over fairness. Further work is required to enforce a more strict

approach to matching TLA+ fairness semantics with the way actions are

scheduled in the implementation.
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Chapter 8

Related Work

PGo is closely related to a vast body of previous work that attempted to bring the

power of formal methods to the context of concurrent and distributed systems. In

this chapter, we review some of the most closely related work previously published

and how they compare with the approach proposed in this thesis.

Proof assistants. Verifying distributed systems by writing proofs is complex, lead-

ing researchers to look for ways to make the process more approachable.

Verdi [37] enables developers to write proofs about the behavior of dis-

tributed protocols assuming a lossless network and provides automated trans-

formers that produce a verified distributed system that works under different,

more realistic network semantics. IronFleet [17] provides tools that allow

developers to prove that realistic implementations refine a high-level speci-

fication based on the Dafny language [31]. The verification process supports

both safety and liveness properties, although in a limited way.

The work presented in this thesis differs from this category by relying on

model checking of specifications rather than formal proofs of correctness.

While model checking by state-space exploration does not prove systems

to be correct, it requires significantly less effort from the developer of the

system. More specifically, PGo enables developers to reason about their

system abstractly and have sufficient confidence (but no guarantee) in its

correctness, while at the same time freeing developers from the arduous task
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of writing proofs, a process that is known to require a significant amount of

effort, expertise and time [22].

Domain-Specific Languages and Compilers. DSLs have been extensively used

in the past to provide a higher-level, more expressive way to build distributed

systems. Previous work has demonstrated that generating source code from

such alternative representations can be beneficial and is similar to our ap-

proach. Mace [20, 21] is a C++ language extension and compiler that gen-

erates a distributed system implementation from a state-machine represen-

tation. The approach taken by Mace is similar to the one we used in our

work; however, PGo better supports the evolution of such systems by pro-

viding a clear boundary between protocol specification and implementation

details due to its modular approach. P [4] is a domain-specific language for

asynchronous, event-driven programs. It was used successfully to build the

USB stack on Microsoft Windows 8. P and Modular PlusCal share the goal

of isolating implementation details that are not relevant for the model be-

ing checked. P# [7] is an evolution of that work: it supports modeling and

systematic testing of distributed systems. P# has been used in production at

Microsoft [8]; however, the developer needs to provide both an implemen-

tation and an abstract model of the components of the system that are not

under test to avoid state-space explosion.

Model Checking Implementations. Previous work has applied the idea of state-

space exploration directly to implementations of systems, as opposed to ab-

stractions of their behavior. VeriSoft [14] is a model checker for arbitrary C

programs that uses a stateless exploration algorithm combined with partial-

order reduction techniques to reduce the state space. MODIST [16, 38] ex-

tends the idea and is able to model check the implementation of distributed

systems. While both of these systems have the advantage of verifying ac-

tual implementations, the approach is subject to the state-space explosion

problem. PGo aims to allow model checking to remain efficient while still

providing many of the advantages that make checking implementations at-

tractive by automating the transition from an abstract model to a concrete

implementation.
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Chapter 9

Conclusion

In this thesis, we have proposed a technique to automatically generate implementa-

tions of distributed systems from models of their behavior in the Modular PlusCal

specification language. The process is built on the idea of matching components

defined abstractly in a model with concrete implementations that present the same

behavior. We also discussed how to preserve execution semantics of Modular Plus-

Cal; in particular, how to provide behavior equivalent to the atomic steps of TLA+

while allowing as much concurrency as possible, for performance reasons. Our

evaluation has shown that the current implementation is able to handle complex

specifications and generate implementations that satisfy the correctness properties

previously model-checked.

We are still working to make PGo a viable option for the development of prac-

tical distributed systems. In particular, we hope to provide better support for the

construction of fault-tolerant systems and to optimize the generated code and exe-

cution runtime to have performance closer to that of handwritten implementations.
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