
Datacenter Resource Scheduling for Networked Cloud
Applications

by

Nodir Kodirov

Master of Science, Konkuk University, 2010

Bachelor’s Degree, Tashkent University of Information Technologies, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

October 2021

c© Nodir Kodirov, 2021

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Datacenter Resource Scheduling for Networked Cloud Applications

submitted by Nodir Kodirov in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Computer Science.

Examining Committee:

Ivan Beschastnikh, Department of Computer Science, UBC
Co-supervisor

Alan J. Hu, Department of Computer Science, UBC
Co-supervisor

Margo Seltzer, Department of Computer Science, UBC
Supervisory Committee Member

Mike Feeley, Department of Computer Science, UBC
University Examiner

Sathish Gopalakrishnan, Department of Electrical and Computer Engineering, UBC
University Examiner

Additional Supervisory Committee Members:

Norm Hutchinson, Department of Computer Science, UBC
Supervisory Committee Member

ii

Abstract

Cloud computing is an integral part of modern life, which became increasingly

apparent during the COVID-19 pandemic. Applications that run on the cloud fa-

cilitate many of our daily activities, including education, retail, and high quality

video calls that keep us connected. These applications run on one or more Virtual

Machines (VM), where networked cloud applications can benefit from inter-VM

network bandwidth guarantees. For example, an entire class of network-intensive

big-data processing applications run more quickly with sufficient network band-

width guarantees.

However, offering inter-VM bandwidth guarantees creates challenges both for

resource allocation latency and datacenter utilization, because the resource sched-

uler must satisfy per-VM resource demands and inter-VM bandwidth requirements.

This dissertation demonstrates that it is feasible to offer inter-VM bandwidth

guarantees as a first class cloud service. We develop several algorithms that allow

efficient sharing of datacenter network bandwidth across tenants. These algorithms

maintain high datacenter utilization while offering low allocation latency. Specifi-

cally, we propose constraint-solver-based algorithms that scale well to datacenters

with hundreds of servers and heuristic-based algorithms that scale well to large-

scale datacenters with thousands of servers. We demonstrate the practicality of

these algorithms by integrating them into the OpenStack cloud management frame-

work. We also construct a realistic cloud workload with bandwidth requirements,

which we use to evaluate the efficiency of our resource scheduling algorithms.

We demonstrate that selling inter-VM network bandwidth guarantees as a ser-

vice increases cloud provider revenue. Furthermore, it is possible to do so without

changing cloud affordability for the tenants due to shortened job completion times

iii

for the tenant applications. Savings from the shortened VM lifetimes can be used

to cover the network bandwidth guarantees service cost, which allows tenants to

complete their job faster without paying extra. For example, we show that cloud

providers can generate up to 63% extra revenue compared to the case when they

do not offer network bandwidth guarantees.

iv

Lay Summary

Cloud computing is an integral part of modern life, which became apparent during

the COVID-19 pandemic. Applications that run on the cloud facilitate many of our

daily activities, including education, retail, and high quality video calls that keep us

connected. A subset of these applications rely on having sufficient network band-

width to function properly. This dissertation explores offering network bandwidth

guarantees as a first class cloud service. Specifically, it tries to answer these three

questions: Can we schedule network bandwidth efficiently? Can we integrate this

service into an existing cloud management framework? Can we justify the price of

this service? This dissertation answers “Yes” to all three questions, and presents i)

efficient datacenter resource scheduling algorithms, ii) a prototype of the solution

in OpenStack, and iii) a justified service price that maintains revenue neutrality for

the cloud provider without changing cloud affordability for the customers.

v

Preface

This dissertation includes one published work, which initially appeared at a con-

ference with an extended version published at a journal. Specifically, the material

in Chapter 2 was originally published as “Scalable Constraint-based Virtual Data

Center Allocation” at the International Joint Conference on Artificial Intelligence

(IJCAI), 2017 [30], and the extended version was published in the Artificial Intel-

ligence Journal (AIJ), 2020 [31], with the same title. This was a joint work with

Sam Bayless, Syed M. Iqbal, Ivan Beschastnikh, Holger H. Hoos, and Alan J. Hu.

I was the lead investigator along with Sam Bayless. In this work, I had the primary

role in formulating the problem and dataset and was heavily involved in designing

the experimental methodology and editing the manuscript. Sam Bayless imple-

mented the algorithms, conducted the experiments and wrote the manuscript. Syed

M. Iqbal developed Integer Linear Programming solver based algorithms.

Chapter 3 and Chapter 4 are based on unpublished work in collaboration with

co-authors Syed M. Iqbal, Marlon Ou, Shane Bergsma, Margo Seltzer, Alan J. Hu,

and Ivan Beschastnikh. In this work, I was the lead investigator. Syed M. Iqbal

was the lead investigator on the Integer Linear Programming parts and Marlon Ou

contributed heavily in developing the OpenStack prototype. Shane Bergsma pro-

vided datasets and guidance to make our implementation practical. Source codes

for these chapters are available in the dissertation artifact repository [81].

vi

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . vii

List of Tables . x

List of Figures . xi

Acknowledgments . xiv

Dedication . xvii

1 Introduction . 1

2 Constraint-solver-based VDC Scheduling 8
2.1 Related Work . 9

2.2 The Multi-path VDC Allocation Problem 13

2.3 NetSolver . 15

2.3.1 Encoding Multi-path VDC Allocation in ILP 15

2.3.2 Encoding Multi-path VDC Allocation in SMT 19

2.4 Evaluation . 26

2.4.1 Methodology . 27

vii

2.4.2 Comparison on Datacenters with Tree Topologies 28

2.4.3 Comparison on FatTree and BCube Datacenters 32

2.4.4 Comparison on Commercial Datacenters 36

2.4.5 Comparison to Virtual Network Embedding Approaches . 40

2.4.6 Allocation Robustness 42

2.5 Conclusions . 47

3 VDC Workload . 49
3.1 The Base Workload . 53

3.2 From VMs to VDCs: Gridiron Technique 55

3.2.1 VDC Topologies . 55

3.2.2 Peak VDC Sizes . 58

3.2.3 Parameterizing VDC Workload’s Network Load 58

3.2.4 Network-bound VM Allocation Failures 60

3.2.5 Avoiding Network-bound VM Allocation Failures 65

3.3 Case Study: Applying Gridiron Technique to ML Training 69

3.4 Related Work . 73

3.5 Conclusions . 75

4 VDC Scheduling in Practice . 77
4.1 Algorithms . 80

4.1.1 NOVAFILTER and NOVASIM 81

4.1.2 STARNET . 84

4.1.3 NETSOLVER . 87

4.1.4 STARNETLA . 89

4.1.5 Hybrid Algorithms . 91

4.2 Evaluation Methodology Overview 93

4.2.1 Datacenter Topologies 93

4.2.2 VDC Scheduler Simulator: VDCSIM 94

4.2.3 Revenue Gain Metric . 95

4.2.4 VM Pricing . 100

4.2.5 Virtual Network Bandwidth Guarantee Pricing 103

4.2.6 VDC Workloads for Scheduler Evaluation 111

viii

4.3 Evaluation Results . 113

4.3.1 STARNET . 115

4.3.2 NETSOLVER . 119

4.3.3 STARNETLA . 125

4.3.4 Hybrid Algorithms . 131

4.3.5 STARNETLA Optimality Approximation 133

4.3.6 OpenStack Prototype . 135

4.4 Related Work . 137

4.5 Conclusions . 139

5 Conclusions and Future Work . 141

Bibliography . 145

A Datacenters in a Private Cloud . 161

B VDC Workload Generation Pseudocode 164

C Datacenters with Jupiter Topology 169
C.1 Full Jupiter Topology . 169

C.2 Four-pod Jupiter Topology . 171

D VM Allocation Failures in Practice 174

ix

List of Tables

Table 2.1 VDC Scheduling Algorithms 9

Table 2.2 Notation in the Constraint Solving Equations 13

Table 3.1 Information Released in the Azure Trace 54

Table 3.2 Common Distributed DNN Training Applications 70

Table 3.3 Steps in the Gridiron Technique 72

Table 3.4 Production Cloud Workloads 74

Table 4.1 Resource Scheduling Algorithms 80

Table 4.2 Virtual Machine Pricing in Azure Cloud 101

Table 4.3 Latency Contribution of Different OpenStack Submodules . . . 137

Table C.1 Node Connectivity in Full Jupiter Datacenter Topology 170

Table C.2 Node Connectivity in Four-pod Jupiter Datacenter Topology . . 172

x

List of Figures

Figure 1.1 Example Datacenter Topology 2

Figure 1.2 Example Virtual Datacenter Allocation 3

Figure 2.1 Sample VDC Allocation . 16

Figure 2.2 Sample Max-flow Encoding in MONOSAT 20

Figure 2.3 Sample Multi-path Encoding in MONOSAT 23

Figure 2.4 Sample Multi-commodity Flow Constraints in MONOSAT . . 24

Figure 2.5 SAT Allocation in MONOSAT 25

Figure 2.6 VDC Topologies . 28

Figure 2.7 VDC Allocation Comparison on Small Tree Datacenter 29

Figure 2.8 Latency Comparison on Small Tree Datacenter 29

Figure 2.9 VDC Allocation Comparison on Big Tree Datacenter 30

Figure 2.10 Latency Comparison on Big Tree Datacenter 31

Figure 2.11 VDC Allocations Over Time on Big Tree Datacenter 32

Figure 2.12 VDC Allocation Comparison on FatTree Datacenter 34

Figure 2.13 Latency Comparison on FatTree Datacenter 34

Figure 2.14 VDC Allocation Comparison on BCube Datacenter 35

Figure 2.15 Latency Comparison on BCube Datacenter 35

Figure 2.16 VDC Allocations Over Time on FatTree and BCube Datacenters 36

Figure 2.17 VDC Allocations on a Commercial Datacenter with 1200 Servers 37

Figure 2.18 Latencies on a Commercial Datacenter with 1200 Servers . . 38

Figure 2.19 VDC Allocations on a Commercial Datacenter with 800 Servers 38

Figure 2.20 Latencies on a Commercial Datacenter with 800 Servers . . . 39

Figure 2.21 VDC Allocations Over Time on Commercial Datacenters . . . 40

xi

Figure 2.22 VDC Allocations with VNE Approaches on 1200 Servers . . 41

Figure 2.23 Latencies with VNE Approaches on 1200 Servers 41

Figure 2.24 VDC Allocations with VNE Approaches on 280 Servers . . . 42

Figure 2.25 Latencies with VNE Approaches on 280 Servers 43

Figure 2.26 Additional Allocations by NETSOLVER on FatTree Datacenter 44

Figure 2.27 Latencies of Additional Allocations on FatTree Datacenter . . 44

Figure 2.28 Additional Allocations by NETSOLVER on BCube Datacenter 45

Figure 2.29 Latencies of Additional Allocations on BCube Datacenter . . 46

Figure 3.1 Example VDC Application 50

Figure 3.2 VDC Topologies with Varying Connectivity 56

Figure 3.3 VDC Mutation Over Time 56

Figure 3.4 Peak VDC Sizes in the Base Workload 57

Figure 3.5 Example Datacenter with Four Racks 61

Figure 3.6 VDC Overpeering . 62

Figure 3.7 Effect of Colocation on Datacenter Network Bandwidth . . . 63

Figure 3.8 VDC Topologies . 66

Figure 3.9 Effect of Colocation on Datacenter Network Bandwidth . . . 67

Figure 3.10 Peak VDC Sizes in the ML Training Workload 71

Figure 4.1 OpenStack Architecture . 81

Figure 4.2 Oversubscribed Datacenter Spine 87

Figure 4.3 VDCSIM Architecture . 95

Figure 4.4 Example VDC Workload . 96

Figure 4.5 Revenue Gain Example . 99

Figure 4.6 Virtual Machine Pricing in Azure Cloud 101

Figure 4.7 Network Bandwidth Price in ML Training Application 105

Figure 4.8 Effect of Network Bandwidth Price 108

Figure 4.9 End-to-end Network Bandwidth Allocation Overhead 115

Figure 4.10 VM Allocation Latencies in STARNET 117

Figure 4.11 Revenue Gain with STARNET 118

Figure 4.12 VM Allocation Latencies with NETSOLVER 121

Figure 4.13 Four-rack Jupiter Datacenter Topology 122

xii

Figure 4.14 Resource Footprint of the Partial VDC Workload 123

Figure 4.15 Peak VDC Sizes in 3% and Full VDC Workloads 124

Figure 4.16 NETSOLVER’s Allocation Latencies with Two Batch Sizes . . 125

Figure 4.17 Revenue Comparison with STARNET and STARNETLA . . . 126

Figure 4.18 VM Allocation Latencies with STARNET and STARNETLA . 127

Figure 4.19 STARNETLA Performance with Different Retries 129

Figure 4.20 Datacenter Network Bandwidth Utilization Heatmap 129

Figure 4.21 STARNETLA vs. STARNETLAILP Revenue and Latency . . 131

Figure 4.22 Four Server Datacenter . 134

Figure 4.23 OpenStack Prototype Architecture 136

Figure A.1 US-West2 Datacenter Topology 162

Figure A.2 US-Mid1 Datacenter Topology 162

Figure A.3 US-Mid2 Datacenter Topology 162

Figure A.4 US-West1 Datacenter Topology 163

Figure C.1 Full Jupiter Datacenter Topology 170

Figure C.2 Four-pod Jupiter Datacenter Topology 171

xiii

Acknowledgments

I will summarize contributions to this dissertation chronologically, starting from

the beginning. Events and emotions are abridged.

1986 I was born to Mayram Mukhidinova and Khomidjon Kodirov.1

2001 I get puzzled by Sherzod Ashurov’s surprise with my ability to do fractions

at age 15. This happens at Gulbahor Pólatova’s math tutoring class.2

2002 I decide to become a scientist, for everything else seems boring. 3

2003 Gulbahor introduces Zafar Boltaev and Sherali Ochilov: my new heroes.4

2005 Anvar Mirzaev shows that math and computing are complementary.5

2006 I meet a fellow undergraduate student, Dilorom, who enters my life as a

friend, gets promoted to my wife, and promotes me to become a father.6

1I am eternally grateful to my parents for their unconditional love and trust, and the freedom to
choose my adventures. I am also blessed to have caring siblings, Jakhongir, Nargiza, Erkin, Akmal,
and Gulrukh. Being the fifth child in the family helped me to learn from my mistakes at an early age.
This skill served me well throughout my life, particularly during my PhD.

2Sherzod and Gulbahor started as my math idols and continue to be my close friends. I am also
lucky to have studied alongside Bahrom Barnoev and Jamil Kodirov: I dearly cherish the long nights
we spent solving math problems.

3Science inspirations are partly due to illuminative discussions between my father and a chemist
uncle, Orifjon Kodirov, during our regular family gatherings. The discussion topics included the
structure of atoms, the definition of infinity, the role of technology in life, and everything in between.

4Zafar helped me see the beauty of math, and Sherali made me feel the thrill of physics. I admire
Sherali’s dedication to educate many generations of scientists. He is one of my lifetime heroes.

5I was a sophomore undergraduate deciding on my major. Anvar, my undergraduate math instruc-
tor, showed how computer skills, such as programming in Fortran and Pascal, are useful in math. I
started there and still did not return to “pure” math. I thank Anvar for introducing me to computing.

6Dilorom, this dissertation, and many other achievements in my life, would not be possible with-
out you. You are the love of my life. Katherine and Feyn, my children and dear angels: you have been
a source of constant joy during my PhD. You are and will always be the center of my universe.

xiv

2008 I complete my bachelor’s with Rustam Khamdamov as my advisor.7

2010 I complete my master’s with Doohyun Kim as my advisor.8

2012 I made my first trip to North America (California, USA) and decided to

apply for graduate school on this continent.9

2013 I started my PhD at UBC.10

2014 I took Alan Hu’s Introduction to Formal Verification and Analysis class.11

2015 I get first-hand experience on the significance of datacenter networking for

cloud application performance during my internship at ZeroStack. 12

2016 Justine Sherry submits her dissertation.13

2017 Our constraint-based VDC allocation paper with Sam Bayless et al. gets

accepted at the International Joint Conference on Artificial Intelligence.14

7I thank Rustam for his continued support beyond my undergraduate degree. I also thank Jeisang
Jeon (Uluǵbek), who started as my Java instructor and continues to be my lifetime advisor and friend.

8I thank Doohyun Kim for his trust and support for me to become a researcher and for introducing
me to the systems research, particularly kernel development. I also thank members of the Embedded
Computing Lab, Dongwoon Jeon in particular, for making my studies at Konkuk University and life
in Korea pleasant. I am grateful to Christian Rinderknecht, who started as my instructor in functional
programming languages and continues to support me beyond my graduate degree. Christian’s love
of teaching and joy at research still inspires me. I also acknowledge the scholarship support from the
Institute of Information Technology Advancement (IITA), Korea.

9I thank Jaegi Lee for traveling with me and Taesang Choi for supporting this trip. Many other
team members, including Woojik Chun, Doyeon Kim, and Tae-Ho Lee, made my stay in ETRI (Elec-
tronics and Telecommunications Research Institute) enjoyable. Tae-Ho, thank you for being a mentor
and friend while in ETRI and beyond. I am lucky to have you as a friend.

I was also fortunate to be able to join another team in ETRI, and thank all members of this team,
including Soomyeon Pahk, Seonghyuk Byun, Changgyu Lim, and Sunme Kim.김선미팀장님,나를
받아주셔서감사합니다!

10I thank Andrew Warfield for starting as my advisor and handing me over to Ivan Beschastnikh.
Ivan, I am deeply grateful for your support during my PhD. Thank you for being there every time I
needed. I am looking forward to having you as a lifetime advisor and friend.

11Alan started as my class instructor to eventually become my co-supervisor. Alan, I will always
remember how you paused the class to ask how did my Research Proficiency Evaluation (RPE) go,
when I walked in late after my RPE. That made me feel valued. I also thank Alan for tireless Zoom
meetings to iterate on my earlier drafts: I am a better thinker, writer, and researcher thanks to you.

12I thank the entire ZeroStack team for a hands-on and fast-paced internship, particularly my
mentors Ajay Gulati, Kiran Bondalapati, Gautam Kulkarni, Ravikant Malpani, and Shane Gibson.

13I liked how Justine Sherry formatted the acknowledgments in her PhD dissertation [115], and I
decided to adopt it. Thank you, Justine, for letting me use your format!

14This was my first paper during my PhD and a confidence booster: I might actually be able to
get a PhD. I am grateful to all of my co-authors, including Holger Hoos, Syed M. Iqbal, Marlon
Ou, Shane Bergsma, and Fabian Ruffy. Sam, thank you for your research mentorship and heartfelt
friendship. My stay at UBC and in Canada was much more pleasant thanks to you.

xv

2018 Margo Seltzer joins UBC.15

2020 The Systopia Lab gets founded.16

2021 This dissertation is filed.

The work in this dissertation was developed in a collaboration between Systopia

and the Integrated Systems Design Laboratory (ISD). Projects described in this dis-

sertation and my PhD have been generously supported by several grants, both na-

tional and commercial. These include UBC four-year doctoral fellowship, Huawei,

NSERC Discovery, NSERC Create, and Microsoft Azure Cloud Sponsorship. Ivan

Beschastnikh acknowledges the support of the NSERC Discovery Grants (RGPIN-

2020-05203, RGPIN-2014-04870), and NSERC Engage Grant (EGP 514614-17).

15I am eternally grateful to Margo for taking me on as her student, joining my PhD committee, and
championing my work throughout the years. Margo, thank you for beating the hand-wavy scientist
out of me and accommodating my meeting requests even in non-ideal times. I am also grateful to two
other committee members: Norm Hutchinson and the late Bill Aiello. Norm, thank you for always
being a bearer of good news. I will always remember our surprising and uplifting morning walk to the
department on the day of my PhD proposal defense. Your presence always made me feel confident. I
am immensely grateful to Bill for encouraging me to have an independent research taste and opinion
of my own, regardless of the hot topics in the top conferences. This dissertation would not be possible
without that encouragement, and I dedicate this work to Bill.

16Systopia subsumes the Networks, Systems, and Security (NSS) Lab that I was part of and con-
nects other systems researchers across UBC and beyond. I thank many NSS and Systopia members
for creating a lovely environment, which included regular soccer games, ice-cream socials, research
presentation karaokes, and many other recharging activities. I made many friends from these. I thank
Mihir Nanavati, Shriram Rajagopalan, Jean-Sébastien Légaré, Patrick Colp, Yanyan Zhuang, Marjan
Alavi, David Williams-King, Kent Williams-King, Robert Jackson Sumi, Peter Chen, Lise Savard,
Fabian Ruffy, Clement Fung, Amanda Levin, Anand Jayarajan, Haley Li, Surbhi Palande, Puneet
Mehrotra, Tony Mason, Craig Mustard, Swati Goswami and other labmates for camaraderie. Mihir,
thank you for the countless late-night lab discussions about research, science, and life.

xvi

Dedication

To The Loving Memory of Bill Aiello

A Scientist With a Big Heart

xvii

Chapter 1

Introduction

The data center is now the computer.
— Luiz Barroso (2007) [105]

Cloud computing is an integral part of modern life, particularly amplified dur-

ing the COVID-19 pandemic. It powers remote education [85], health care [56],

retail [6] and many other industries [5] and keeps people connected over high qual-

ity video calls [4]. The broad use of cloud computing translates into a wide range

of applications running in cloud datacenters.

Cloud applications consume datacenter resources by allocating Virtual Ma-

chines (VM). Figure 1.1 shows a sample datacenter topology, composed of many

servers connected over a datacenter network. A VM includes a bundle of hardware

resources, such as CPU and RAM. This bundle has been expanding since the initial

days of cloud computing. For example, in 2006, Amazon Elastic Compute Cloud

(EC2) beta offered one-size-fits-all VMs with one virtual CPU (vCPU), 1.75 GB

of RAM, 160 GB of local disk, and 250 Mbps of network bandwidth [26]. How-

ever, today, there are many hundred VM types, also called VM flavors, and bundles

include diverse resources, such as SSD disks, GPUs, and accelerators [11].

The diversity in cloud resources is the product of the wide range of cloud appli-

cations deployed today: some run on a single VM, some require multiple VMs [16],

while others require multiple VMs connected over a virtual network [15]. Cloud

providers need to satisfy increasingly diverse application requirements and grow

their capacity to keep up with the volume of the resource demand.

1

… Leaf
Switches ToR0

server0

serverZ

…

ToR1

server0

serverZ

…

ToRY

server0

serverZ
…

Spine
Switches

SSW0 SSW1 SSW2 SSWX…

Servers

Figure 1.1: Example Datacenter Topology. The datacenter network has three
tiers that connect servers with CPU, RAM, and other local resources.

Multi-tenancy is the key factor that enables cloud providers to continuously

grow their datacenters in an economically sustainable way. Multi-tenancy allows

sharing datacenter resources across a large number of customers, or tenants. The

sheer scale of multi-tenancy allows providers to leverage economies of scale and

operate datacenters at high utilization. High utilization, in turn, not only enables

sustainable growth but also lowers tenant cost – further fueling cloud adoption.

Thus, providers strive to efficiently share datacenter resources across the tenants.

Cloud providers need to isolate tenant workloads from each other to have prac-

tical multi-tenancy. Without isolation, workloads interfere with each other and ren-

der the performance of cloud applications unpredictable [128]. In particular, ex-

isting studies on cloud performance show that it is impossible to offer predictable

application performance without network bandwidth guarantees [21, 128]. For ex-

ample, Ballani et al. model MapReduce-inspired cloud workloads, and show that

job completion time can be shortened by up to 9.2× had the cloud network per-

formance been sufficient [21]. Uta et al. generalize this for big data workloads and

demonstrate that these workloads suffer 25% to 50% performance loss due to un-

predictable cloud networking [128]. Moreover, recent works show that distributed

machine learning training applications converge more quickly, i.e., the training job

completes in a shorter time, when they are deployed with network bandwidth guar-

antees [63, 72, 106]. Providing cloud network bandwidth guarantees is one of the

main purposes of this dissertation.

We distinguish two aspects of isolation: scheduling and enforcement. Schedul-

ing is the focus of this dissertation and is about developing efficient algorithms to

2

psw1

w2

w3

2

Physical
Datacenter ToR1 ToR2

SSW2SSW1

 1 core
2 GB[]

 1 core
2 GB[]

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

Virtual
Datacenter

1 1 33

4 4 4

2

22

S1 S2 S3

 1 core
2 GB[] 1 core

2 GB[]
Figure 1.2: Example Virtual Datacenter (VDC) Allocation. The VDC runs

machine learning application. The top part shows a datacenter with three
servers, two top-of-rack (ToR) switches, and two spine switches (SSW).
Circled numbers on links denote available bandwidth in Gbps. The bot-
tom part shows a sample VDC with a parameter server VM (ps) and
three worker VMs (w1, w2, w3). Worker VMs connect to VM ps with
2 Gbps network bandwidth (shown in circles). VMs also require a cer-
tain number of CPU cores and RAM. The VDC gets allocated to the
datacenter, as illustrated with the dashed lines.

allocate datacenter resources across multiple tenants over time. Here, efficiency

means the scheduler is able to achieve high datacenter utilization while maintain-

ing low resource allocation latency. High datacenter utilization makes the cloud

more affordable. For example, the operators of the Azure cloud report that increas-

ing datacenter utilization by 1%, brings $100 million/year savings [62]. At the

same time, low latency improves a tenant’s cloud experience by shortening wait

times. Short wait times enable agile cloud application development.

In contrast to scheduling, enforcement is the mechanism to ensure that tenants

do not exceed their allocated resources. Isolation enforcement is addressed by vir-

tualization techniques, such as Xen [24], KVM [82] and Andromeda [42] and is

not the focus of this work.

A virtual datacenter (VDC) is a construct to provide isolation. It allows tenants

to run cloud applications with inter-VM network bandwidth guarantees. The VDC

3

includes a collection of VMs, along with the local resource requirements of each

VM (e.g., CPU and RAM), and inter-VM connectivity requirements [59]. As a

simple VDC application, consider distributed Machine Learning (ML) training,

which performs data-parallel model training [125]. In Figure 1.2, the VDC has

three worker VMs (w1, w2, and w3) that communicate model parameter updates to

the parameter server VM (ps). VDC bandwidth guarantees ensure that the model

parameter updates happen in a timely fashion, without getting blocked or delayed

due to network bandwidth scarcity between the worker and parameter server VMs.

Figure 1.2 shows VDC allocation on a 3-server datacenter. Here, a 4-node VDC

(bottom) is mapped onto a physical datacenter with three servers, two top-of-rack

(ToR) switches, and two spine switches (top). The VM placement is indicated with

dashed lines. For example, VM ps and VM w1 are placed on the same server

(colocated). At the same time, the virtual link ps-w2 is allocated in a multi-path

route where each path provides 1 Gbps network bandwidth. Although no major

cloud provider offers VDCs with inter-VM network bandwidth guarantees yet, one

can extend the existing cloud resource provisioning formats to support VDCs, e.g.,

by using AWS CloudFormation templates [13].

VDC allocation has two parts: local and cross-device resource allocation. Local

resource allocation is simpler from the scheduler’s perspective, because it reasons

only about a single device, such as CPU cores in a server. In this case, the sched-

uler just needs to find a server with sufficient CPU cores to accommodate the VM.

However, cross-device resource allocation, i.e., VDC network bandwidth guaran-

tees, is harder, because it involves reasoning about multiple devices. For example,

a VM-to-VM virtual link in a VDC, where peer VMs are allocated in two differ-

ent servers, such as VM ps and VM w3 in Figure 1.2, involves reasoning about

resources in server S1 and server S3 as well as every intermediate network node

between those two servers, such as ToR1, SSW1, SSW2, and ToR2. Thus, VDC

scheduling imposes an allocation latency challenge because multiple connected

VMs in the VDC might require cross-device resource allocation. For example, as

a datapoint from our baseline VDC scheduler in Section 4.1.2, a VM allocation la-

tency with only CPU and RAM was around 5 ms, while allocating a VM with one

virtual link took 32 ms. The VM allocation latency increases proportionally to the

number of virtual links in the VM. Thus, the main resource scheduling challenge

4

is to design a VDC scheduler that offers high datacenter utilization and low
resource allocation latency.

Thesis: Datacenter resources can be efficiently shared by using a VDC

scheduler. Here, efficiency means achieving high datacenter utilization

while maintaining practical resource allocation latency.

We make five contributions in support of the thesis:

1. Workload: We propose a new technique, Gridiron, to generate a realistic

VDC workload to evaluate VDC schedulers. The Gridiron technique aug-

ments an existing VM workload with network bandwidth requirements to

generate a VDC workload. The existing workload is from Azure cloud’s

production traces released with the Resource Central paper [40]. Our VDC

workload is the first publicly available production-based cloud workload

with inter-VM bandwidth requirements. Our VDC workloads and source

codes are available in the dissertation artifact repository [81].

2. Metrics: We propose revenue gain as the metric for evaluating VDC sched-

ulers. We demonstrate how the commonly used static packing metric cannot

accurately capture scheduler quality, and we propose an alternative, revenue

gain metric, that is better for scheduler evaluation. The static metric mea-

sures how many VDCs a scheduler is able to pack into an empty datacen-

ter until the scheduler is no longer able allocate a VDC. The revenue gain

metric measures the scheduler’s packing quality over time — not only until

the datacenter is filled but also for newly arriving requests to fill up the re-

sources freed by deallocations. The revenue gain captures what fraction of

an ongoing workload the scheduler accommodates in a given datacenter. For

example, cloud operators have the maximal revenue gain when a scheduler

fully accommodates the workload.

3. Algorithms: We develop several heuristic-based and constraint-solver-based

VDC scheduling algorithms. For our heuristic algorithms, we extend and

enhance the state-of-the-art VM scheduling algorithm of the popular cloud

management framework, OpenStack, to support virtual network bandwidth

5

guarantees. For our constraint-solver-based algorithms, we propose NET-

SOLVER. NETSOLVER is attractive because it offers completeness: a guar-

antee that the VDC gets allocated, if at all possible. Completeness can yield

higher datacenter utilization. Unfortunately, NETSOLVER does not scale to

realistic VDC workloads that require datacenters over 1,000 servers. Its VM

allocation latencies are prohibitively high, e.g., over 200 minutes for allocat-

ing a VDC with 10 VMs (20 minutes per VM) on a datacenter with 6,144

servers. Therefore, based on insights from NETSOLVER, we develop STAR-

NETLA: a heuristic algorithm that offers three order of magnitude lower VM

allocation latency while achieving comparable revenue gain to NETSOLVER.

4. Optimality: We define online and offline optimality for VDC scheduling al-

gorithms. In an online setting, the VDC scheduler processes requests in the

order they arrive, unaware of characteristics of future requests. In the offline

setting, the VDC scheduler is clairvoyant: it has full workload visibility and

can optimize VDC scheduling towards an objective, such as minimizing VM

allocation failures. We develop an Integer Linear Programming (ILP)-based

offline optimal VDC scheduling algorithm: ORACLE. Although it is impos-

sible to deploy ORACLE in practice, because clairvoyance is not realistic,

we use ORACLE to study how close our practical VDC schedulers are to the

theoretical optimal.

5. Prototype: We integrate our heuristic-based VDC scheduling algorithm into

OpenStack by extending OpenStack’s Nova scheduler. We demonstrate that

our enhancements are practical: Nova’s existing filtering-based scheduler ar-

chitecture can easily accommodate our enhancements. Moreover, our proto-

type shows that the extra latency introduced by end-to-end network band-

width scheduling is negligible. For example, in a one-node OpenStack de-

ployment, the added per-VM latency of 2.37 ms accounts for only 0.036%

of the total time required to allocate a VM.

This dissertation proceeds as follows. In Chapter 2, we propose constraint-

solver-based approaches for VDC scheduling. We show how our constraint solvers’

completeness property enables more static VDC allocations. In Chapter 3, we de-

scribe the Gridiron technique to generate realistic VDC workloads from a VM

6

workload. The realistic workloads overcome the limitations of the synthetic work-

loads that we used for evaluating constraint-solver-based approaches. In Chapter 4,

we study VDC allocation in practice by using realistic VDC workloads. We make

a case for offering network bandwidth guarantees as a first-class cloud service and

introduce the revenue gain metric for VDC scheduler evaluation. We also extend

state-of-the-art heuristic algorithms to perform end-to-end bandwidth allocation,

compare heuristic algorithms with their constraint-solver-based alternatives, and

study the algorithms’ optimality bounds. Finally, we show how we integrate our

schedulers into OpenStack. We discuss future work and conclude in Chapter 5.

7

Chapter 2

Constraint-solver-based VDC
Scheduling

The previous chapter introduced virtual datacenters (VDCs) and highlighted the

importance of achieving high datacenter utilization and low latency VDC alloca-

tion. In this chapter, we consider datacenter utilization as the primary objective and

explore using constraint solvers in scheduling VDCs, for they offer completeness:

the guarantee that they will allocate the VDC if it is at all possible.

Constraint-based techniques, such as Integer Linear Programming (ILP) and

SAT Modulo Theories (SMT), play a key role in state-of-the-art approaches for

challenging problems across a wide range of applications (e.g., [34, 35, 108, 111]).

We demonstrate how VDC scheduling can be tackled using constraint solvers such

as Gurobi [61] and MONOSAT [29]. We formalize VDC allocation in terms of

multi-commodity flows, allowing us to exploit the efficient handling of network-

commodity flow problems in Gurobi and MONOSAT. We implemented our ideas

in our constraint-based VDC scheduling algorithm, NETSOLVER.

NETSOLVER is reasonably scalable, sound, and complete, with support for

end-to-end, multi-path bandwidth allocation across all the layers of the network-

ing infrastructure, from servers to ToR switches to spine switches. NETSOLVER

efficiently allocates VDCs with up to 15 VMs to datacenters with up to 1,000

servers, typically in seconds per VDC allocation. Across a wide variety of dat-

acenter topologies, NETSOLVER can statically pack 150%− 300% as many total

8

Table 2.1: VDC Scheduling Algorithms. We compare the features of con-
temporary sound VDC allocation algorithms and four recent VNE algo-
rithms: GAR-SP/PS (and variant RW-MM), D-ViNE, and ASID, based
on linear programming, mixed integer programming, and subgraph iso-
morphism detection, respectively.

Algorithm Sound Comp-
lete

Multi-
path

Multi-
VM

VDC
Topology

Datacenter
Topology

SecondNet [59] X All All
Importance Sampling [122] X X All Tree
Oktopus [21] X X Star All
VDCPlanner [137] X X All All
HVC-ACE [112] X X X Hose All
GAR-SP/PS [134] X X X All <200 nodes
RW-MM-SP/PS [37] X X All <200 nodes
D-ViNE [38] X X All <200 nodes
ASID [87] X All <200 nodes
VirtualRack [67] X X Hose All
Z3-AR [135] X X X All Tree

NETSOLVER (this work) X X X X All All

VDCs in the same datacenter as SecondNet’s VDCAlloc algorithm [59], a state-of-

the-art heuristic method. (However, as we demonstrate in Chapter 4, NETSOLVER

does not scale to realistic datacenter sizes and VDC workloads. In Chapter 4, we

explore more scalable alternatives.)

2.1 Related Work
Table 2.1 summarizes prior work with respect to features of VDC allocation that are

relevant to modern datacenters. As we can see, all prior approaches have important

limitations relative to NETSOLVER.

Soundness: Sound VDC allocation tools respect end-to-end bandwidth guaran-

tees, while unsound tools attempt to minimize datacenter network traffic only

without guaranteeing that VMs will have sufficient dedicated bandwidth. Ex-

amples of unsound approaches to VDC allocation include Kakadia et al. [75]

and Meng et al. [93], which dynamically identify VM communication pat-

terns through network traffic analysis.

9

This prior work is in contrast to the approaches proposed in this disserta-

tion, all of which are sound and assume that VDCs and their communication

requirements are explicitly known to the scheduler.

Completeness: Most VDC allocation tools that respect bandwidth guarantees are

incomplete: they can fail to find feasible VDC allocations in cases where

such allocations exist (even when given unlimited runtime). Oktopus [21],

VDCPlanner [137], and SecondNet [59] are examples of incomplete allo-

cation algorithms. For example, SecondNet’s algorithm is greedy in that it

maps VMs to servers before checking for available paths, and allocates band-

width one path at a time; if either of these steps fails, VDC allocation fails.

(SecondNet will try this process several times on different subsets of the

datacenter before giving up, which does not change its incompleteness.)

Similarly, Hadrian [23], Cicada [83], and CloudMirror [84] use incomplete

greedy heuristic algorithms that attempt to colocate VMs of the VDC in

the smallest physical datacenter sub-tree.1 Pulsar [10] uses Hadrian’s VDC

allocation algorithm and extends it to accommodate VM-appliances (such as

SSDs and encryption devices).

HVC-ACE [112] is complete when VDC “bandwidth requirements are negli-

gible”, which assumes that datacenter network bandwidth is overprovisioned

so that no VDC can fail due to bandwidth scarcity. This assumption does not

hold in our setting: VDC allocations fail due to bandwidth scarcity. Thus,

HVC-ACE [112] is incomplete for our setting. In general, Rost et al. [112]

propose several other VDC allocation algorithms, including VC-ACE, that

are complete but make two simplifying assumptions: 1) VDC VMs have

identical bandwidth requirements and 2) VM-to-server assignments are al-

ready fixed. These assumptions do not hold in our VDC allocation setting

and we exclude these algorithms from our study.

D-ViNE and its variant R-ViNE (not shown) proposed by Chowdhury et al.

1NETSOLVER uses max-flow (and additional constraints) for achieving completeness and multi-
path allocations to place VMs with end-to-end network bandwidth guarantees. Hadrian also uses
max-flow. However, they use it for a completely different sub-problem. They use max-flow for com-
puting bounds on link bandwidth to decide bandwidth constraints on their hose model [22, 23].

10

[38] are also incomplete because only a subset of physical nodes (servers)

are considered to be “feasible” for placing a virtual node (VM). Feasibility

is decided based on the “location” requirement of the VM relative to other

VMs in the VDC. The location requirement prevents all datacenter servers

from getting included in the feasible region, which reduces the search space

but also makes the algorithms incomplete because they miss potential valid

VM placements outside the feasible region.

In contrast with this prior work, the constraint-based approaches described

in Yuan et al. [135] and NETSOLVER are both complete: they are guaranteed

to (eventually) find a feasible allocation if one exists. We show in our ex-

periments that completeness does not merely represent a theoretical benefit

but can translate into more VDC allocations. NETSOLVER is the first sound

and complete VDC scheduler that can be applied to any VDC and datacenter

topology without simplifying abstractions.

Multi-path Allocations: Many datacenters use multi-path allocations to maxi-

mize bandwidth and to provide fault-tolerance and load-balancing [3, 109].

Lack of multi-path support in traditional L2/L3-based networks was a pri-

mary motive for datacenter operators to develop networking stacks with

multi-path support [9, 42, 117].

Despite the increasing importance of multi-path routing, to the best of our

knowledge, there is only one previous VDC scheduler that supports multi-

path communication between VMs: HVC-ACE [112], a sound but incom-

plete scheduler that uses a hose model for VDCs (we describe hose mod-

els below). There are also several incomplete algorithms for virtual network

embedding that have support for multi-path allocation for smaller physical

networks with 50-150 servers [37, 38, 134]. NETSOLVER is the first sound

and complete multi-path VDC scheduler.

Multi-VM Allocations: Some tools simplify VDC placement by assuming that

the VMs in a VDC must all be placed on separate servers. For example,

SecondNet [59] uses bipartite graph matching to assign VMs to servers; as a

result, it can place only a single VM per server when allocating a given VDC.

11

Similarly, VirtualRack’s [67] virtual tree abstraction places each VM into

a separate leaf node server. D-ViNE [38] uses mixed-integer programming

to perform virtual network embedding, but their encoding does not support

allocating multiple virtual nodes per server.

In many cases, it can be advantageous to place multiple VMs on one server,

since communication between the colocated VMs is cheap. Multi-VM place-

ment is useful to take advantage of data locality between VMs and can

be explicitly requested by a tenant. Conversely, a tenant may want single-

VM placement for higher fault tolerance. For example, VMs hosting differ-

ent database replicas can be assigned to different servers to decrease fate-

sharing. By default, NETSOLVER performs multi-VM placement. However,

NETSOLVER also supports anti-affinity constraints as well as other advanced

placement options, which can be used to force some or all of the VDC VMs

to be placed on disjoint servers [31].

Unrestricted Topologies: Many VDC schedulers simplify the problem, either by

abstracting VDC topologies into simpler ones that are easier to allocate, or

by restricting the physical datacenter to simpler topologies. For example,

the abstraction-refinement encodings from Yuan et al. [135] apply only to

tree-topology datacenters. Oktopus [21] abstracts VDCs into virtual clus-

ters, which are VMs connected to a central virtual switch in a star topology.

VirtualRack [67], HVC-ACE [112], and Hadrian [23] use a less-restricted

hose model [48] abstraction for VDCs: A hose model allows one to spec-

ify only aggregate, rather than pairwise, bandwidth requirements for virtual

machines — that is, each VM is guaranteed a certain amount of ingress and

egress bandwidth into the VDC network as a whole, but is not guaranteed

to have any specific amount of bandwidth to any specific VM. Hose models

generalize the star-topology used in Oktopus, but cannot, for example, model

virtual networks that include cycles or (non-trivial) trees. NETSOLVER is the

first sound and complete VDC scheduler that supports arbitrary VDC and

datacenter topologies.

As observed by Ballani et al. [23], VDC allocation is closely related to vir-

tual network embedding (VNE) [32, 52]. The VNE literature, however, has fo-

12

Table 2.2: Notations in the Constraint Solving Equations.

Notation Description

S The set of servers in the datacenter.
N The set of network switches in the datacenter.
L The set of network edges in the datacenter.
R Virtual network bandwidth requirements in a VDC, e.g., R(v,w) = 1

means that VM v and VM w are connected with 1 unit of bandwidth.
A VM to server assignment, e.g., A(v) = s means that VM v is placed on the

server s.
B Bandwidth assignment to link, e.g., Bv,w(l) = 1 means that there is 1 unit

of bandwidth from VM v to VM w on link l where l ∈ L.
V M VMs in a VDC.
V VMs placed on a server, e.g., V (s) represents all VMs placed on the

server s. Formally, V (s) = {v ∈ VM | A(v) = s}.

cused on allocating virtual networks onto substrate networks that are represen-

tative of medium-sized ISPs, with 50–150 servers and few or no intermediate

switches. For example, recent VNE tools: GAR-SP/PS [134], RW-MM-SP/PS [37],

D-ViNE [38], ASID [87], and ALEVIN [51] all fall into this range. In contrast,

work on VDC allocation has typically focused on allocating to larger physical net-

works with topologies representative of typical datacenters, often with thousands

(or even hundreds of thousands) of servers, along with intermediate switches [25,

59]. Therefore, even though the problem definitions in the VNE and VDC literature

often overlap, VDC tools have made different trade-offs to focus on scalability. We

compare NETSOLVER to several representative VNE approaches in Section 2.4.5

and confirm that these tools perform poorly on typical VDC instances.

2.2 The Multi-path VDC Allocation Problem
We formalize the multi-path VDC allocation problem. Table 2.2 has our notation.

The multi-path VDC allocation problem is defined as follows. We are given

the description of a physical datacenter (DC) and a virtual datacenter (VDC). The

DC is specified through a set of servers S, switches N, and a directed graph with

vertices (S∪N) and edges L. The graph edges represent network links in a data-

center with capacities c(i, j) for each link in L. The VDC consists of a set of virtual

13

machines, VM, and a function R : VM×VM 7→Z+ that specifies bandwidth require-

ment between those machines. For each server s ∈ S, we have CPU core and RAM

capacity specifications, cpu(s) and ram(s), and for each virtual machine v ∈ VM,

we are given CPU core and RAM requirements, cpu(v) and ram(v).

The objective in the multi-path VDC allocation problem is to find an assign-

ment A : VM 7→ S of virtual machines to servers S along with an assignment of non-

negative bandwidth Bv,w(l) to links l ∈ L for each bandwidth requirement R(v,w),

where v,w ∈V M, satisfying the following constraints:

• Local VM allocation constraints (L) ensure two properties: First, that each

virtual machine is assigned to exactly one server:

∀v ∈V M :

(
∑
s∈S

(
A(v) = s

))
= 1

Secondly, that each server provides sufficient CPU and RAM resources to

accommodate the requirements of all VMs allocated to it:

∀s ∈ S :

((
∑

v∈V (s)
cpu(v)

)
≤ cpu(s)

)
∧
((

∑
v∈V (s)

ram(v)

)
≤ ram(s)

)
,

where V (s) = {v ∈ VM | A(v) = s}.
Resource requirements are modeled using integer values, and VMs do not

share resources.

• Global bandwidth allocation constraints (G) ensure that sufficient band-

width is available in the physical datacenter network to satisfy all bandwidth

requirements between pairs of VMs. We formalize this by requiring that for

all (v,w) ∈ V M, the bandwidth assignments Bv,w(l) must form a valid net-

work flow with its source at A(v) and its sink at A(w). Further, we require

that the value of that network flow be greater than or equal to the required

bandwidth R(v,w), and that none of the link capacities l in the physical dat-

acenter network is exceeded: ∀l ∈ L : ∑(v,w)∈V M Bv,w(l) ≤ c(l). Bandwidths

are represented by integer values; bandwidth between VMs allocated on the

same server (colocated) is unlimited.

14

It has been previously observed [38, 60, 121, 134] that when allowing multi-path

(also called path-splitting), the global bandwidth allocation constraints give rise to

a multi-commodity flow problem, which is NP-complete even for undirected in-

tegral flows [50]. Conversely, any multi-commodity flow problem maps directly

into bandwidth constraints above, establishing the NP-hardness of the multi-path

VDC allocation problem [38]. In principle, this multi-commodity flow problem

can be solved efficiently via linear programming for real-valued flows, but this

approach does not support the local VM allocation constraints. Approaches that

express the global constraints as a linear program therefore either require an ad-

ditional mechanism to perform local server allocation [134] or use mixed integer

programming [38].

2.3 NetSolver
Previous work on constraint-based VM placement used techniques from two meth-

ods: Integer Linear Programing (ILP) and SAT modulo Theories (SMT). We now

describe how VDC allocation can be implemented and efficiently solved using ei-

ther Gurobi, a state-of-the-art ILP solver [61], or MONOSAT, an SMT solver with

support for network flows [29].

2.3.1 Encoding Multi-path VDC Allocation in ILP

ILP solvers are commonly used for solving maximum flow and multi-commodity

flow problems and are widely cited in the literature for that use-case, across a broad

range of applications, such as reducing travel distance in dynamic route guidance

[76] and minimizing travel distance to reconnect partitioned mobile sensors [118].

CPLEX and Gurobi, for example, are able to automatically recognize properly en-

coded multi-commodity flow problems and handle them using special-cased tech-

niques [61, 70]. The details of how these solvers handle flow problems are propri-

etary, but examples of such approaches are discussed in the literature [90].

The local and global constraints L and G defined in Section 2.2 are directly

expressible as ILP constraints. We describe these fully below:

For each v∈V M and each s∈ S, we introduce a binary variable Av,s to represent

whether v is placed on s. In other words, A(v,s) = 1 if VM v is assigned to server

15

Physical
Datacenter

Virtual
Datacenter 3y z

ToR

r
3

q

3

x 2

p

2

Figure 2.1: Sample VDC Allocation. Dashed lines indicate VM placement
where the source VM y and the first destination VM x are placed on
server p, and the second destination VM z is placed on server q. We call
VM x and VM y colocated VMs.

s, A(v,s) = 0 otherwise. For example, in Figure 2.1, A(x, p) = 1, A(x,q) = 0, and

A(x,r) = 0. We then add a cardinality constraint to enforce that each VM is placed

on exactly one server:

∀v ∈V M :

(
∑
s∈S

Av,s

)
= 1

Then, we enforce the constraints for CPU and RAM resources:

∀s ∈ S :

(
∑

v∈V M
Av,s · cpu(v)

)
≤ cpu(s)

∀s ∈ S :

(
∑

v∈V M
Av,s · ram(v)

)
≤ ram(s)

Together, the above constraints enforce the local constraints L.

Similarly, we directly encode the global constraints G as multi-commodity flow

constraints: For each v,w ∈ V M, and each link l = (i, j) ∈ L, we introduce a non-

negative integer variable Bv,w(l), representing the bandwidth on link l consumed

by the virtual link (v,w). We then assert that for each physical link, the sum of

bandwidth consumed by all virtual links (vlinks) does not exceed the capacity of

that physical link:

∀(i, j) ∈ L :

(
∑

(v,w)∈V M
(Bv,w(i, j))

)
≤ c(i, j)

16

Next, we enforce network flow constraints on the switches. Since VMs cannot

be placed on switches N, this simply enforces that the ingress flow (i,n) equals the

egress flow (n, j) for each switch n ∈ N and each vlink (v,w). Formally:

∀(v,w) ∈V M,∀n ∈ N : ∑
(i,n)∈L

Bv,w(i,n) = ∑
(n, j)∈L

Bv,w(n, j) (2.1)

where i and j can be a server (i, j ∈ S) or a switch (i, j ∈ N) because switches can

connect to servers as well as other switches. For example, a top-of-rack switch

in Figure 1.2 connects to servers and spine switches (page 3). In other words, this

constraint enforces flow conservation on the switches, which is more apparent if

we transform Equation 2.1 as follows:

∀(v,w) ∈V M,∀n ∈ N : ∑
(n, j)∈L

Bv,w(n, j)− ∑
(i,n)∈L

Bv,w(i,n) = 0 (2.2)

Informally, the equation above says that the difference between switch egress traf-

fic and switch ingress traffic is zero. This must hold because switches neither pro-

duce nor consume any traffic. Hence, flows are conserved.

Similarly, network flow constraints on servers enforce flow conservation on

each server. Intuitively, the flow conservation rule in Equation 2.2 should hold on

each server, unless the server produces or consumes traffic. Given that servers do

produce (or consume) traffic when VMs are placed on them, the server flow conser-

vation constraints should account for the VMs placed on the servers. Specifically,

the net egress (or ingress) traffic from each server should be equal to the differ-
ence between traffic produced (or consumed) by the source VMs on that server

and traffic consumed (or produced) by the destination VMs on that server. We add

two extra terms to capture the server egress traffic (R(v,w) ·Av,s) and the server

ingress traffic (R(v,w) ·Aw,s). Here, v is the source VM (traffic producer) and w is

the destination VM (traffic consumer):

∀(v,w) ∈V M,∀s ∈ S : ∑
(s, j)∈L

Bv,w(s, j)− ∑
(i,s)∈L

Bv,w(i,s)=R(v,w)·Av,s−R(v,w)·Aw,s

(2.3)

Note that this equation also embodies VM colocation, as shown with VM x and

17

VM y in Figure 2.1. In this case, the server that acts as the traffic producer is also

the traffic consumer. We demonstrate an example of this equation by applying it to

the VDC allocation shown in Figure 2.1.

Equation 2.3 enforces server flow conservation by instantiating the constraints

for each vlink and each server. The example VDC allocation shown in Figure 2.1

has three servers and two vlinks: (x,y) and (y,z). Thus, six instances of this equa-

tion are given to the ILP solver for enforcing server flow conservation. We show

the expansion of Equation 2.3 for only one instance, when vlink (v,w) = (y,z) and

server s = p, and omit other instances for brevity:

∑
(p, j)∈L

By,z(p, j)− ∑
(i,p)∈L

By,z(i, p) = R(y,z) ·Ay,p−R(y,z) ·Az,p (2.4)

We transform the left side of the above equation by applying

L = {(p,ToR),(ToR, p),(q,ToR),(ToR,q),(r,ToR),(ToR,r)}:

∑
(p, j)∈L

By,z(p, j)− ∑
(i,p)∈L

By,z(i, p) = By,z(p,ToR)−By,z(ToR, p) = 3−0 = 3 (2.5)

Note that we made this transformation by omitting the irrelevant physical links.

For example the (p, j) edge cannot get assigned value (q,ToR) because the (p, j)

expression requires the first node of the physical link to be p. There is only one such

edge (p,ToR) in the datacenter shown in Figure 2.1. Now we transform the right

side of the Equation 2.4 by using R(y,z) = 3, Ay,p = 1, R(y,z) = 3, and Az,p = 0:

R(y,z) ·Ay,p−R(y,z) ·Az,p = 3 ·1−3 ·0 = 3 (2.6)

This shows that Equation 2.4 holds, because both the left side (Equation 2.5)

and the right side (Equation 2.5) have the same value (3). Thus, we conclude that

the server flow conservation constraints are satisfied per Equation 2.3 for vlink

(y,z) and server p. In other words, this example shows that the net egress traffic (3)

from server p is equal to the difference between traffic produced (3) by the source

VM y on that server and traffic consumed (0) by the destination VM z on that server.

Similar constraints are built for the remaining five instances of Equation 2.3: for

vlink (y,z) on servers (q,r) and for vlink (x,y) on servers (p,q,r). Combined, these

18

six instances fully enforce flow conservation on the servers.

Gurobi has the ability to incrementally re-solve a system of equations after

changing the coefficients. In the above equations, the constants that define the re-

source requirements and bandwidth requirements of the VDC and that define the

capacities of each server and physical link in the datacenter network appear as con-

stants. So long as there is a bound on the number of VMs per VDC, the same set of

constraints can be re-used for subsequent allocations, after updating each of those

constant values appropriately, e.g., to subtract used bandwidth from the capacities

of the links of the datacenter network or to alter the bandwidth requirements be-

tween two VMs. Our implementation makes use of this incremental solving capa-

bility when encoding successive VDC allocations; doing so results in a substantial

performance improvement. As we will describe in the next section, the MONOSAT

back-end for NETSOLVER takes similar steps to avoid having to re-encode the full

constraints after each allocation.

In summary, we demonstrated how our ILP model encodes VDC allocation as

a set of constraints. We combined CPU and RAM resource constraints and cardi-

nality constraint to encode the local constraints, L. We encoded global constraints,

G, using multi-commodity flow constraints that combine network flow constraints

on switches and servers. Given that a datacenter consists of switches and servers,

these constraints together enforce flow conservation on the entire datacenter.

2.3.2 Encoding Multi-path VDC Allocation in SMT

In contrast to ILP solvers, SMT solvers have not traditionally been applied to large

multi-commodity flow problems. As a result, techniques for handling network flow

problems efficiently in SMT are less mature and require some additional discus-

sion. We now describe how MONOSAT [29] can be used to solve practical multi-

commodity network flow problems.

MONOSAT is an SMT solver that extends quantifier-free first-order Boolean

logic with highly efficient, built-in support for a wide set of finite monotonic predi-

cates [29]. In particular, MONOSAT has built-in predicates for (single-commodity)

s-t maximum flow. While this does not directly provide support for multi-commodity

flows, we show that by expressing multi-commodity flows as a combination of

19

q

p r

(c(p, q) > c(q, r))∧
(c(q, r) + c(p, r) = 2)∧

(maxFlowp,r ≥ 2)

(a) Directed graph G (b) Formula to satisfy (c) Satisfying flow/capacity

c(p,q) c(q,r)

c(p,r)

q

p r

1/2 1/1

1/1

Figure 2.2: Sample Max-flow Encoding in MONOSAT: (a) Example sym-
bolic graph, with variable capacities c(i, j) on each edge, (b) a formula
constraining the graph, (c) a solution for the edge capacities, as well as
a flow assignment to each edge that satisfies the max-flow constraint.
The solution is presented as flow/capacity, e.g., 1/2 means that the edge
capacity is 2 and the flow consumes 1 unit of bandwidth on that edge.

single-commodity maximum flow predicates, we can use MONOSAT to solve large

multi-commodity flow problems: a first for SMT solvers. By combining this en-

coding for the global constraints G with a pseudo-Boolean encoding of the local

constraints L, we are able to do multi-path VDC allocation with MONOSAT.

Intuitively, a finite monotonic predicate is a predicate for which increasing the

value of its arguments can never change the value of the predicate from true to

false, e.g., adding links to a network can only increase the connectedness of the

network. MONOSAT supports many common graph constraints, such as reacha-

bility, shortest paths, minimum spanning trees, and (single commodity) maximum

flows. MONOSAT also supports a subset of the theory of fixed-width bitvectors.

MONOSAT accepts formulas with one or more directed symbolic graphs, each

of which is composed of a fixed set of nodes and symbolic edges (i, j). Each edge

has an integer capacity, c(i, j), which may be either a constant or a variable (a

fixed-width bitvector). Finally, MONOSAT supports a number of common graph

predicates, of which only one is relevant here: maxFlows,t,G ≥ f, where G is a di-

rected graph, s and t are nodes in G, and f is a constant integer or a bitvector term.

This predicate is true if and only if the maximum s-t flow in G, under assignment

to the edge capacities associated with G, is greater or equal to f .

As an example, consider the directed graph G shown in Figure 2.2(a), with

variable integer capacities c(i, j), and the formula in Figure 2.2(b). In this example,

MONOSAT finds edge capacities that satisfy the constraints and also produces a

20

flow satisfying the maximum flow predicate in Figure 2.2(c).

In the remainder of this section, we first describe how we model integer-value

multi-commodity flow in terms of the built-in maximum flow predicates supported

by MONOSAT; then we show how to use these multi-commodity flow constraints

to express VDC allocation. More extensive discussion about MONOSAT can be

found in Bayless et al. [29] and Sam Bayless’s PhD dissertation [28].

Multi-commodity Flow in MONOSAT

There are many obvious ways to encode multi-commodity flows in SMT solvers.

However, to the best of our knowledge, the one we present here is the only SMT

encoding to scale to multi-commodity flow problems with thousands of nodes, i.e.,

datacenters with over 1000 servers and switches.

Given an arbitrary directed graph G = (V,E), an integer capacity c(i, j) for

each edge (i, j) ∈ E, and a set of commodity demands K, where a commodity

demand k ∈ K is a tuple (sk, tk,dk), representing an integer flow demand of dk from

source sk ∈V to target tk ∈V , the integral multi-commodity flow problem is to find

a feasible assignment of flows fk(i, j) such that each demand dk is satisfied, while

for each edge (i, j) the total flow of all demands (summed) is at most c(i, j):

fk(i, j)≥ 0, ∀(i, j) ∈ E,k ∈ K

∑
k∈K

fk(i, j)≤ c(i, j), ∀(i, j) ∈ E

∑
j∈V

fk(i, j)−∑
j∈V

fk(j, i) =


0, if i /∈ {sk, tk}
dk, if i = sk

−dk, if i = tk

,∀i ∈ E,∀(sk, tk,dk) ∈ K

We instantiate symbolic graphs G1..|K| with the same topology as G. We set

the capacities of each edge (i, j)k ∈Gk to a new integer variable, c(i, j)k, with con-

straint 0≤ c(i, j)k ≤ c(i, j). Next, we assert that the capacities in each graph sum to

no more than the original edge capacity: ∑
|K|
k=1 c(i, j)k ≤ c(i, j). Together, these con-

straints partition the original capacity graph into |K| separate graphs, one for each

demand. To complete the encoding, for each commodity demand (sk, tk,dk), we use

MONOSAT’s built-in maximum flow constraints to assert that the maximum sk–tk

21

flow in Gk is at least dk.

In our formulation, we explicitly enforce only that the maximum sk–tk flow in

Gk is ≥ dk, as opposed to enforcing that the maximum flow is exactly dk. Notice

that a flow that is greater than dk will necessarily contain a flow that is equal to dk,

and that an exact dk flow can easily be recovered if necessary (e.g., with one extra

application of any standard maximum flow algorithm). Alternatively, an extra, ex-

ternal “source” node can be added to the graph, with exactly one edge of capacity

dk leading to the original source node from this new, extra “source” node. This will

ensure that the maximum possible sk–tk flow is at most dk. We implement our con-

straints in this way to improve the performance of the underlying constraint solver.

In MONOSAT, it is typically more efficient to enforce one-sided (>,≥,≤,<) con-

straints, rather than two-sided (=, 6=) constraints, because all theory predicates in

MONOSAT must be monotonic, so equality needs to be implemented as two (indi-

vidually monotonic) one-sided comparisons.

Multi-path VDC Allocation in MONOSAT

We now show how the global and local constraints described in Section 2.2 can

be encoded into MONOSAT and used to perform VDC allocation. As a running

example, we consider a small VDC and datacenter illustrated in Figure 2.3. Note

that for readability, our examples are much smaller than the ones we consider in

our evaluation (Section 2.4).

The global constraints G can be encoded as a multi-commodity flow as de-

scribed earlier, with up to |VM|2 commodity demands (one for each bandwidth

tuple (u,v,bandwidth) ∈ R). However, we can greatly improve on this by merg-

ing bandwidth constraints that share a common source into a single commodity

demand: Given a set of bandwidth constraints (u,vk,bandwidthk) ∈ R with the

same source u, we can convert these into a single commodity demand, by adding

an extra node w 6∈ VM, along with edges (vk,w) with capacity bandwidthk. The

commodity demands (u,vk,bandwidthk) can then be replaced by a single com-

modity demand (u,w,∑k bandwidthk). As there are at most |VM| distinct sources

in R, this reduces the number of demands from |VM|2 in the worst case to |VM|
demands. Converting a single-source, multi-destination flow problem into a single-

22

3 1

2
1 core[]

2

 1 core[]

 1 core[]

y

x

z

(a) ToR

p q

4 4 4 4

 2 core[] 2 core[]

(b)

Figure 2.3: Sample Multi-path Encoding in MONOSAT: (a) A VDC with
three VMs, and four directed bandwidth constraints. In this example,
each VM requires 1 core and has no RAM requirements. VM x requires
3 Gbps of outgoing bandwidth to VM y and 2 Gbps to VM z. VM z also
has bandwidth requirements to VM x and y, while VM y requires no
outgoing bandwidth. (b) A datacenter with two servers and one Top-of-
Rack (ToR) switch. Each server has 2 cores, and has 4 Gbps of band-
width available to and from the switch.

source, single-destination maximum flow problem is a well-known transformation

and safely preserves the maximum possible flow to each destination.

In our example from Figure 2.3, the VDC has four directed bandwidth re-

quirements, but only two distinct bandwidth sources (VM x and VM z). We can

safely merge these four bandwidth requirements into two multi-commodity flow

constraints. We construct two graphs (shown in Figure 2.4), G1 and G2. For each

v ∈ VM and each server s ∈ S, we add a directed symbolic edge evs from v to

s with unlimited capacity to G; this edge controls the server to which each VM

is allocated. Next, we assert (using a cardinality constraint) that for each VM

v, exactly one edge evs is enabled, so that the VM is allocated to exactly one

server: ∀v ∈ VM : ∑s evs = 1. Using the multi-commodity flow encoding described

above, we assert that the multi-commodity flow in G satisfies (u,v,bandwidth)

for each commodity requirement. The above constraints together enforce global

constraints G; to enforce local constraints L, we use pseudo-Boolean constraints

(using the efficient SAT encodings described in Eén and Sorensson [49]) to assert:((
∑v cpu(v)≤ cpu(s)

)
∧
(

∑v ram(v)≤ ram(s)
))

, i.e., that the set of VMs allocated

to each server (which may be more than one VM per server) will have sufficient

CPU core and RAM resources available on that server. Together these assertions

enforce constraint set L from our problem definition. A satisfying solution to our

running example, implementing all of the above constraints, is shown in Figure 2.5.

23

Maximum flow from x to " in G1 is ≥ 5

ToRG1

p q

c(p, ToR)1

c(ToR, p)1

c(ToR, q)1

x y

exp
exq

eyp eyq

ezp

ezq

z

w

c(q, ToR)1

3 2

ToRG2

p q

y

exp
exq

eyp eyq

ezp

ezq

z

w1 2

c(p, ToR)2

c(ToR, p)2

c(q, ToR)2

c(ToR, q)2

(exp ∨ exq) ∧ (eyp ∨ eyq) ∧ (ezp ∨ ezq)

(¬exp ∨ ¬exq) ∧ (¬eyp ∨ ¬eyq) ∧ (¬ezp ∨ ¬ezq)
(¬exp ∨ ¬eyp ∨ ¬ezp) ∧ (¬exq ∨ ¬eyq ∨ ¬ezq)

c(p, ToR)1 + c(p, ToR)2 ≤ 4

c(ToR, p)1 + c(ToR, p)2 ≤ 4

c(q, ToR)1 + c(q, ToR)2 ≤ 4

c(ToR, q)1 + c(ToR, q)2 ≤ 4

G1.maxflow(x,w) ≥ 5

G2.maxflow(z, w) ≥ 3

Each VM is assigned to a server

Maximum flow from z to " in G2 is ≥ 3

Capacities on each physical edge sum to ≤ c

Each server has sufficient CPUs for its VMs

No VM is assigned to more than 1 server

(1)

(2)

(3)

(4)

(5)

(6)

x

Figure 2.4: Sample Multi-commodity Flow Constraints in MONOSAT. We
show two symbolic graphs G1,G2, and the corresponding constraints
enforcing allocation for the VDC and datacenter in Figure 2.3. Edges evs

control which VMs are placed on which servers, and have the same as-
signments in the two graphs. Edges marked with integers have constant
capacities; edges e have unlimited capacity, and edges c have variable,
non-negative integer capacities. In this example, constraints 2 and 3 are
simple enough to be expressed with a few clauses, but for more com-
plex examples we would use pseudo-Boolean constraints. Constraint 4
is enforced using bitvector arithmetic, while 5 and 6 use the built-in
maximum flow predicates of MONOSAT.

24

ToRG1

p q

x y

exp
eyp ezq

z

w3 2

2 0 0 2

ToRG2

p q

x y

exp
eyp ezq

z

w1 2

0 3 3 1

Figure 2.5: SAT Allocation in MONOSAT. A satisfying assignment to the
constraints in Figure 2.4; only the edges that are assigned to “true” are
shown. Notice that the evs assignments must be the same in the two
graphs. The capacity assignments c are each at least large enough to al-
low for the required flow between the assigned VMs (but may be larger
than required, as is the case for c(ToR,q)), and the individual capacities
assigned to each edge across the two graphs sum to at most the band-
width available on each edge of the datacenter (4, in this case).

These encodings are novel contributions and critical to NETSOLVER’s perfor-

mance with an SMT back-end; however, they are empirically efficient only because

MONOSAT (unlike other SMT solvers) has built-in support for network flow con-

straints. As we show in our evaluation in Section 2.4, carefully crafted encodings

alone, such as the one developed in Z3-AR [135], are not competitive. Instead,

fundamental improvements in the constraint solver, such as the ones we use in

MONOSAT, are necessary.

Reusing Constraints

As with the ILP-based approach, it is important to use incremental solving in the

SMT-based approach as well. The preceding discussion assumes that the VDC

topology is constant and known in advance. However, in practice, it is typically

the case that one will want to allocate VDCs of differing topologies. We briefly

summarize here how we extend the above encoding to support this use case and

demonstrate its benefit in our evaluation in Section 2.4.

Many SAT solvers, including MONOSAT, support an “assumption” mecha-

nism [119] allowing for a formula to be repeatedly solved under multiple, differing

25

restricted portions of the search space (that is, under an assumed set of assign-

ments). To support allocating VDCs of differing topologies, without needing to

re-encode the entire set of constraints in a new solver at each allocation, which

would be prohibitively expensive, we initially encode a VDC topology that is the

superset of all the VDCs to be allocated. Then, for each individual VDC to allocate,

we use the assumption mechanism to temporarily disable portions of that superset

VDC topology in the formula, such that only the edges corresponding to the cur-

rent VDC to be allocated remain enabled in the solvers search space. In this way,

we can efficiently reuse the same solver to perform each allocation, while support-

ing VDCs of multiple sizes as well as supporting the deallocation of previously

allocated VDCs.

2.4 Evaluation
We compare the performance of the ILP and SMT versions of NETSOLVER to that

of SecondNet’s VDCAlloc [59], a sound VDC allocation algorithm with end-to-

end bandwidth allocation, and the Z3-based abstraction-refinement procedure from

Yuan et al. [135], which resembles our approach in that it makes use of a constraint

solver (SMT). We call NETSOLVER with the ILP back-end NETSOLVER-ILP and

with SMT back-end NETSOLVER-SMT.

SecondNet’s VDCAlloc algorithm (‘SecondNet’, except where ambiguous) is

an incomplete, heuristic-based algorithm that can allocate VDCs on datacenters

with hundreds of thousands of servers. As SecondNet is based on bipartite match-

ing, it fundamentally cannot allocate more than one VM in each VDC to any given

server. Furthermore, it can fail to find a feasible allocation, especially in heavily

utilized networks, because it performs allocation in an incomplete, greedy fashion.

As we will demonstrate, under many realistic circumstances, this happens quite fre-

quently, leading to substantially lower datacenter utilization than can be achieved

with a complete method, such as NETSOLVER.

The constraint-solving-based work from Yuan et al. [135] introduced two ap-

proaches for performing single-path VDC allocation with end-to-end bandwidth,

using the general-purpose SMT solver Z3 [43]. Like almost all SMT solvers, Z3

has no built-in support for network flow predicates. Therefore, to use Z3 for VDC

26

allocation, the global bandwidth and connectivity constraints have to be expressed

using a lower-level logical formulation. The first such encoding, which we call Z3-

generic, can handle any datacenter topology but scales extremely poorly [135]. The

second approach, which we call Z3-AR, makes use of an optimized abstraction-

refinement technique; while substantially more scalable than the generic encoding,

it is restricted to datacenters with tree topologies. In preliminary experiments, not

reported here, we confirmed that Z3-generic performed poorly, often failing to find

any allocations within a 1-hour timeout on the benchmarks used in our experi-

ments. We compare NETSOLVER to Z3-AR, the faster and more scalable VDC

allocator by Yuan et al. [135].

2.4.1 Methodology

We use the static packing metric to evaluate each VDC scheduler’s quality. The

static packing metric measures how many VDCs (of the same size) a scheduler is

able to pack into an empty datacenter. This metric was also used in prior work [59,

135], and it captures datacenter utilization. We give two input files to the scheduler:

workload and datacenter. The workload file contains VDCs that have to be allo-

cated. The datacenter file describes the datacenter topology that consists of servers,

which have CPU and RAM resources, and switches, which connect servers (and

other switches) with network links with predefined bandwidth.

In each experiment, the algorithms repeatedly allocate VDCs to the datacenter

until they are unable to make further allocations or until a 1 CPU hour timeout2

is reached. The timeout is for an entire experiment, not for an individual VDC

allocation. For example, if allocating each VDC takes one second, the experiment

ends after allocating 3,600 VDCs (or earlier, if the algorithm cannot place a VDC).

Except where noted, experiments were run on a server with a 2.40 GHz (10

MB L3 cache) Intel Xeon E5-2407 v2 processor with 8 cores across 2 NUMA

nodes and hyperthreading disabled. The server uses Ubuntu 16.04.6 LTS with 96

GB RAM that is uniformly distributed (48 GB each) across both NUMA nodes.

All experiments are limited to 80 GB RAM; none actually consumed 80 GB.

2Timeout is enforced with “time-limit” option in the runlim package http://manpages.org/runlim.

27

http://manpages.org/runlim

v2v1

v6 v8

2

1

v0

v3
1

1
1

v4 v5

v7

VDC1-9VMs

v2v1

v6 v8

1v0

v3 v4 v5

v7

1

1

1
1

21

2

1

VDC2-9VMs

1

1 1

1

2
2

22
1

v2v1

v6 v8

v0

v3 v4 v5

v7

VDC3-9VMs

2
1 v2v1

v8 v10

v0

v4 v5 v6

v9

v12 v13 v14

v11

v7

v3
1

1
2

2

2

2

1

2
2

1

1

2

1

1

1

1 1

1

VDC4-15VMs

2

v2v1

v8 v10

v0

v4 v5 v6

v9

v12 v13 v14

v11

v7

v3
2

2
1

1

2

1

11

1

1

1

1

1

1

1

1

1

1

1

VDC5-15VMs

v2v1

v8 v10

v0

v4 v5 v6

v9

v12 v13 v14

v11

v7

v3

1

12 2
1

2

21

2

1

1

1
22

2
22

1

1

VDC6-15VMs

Figure 2.6: VDC Topologies. The circled label on the virtual links signifies
the link’s bandwidth in Gbps.

2.4.2 Comparison on Datacenters with Tree Topologies

We reproduce and extend experiments from Yuan et al. [135], in which a series

of identical VDCs is allocated one-by-one to tree-structured datacenters, until the

solver is unable to make further allocations (or a timeout of 1 CPU hour is reached).

There are 6 VDC instances considered, each in a separate experiment, three con-

sisting of 9 VMs each and three consisting of 15 VMs each. Each VDC has a

unique, randomly generated topology, as shown in Figure 2.6.3

We obtained the original implementations of Z3-AR from Yuan et al. [135] and

SecondNet from the SecondNet authors [59]. In all experiments in this subsection,

VDCs in an experiment have the same topology; this is a restriction introduced

3Note that here and in the remainder of this chapter, we allocate individual VDCs one at a time,
without looking ahead at the remaining VDCs that have yet to be allocated. This online allocation
process can potentially result in a sub-optimal total number of allocations, even though our approach
is complete for individual VDC allocations. Our approach is similar in this respect to the previous
works of Yuan et al. [135] and SecondNet [59], to which we compare.

28

VDC1-9VMs VDC2-9VMs VDC3-9VMs VDC4-15VMs VDC5-15VMs VDC6-15VMs
VDC Type

0

25

50

75

100
Nu

m
be

r o
f V

DC
 A

llo
ca

tio
ns

Z3-AR SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.7: VDC Allocation Comparison on Small Tree Datacenter. We show
the total number of consecutive VDCs allocated by different algorithms
on a datacenter with tree topology from Yuan et al. [135].

VDC1-9VMs VDC2-9VMs VDC3-9VMs VDC4-15VMs VDC5-15VMs VDC6-15VMs
VDC Type

100

101

102

103

104

105

Pe
r-V

DC
 A

llo
ca

tio
n

La
te

nc
y

(m
s) Z3-AR SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.8: Latency Comparison on Small Tree Datacenter. We show per-
VDC allocation latency distribution for allocations shown in Figure 2.7.
The latency boxes show the first and third quartiles, and whiskers show
the min and max. The horizontal line inside the box is the median.

here for compatibility with the solvers from Yuan et al. [135]. Although this re-

striction makes the experiment less representative of real-world use cases, it allows

all three of the constraint based approaches (Z3-AR, NETSOLVER-SMT, and NET-

SOLVER-ILP) to avoid substantial costs that would otherwise be incurred to support

changing VDC topologies. In our subsequent experiments, Section 2.4.3 onward,

we consider cases where VDC topologies vary.

Figure 2.7 compares the number of VDCs allocated by the four algorithms in a

small datacenter with 200 servers, where each server has 4 cores. This datacenter

29

VDC1-9VMs VDC2-9VMs VDC3-9VMs VDC4-15VMs VDC5-15VMs VDC6-15VMs
VDC Type

0

1000

2000

3000

4000
Nu

m
be

r o
f V

DC
 A

llo
ca

tio
ns

Z3-AR SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.9: VDC Allocation Comparison on Big Tree Datacenter. We show
the total number of consecutive VDCs allocated by different algorithms
on a datacenter with tree topology from Yuan et al. [135].

has a tree topology and is from Yuan et al. [135]. Figure 2.7 shows allocation results

for six different VDC topologies: the first three with 9 VMs each (VDC1, VDC2,

VDC3) and the other three with 15 VMs each (VDC4, VDC5, VDC6), as shown

in Figure 2.6. In Figure 2.7, all four algorithms allocate similar number of VDCs,

because the datacenter is not big enough to highlight the difference between the

algorithms. Note that the number of allocated VDCs has decreased on the larger

VDCs because the VDC size grew from 9 VMs to 15 VMs.

Figure 2.8 compares the per-VDC allocation latency for the VDC allocations

shown in Figure 2.7. Unlike Figure 2.7, Figure 2.8 shows that the time each algo-

rithms takes to allocate VDCs differs significantly. SecondNet, being heuristic and

incomplete, has two orders of magnitude lower median VDC allocation latency

than NETSOLVER, and three orders of magnitude lower median VDC allocation

latency than Z3-AR. Note that the latency difference between the four algorithms

becomes less significant as VDC size grows. Figure 2.8 shows that the median

latency with SecondNet is at least two orders of magnitude faster than the other

algorithms in VDCs with 9 VMs and decreases to one order of magnitude for

VDCs with 15 VMs. At the same time, NETSOLVER-SMT is consistently faster

than NETSOLVER-ILP for all VDCs, while both of these are an order of magnitude

faster than Z3-AR.

Figure 2.9 compares the four algorithms in a bigger datacenter. This datacenter

also has a tree topology and is from Yuan et al. [135]. There are 2000 servers in

30

VDC1-9VMs VDC2-9VMs VDC3-9VMs VDC4-15VMs VDC5-15VMs VDC6-15VMs
VDC Type

100

101

102

103

104

105
Pe

r-V
DC

 A
llo

ca
tio

n
La

te
nc

y
(m

s) Z3-AR SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.10: Latency Comparison on Big Tree Datacenter. We show per-VDC
allocation latency distribution for allocations shown in Figure 2.9. The
latency boxes show the first and third quartiles, and whiskers show the
min and max. The horizontal line inside the box is the median.

this datacenter, each server has 16 cores. Unlike our experiments with the small

datacenter (200 servers) in Figure 2.7, there is a significant difference between the

number of VDCs that the algorithms allocate. NETSOLVER greatly outperforms

SecondNet and Z3-AR, often allocating two or even three times as many VDCs

on the same datacenter. Figure 2.10 compares per-VDC allocation latency for the

VDC allocations shown in Figure 2.9.

Figure 2.9 shows that in most cases NETSOLVER-ILP performs better than

NETSOLVER-SMT, but both versions of NETSOLVER scale to thousands of servers,

with median per-VDC allocation latency of a few seconds or less. On instances

with smaller VDCs, NETSOLVER-SMT tends to have both lower VDC allocation

latency and more VDC allocations than NETSOLVER-ILP, while on instances with

larger VDCs, NETSOLVER-ILP performs substantially better than NETSOLVER-

SMT, sometimes achieving more than twice the allocations of NETSOLVER-SMT.

Figure 2.10 also shows that SecondNet’s median per-VDC allocation latency be-

comes comparable to NETSOLVER’s latency when both VDCs (15 VMs) and dat-

acenter are large (2000 servers).

Figure 2.11 compares the performance of the four algorithms over time. We

plot the number of VDC allocations that the algorithms make until they are un-

able to make further allocations or until a 1 CPU hour timeout is reached. Fig-

ure 2.11(a) shows results for a small VDC with 9 VMs (VDC1 in Figure 2.9) and

31

(a) (b)
Figure 2.11: VDC Allocations Over Time on Big Tree Datacenter. We show

the number of VDC allocations by four algorithms on a datacenter with
tree topology from Yuan et al. [135]. The datacenter is the same as the
one we used in Figure 2.9. There are 2000 servers, each with 16 cores.
(a) reports results for VDC1 with 9 VMs in Figure 2.9. (b) reports
results for VDC6 with 15 VMs in Figure 2.9.

Figure 2.11(b) shows results for a big VDC with 15 VMs (VDC6 in Figure 2.9).

As we can see in Figure 2.11(a), SecondNet makes all of its VDC allocations

quickly and quits. On the other hand, Z3-AR has high VDC allocation latency

and therefore is unable to make many VDC allocations within the 3600 second

budget. NETSOLVER-SMT and NETSOLVER-ILP steadily allocate VDCs within

the time budget and eventually exceed the number of VDC allocations made by

the fast, but incomplete, SecondNet. Figure 2.11(a) and Figure 2.11(b) show that

SecondNet’s and NETSOLVER-SMT’s latency profiles are significantly affected by

the VDC size. Although Z3-AR’s allocations over time remains mostly unchanged

across two figures, SecondNet’s VDC allocation frequency becomes comparable

to that of NETSOLVER-ILP’s for VDCs with 15 VMs.

2.4.3 Comparison on FatTree and BCube Datacenters

The second experiment we conducted is based on experiments in the original Sec-

ondNet paper [59]. Note Z3-AR is restricted to tree topologies so it could not be

included in these experiments.

The SecondNet benchmark instances are extremely large, e.g., in one case ex-

ceeding 100,000 servers, but also extremely easy to allocate: the available band-

width per link is typically ≥ 50× the requested virtual link (vlink) bandwidths in

32

the VDC, so with only 16 cores per server, the bandwidth constraints are mostly

irrelevant. For such easy allocations, the fast, incomplete approach that SecondNet

uses is the better solution. Although this might be acceptable when a cloud provider

is willing to leave a significant portion of their datacenter network bandwidth un-

derutilized, it seems an unlikely scenario in practice, because cloud providers re-

port the datacenter network to be a computation bottleneck with ToR switch uplinks

frequently operating above 80% utilization [58]. Therefore, we scaled the Second-

Net datacenters down to 432–512 servers: a scale where datacenter network uti-

lization levels approximate a realistic scenario. This datacenter size is realistic for

many small scale datacenters.

Unlike the earlier experiments in Section 2.4.2, each experiment in this sub-

section uses non-identical VDC topologies. We generated sets of 10 VDCs each

of several sizes (6, 9, 12 and 15 VMs), following the methodology described in

Yuan et al. [135], which generates VDCs that resemble connectivity in the dis-

tributed storage system. Here, a VM connects to all other VMs in the VDC with a

vlink whose bandwidth ranges from 0 to 2 at random. Thus, we generate 10 VDCs

of each VDC size with randomized topology. These VDCs have proportionally

greater bandwidth requirements than those originally considered by SecondNet,

requiring 5–10% of the smallest physical link capacities in the datacenter. The re-

sulting VDC instances exhibit non-trivial bandwidth constraints. For each of these

sets of VDCs, we then repeatedly allocated VDC instances of the same size, e.g.,

VDCs with 6 VMs, in random order until the datacenter is saturated, or the 1 CPU

hour timeout is reached.

Figure 2.12 and Figure 2.13 compare the total number of VDC allocations and

the per-VDC allocation latencies by SecondNet and NETSOLVER on a datacen-

ter with FatTree topology with 432 servers. Each server has 16 cores. Figure 2.12

shows that SecondNet consistently allocates fewer VDCs. NETSOLVER-ILP and

NETSOLVER-SMT allocate comparable numbers of VDCs when the VDC size

is small, but start diverging as it grows. For example, when the VDCs have 15

VMs, NETSOLVER-ILP allocates over 2× more VDCs than NETSOLVER-SMT.

Figure 2.13 reinforces our observations from Section 2.4.2: SecondNet’s median

latency is orders of magnitude lower than both versions of NETSOLVER, and NET-

SOLVER-ILP has lower median VDC allocation latencies than NETSOLVER-SMT

33

6VMs 9VMs 12VMs 15VMs
VDC Type

0

300

600

900

1200
Nu

m
be

r o
f V

DC
 A

llo
ca

tio
ns

SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.12: VDC Allocation Comparison on FatTree Datacenter. We show
the total number of consecutive VDCs allocated by different algo-
rithms on a datacenter with FatTree topology from SecondNet [59].

6VMs 9VMs 12VMs 15VMs
VDC Type

100

101

102

103

104

105

Pe
r-V

DC
 A

llo
ca

tio
n

La
te

nc
y

(m
s) SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.13: Latency Comparison on FatTree Datacenter. We show per-VDC
allocation latency distribution for allocations shown in Figure 2.12.
The latency boxes show the first and third quartiles, and whiskers show
the min and max. The horizontal line inside the box is the median.

on larger VDC instances.

Figure 2.14 and Figure 2.15 show results for the BCube datacenter from Sec-

ondNet [59]. The datacenter has 512 servers, each with 16 cores. The VDC in-

stances used in the BCube experiments are identical to the one we used in the

FatTree datacenter (Figure 2.12). These figures confirm our findings from the Fat-

Tree experiments. NETSOLVER-ILP has the highest number of VDC allocations, as

shown in Figure 2.14, while achieving lower median per-VDC allocation latencies

than NETSOLVER-SMT, as shown in Figure 2.15.

34

6VMs 9VMs 12VMs 15VMs
VDC Type

0

400

800

1200

1600
Nu

m
be

r o
f V

DC
 A

llo
ca

tio
ns

SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.14: VDC Allocation Comparison on BCube Datacenter. We show
the total number of consecutive VDCs allocated by different algo-
rithms on a datacenter with BCube topology from SecondNet [59].

6VMs 9VMs 12VMs 15VMs
VDC Type

100

101

102

103

104

105

Pe
r-V

DC
 A

llo
ca

tio
n

La
te

nc
y

(m
s) SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.15: Latency Comparison on BCube Datacenter. We show per-VDC
allocation latency distribution for allocations shown in Figure 2.14.
The latency boxes show the first and third quartiles, and whiskers show
the min and max. The horizontal line inside the box is the median.

Figure 2.16 shows VDC allocations over time in the FatTree and BCube data-

centers. This figure also reinforces our observations from earlier experiments with

tree datacenters in Section 2.4.2. SecondNet allocates all of its VDCs quickly, but

the number of VDCs it allocates are 2–3× fewer than what NETSOLVER steadily

allocates during 3600 seconds. We also see that NETSOLVER-ILP can make more

allocations more quickly than NETSOLVER-SMT.

In all experiments of this chapter, all solvers are restricted to a single CPU

core. However, as Gurobi supports parallel execution, we also tried running this

35

(b)(a)
Figure 2.16: VDC Allocations Over Time on FatTree and BCube Datacen-

ters. We show the number of VDC allocations by three algorithms on
datacenter topologies from SecondNet [59]. (a) reports results for the
FatTree datacenter with 432 servers. (b) reports results for the BCube
datacenter with 512 servers. A server in both datacenters has 16 cores.
Both figures show results for allocating VDC instances with 12 VMs.

experiment with Gurobi’s multi-threaded support enabled, using up to 8 CPU cores.

We found that the results were similar to those for single-threaded execution and in

particular, neither consistently better nor worse, so we report only single-threaded

execution results.

2.4.4 Comparison on Commercial Datacenters

The comparisons so far showed how NETSOLVER compares to existing VDC allo-

cation tools on several datacenter network topologies from the VDC literature. To

examine NETSOLVER’s allocation behavior on real workloads, we also considered

a deployment of a commonly used Hadoop VDC, on a set of commercial datacen-

ter topologies. We collaborated with a private cloud provider, ZeroStack Inc. [136],

to devise a practical Hadoop VDC to run the Terasort workload [39]. Each Hadoop

VDC consists of a single leader VM connected to 3–11 worker VMs. We consid-

ered five different VM sizes, ranging from 1 CPU and 1 GB RAM, to 8 CPUs and

16 GB of RAM. The worker VMs were selected at random from this set, with the

leader VM also randomized but always at least as large as the largest worker VM.

The Hadoop leader VM connects to other worker VMs in a tree topology, analo-

gous to the sample VDC in Figure 1.2, where each virtual link has either 1 Gbps

or 2 Gbps bandwidth.

36

Hadoop-4VM Hadoop-6VM Hadoop-8VM Hadoop-10VM Hadoop-12VM
VDC Type

0

120

240

360

480
Nu

m
be

r o
f V

DC
 A

llo
ca

tio
ns

SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.17: VDC Allocation Comparison on US-West1 Datacenter with
1200 Servers. We show the total number of consecutive VDCs allo-
cated by different algorithms.

The datacenter topologies were provided by another company, who requested

to remain anonymous. This company uses a private cloud deployed across four

datacenters in two geographic availability zones (AZs): US-West and US-Middle.

Each datacenter contains between 280 and 1200 servers, spread across one to four

clusters with 14 and 40 racks. Each server has 16 cores, 32 GB RAM, 20 Gbps

network bandwidth (via two 10 Gbps links). The network in each datacenter has a

leaf-spine topology, where all ToR switches connect to two distinct spine switches

over 40 Gbps links each (a total of two links with 80 Gbps; one on each spine

switch) and spine switches are interconnected with four 40 Gbps links each. For

each cluster, there is a gateway switch with a 240 Gbps link connected to each

spine switch. Appendix A shows topologies of all four datacenters.

We evaluated SecondNet and NETSOLVER in this setting, consecutively allo-

cating Hadoop VDCs of several sizes, ranging from 4 to 12 VMs, until no further

allocations could be made. Note that in addition to using a realistic datacenter

topology, the CPU/memory, bandwidth values, and the VDCs being allocated are

all real-world VDCs derived from Hadoop jobs. By contrast, the previous experi-

ments used synthetic VDCs from Yuan et al. [135] and SecondNet [59].

Figure 2.17 and Figure 2.18 show the results for the largest of these datacen-

ters (US-West1), results for the smaller datacenters were similar, e.g., Figure 2.19

and Figure 2.20 (US-Middle1). As observed in our previous experiments, although

SecondNet had much lower VDC allocation latency than either version of NET-

37

Hadoop-4VM Hadoop-6VM Hadoop-8VM Hadoop-10VM Hadoop-12VM
VDC Type

100

101

102

103

104

105

Pe
r-V

DC
 A

llo
ca

tio
n

La
te

nc
y

(m
s) SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.18: Latency Comparison on US-West1 Datacenter with 1200
Servers. We show per-VDC allocation latency distribution for alloca-
tions shown in Figure 2.17. The latency boxes show the first and third
quartiles, and whiskers show the min and max. The horizontal line in-
side the box is the median.

Hadoop-4VM Hadoop-6VM Hadoop-8VM Hadoop-10VM Hadoop-12VM
VDC Type

0

40

80

120

160

Nu
m

be
r o

f V
DC

 A
llo

ca
tio

ns

SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.19: VDC Allocation Comparison on US-Middle1 Datacenter with
800 Servers. We show the total number of consecutive VDCs allocated
by different algorithms.

SOLVER, NETSOLVER’s per-VDC allocation latency was typically just a few sec-

onds, which might be reasonable for long-running applications, such as the Hadoop

jobs considered here. Again, NETSOLVER was able to allocate many more VDCs

than SecondNet (here, 1.5–2× as many), across a range of datacenters and VDC

sizes, including a commercial datacenter with over 1000 servers. Moreover, with

increasing VDC size, NETSOLVER was able to allocate many more VMs, while

respecting end-to-end bandwidth constraints. Often NETSOLVER allocated several

38

Hadoop-4VM Hadoop-6VM Hadoop-8VM Hadoop-10VM Hadoop-12VM
VDC Type

100

101

102

103

104

105

Pe
r-V

DC
 A

llo
ca

tio
n

La
te

nc
y

(m
s) SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.20: Latency Comparison on US-Middle1 Datacenter with 800
Servers. We show per-VDC allocation latency distribution for alloca-
tions shown in Figure 2.19. The latency boxes show the first and third
quartiles, and whiskers show the min and max. The horizontal line in-
side the box is the median.

times as many VDCs as SecondNet, and in extreme cases, it found hundreds of

allocations, while SecondNet was unable to make any allocations (not shown for

brevity). Similarly, keeping the VDC the same size, but doubling the bandwidth

requirements of each VM greatly decreased the number of allocations made by

SecondNet, while NETSOLVER showed considerably more robust performance in

these high network utilization settings.

Figure 2.21 shows VDC allocations over time in the commercial datacenters.

This figure reinforces our observations from the earlier experiments. SecondNet

allocates all of its VDCs quickly, but the number of VDCs it allocates are 2–3×
less than what NETSOLVER can allocate over a longer time. Note that in these

experiments the datacenter filled up long before the 3600s time budget was reached.

The experiments on FatTree, BCube, and the commercial datacenter networks

reinforce our observations from the earlier experiments with synthetic datacenter

tree topologies: both versions of NETSOLVER improve greatly on state-of-the-art

VDC allocation, i.e., SecondNet and Z3. Further, the ILP version of NETSOLVER

generally out-performs the SMT version, typically allocating 10–30% more VDCs.

39

(b)(a)
Figure 2.21: VDC Allocations Over Time on Commercial Datacenters. We

show the number of VDC allocations by three algorithms. (a) reports
results for the US-Middle1 datacenter with 800 servers. (b) reports re-
sults for the US-West1 datacenter with 1200 servers. Both figures show
results for allocating Hadoop VDCs with 10 VMs. Note scale differ-
ence in axes across (a) and (b) figures.

2.4.5 Comparison to Virtual Network Embedding Approaches

In addition to the VDC allocation tools we considered above, we also compare to

several state-of-the-art virtual network embedding (VNE) tools, as implemented in

the VNE testing framework ALEVIN [51]. We provide these comparisons mainly

for reference, as the VNE tools we consider here were neither designed nor op-

timized for allocating to these large and sparsely connected networks. As VNE

algorithms are technically capable of performing VDC allocation, it is relevant to

ask how they perform in this setting.

The VNE experimental framework we tested, ALEVIN [51], uses a GUI, and

so we employed a (significantly faster) 3.4 GHz Intel Core-i7-2600K processor

with 32 GB of RAM for these VNE experiments. Moreover, ALEVIN reports only

the median per-VDC allocation latency. So, we show only median latencies for all

algorithms (in Figure 2.23 and Figure 2.25).

In Figure 2.22 and Figure 2.24, we show two variants of the “Greedy Allocation

Resources” algorithm from Yu et al. [134]. The PS (“path-splitting”) variant sup-

ports multi-path allocation, while the SP (“shortest-paths”) variant does not. Both

of these are greedy, incomplete, linear programming based algorithms, and are ap-

propriate to consider as they are two of the fastest and simplest VNE algorithms

from the literature. Unlike SecondNet, both of these algorithms do support allocat-

40

H-4VM-1G H-4VM-2G H-10VM-1G H-10VM-2G H-15VM-1G H-15VM-2G
VDC Type

0

500

1000

1500

2000

2500

Nu
m

be
r o

f V
DC

 A
llo

ca
tio

ns

GAR-SP GAR-PS SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.22: VDC Allocation Comparison with VNE Approaches on US-
West1 Datacenter with 1200 Servers. We show the total number of
consecutive VDCs allocated by different algorithms. The VNE solvers
perform poorly in this setting, achieving a small fraction of the alloca-
tions that NETSOLVER-SMT or NETSOLVER-ILP achieves.

H-4VM-1G H-4VM-2G H-10VM-1G H-10VM-2G H-15VM-1G H-15VM-2G
VDC Type

100

101

102

103

104

105

Pe
r-V

DC
 A

llo
ca

tio
n

La
te

nc
y

(m
s)

GAR-SP GAR-PS SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.23: Latency Comparison with VNE Approaches on US-West1 Dat-
acenter with 1200 Servers. We show the median per-VDC allocation
latency for allocations shown in Figure 2.22. Note that no latency is
reported for SecondNet and GAR-PS in “H-15VMs-2Gbps” because
they are unable to make any VDC allocations there.

41

H-4VM-1G H-4VM-2G H-10VM-1G H-10VM-2G H-15VM-1G H-15VM-2G
VDC Type

0
100
200
300
400
500
600

Nu
m

be
r o

f V
DC

 A
llo

ca
tio

ns
GAR-SP GAR-PS SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.24: VDC Allocation Comparison with VNE Approaches on US-
West2 Datacenter with 280 Servers. We show the total number of con-
secutive VDCs allocated by different algorithms. The VNE solvers per-
form poorly in this setting, achieving a small fraction of the allocations
that NETSOLVER-SMT or NETSOLVER-ILP achieves.

ing multiple VMs per server. We applied these algorithm to two of the largest (US-

West1 datacenter with 1200 servers in Figure 2.22) and smallest (US-West2 data-

center with 280 servers in Figure 2.24) commercial datacenters from Section 2.4.4,

on the same VDC instances. Note that due to limitations in the ALEVIN platform,

for these experiments, we consider just a single VDC instance of each size, rather

than a set of such instances. Figure 2.22 and Figure 2.24 show that these two VNE

algorithms, while faster, perform worse than both SecondNet and NETSOLVER, in

many cases finding less than a quarter of the allocations of either.

We also tested several variants of three other families of state-of-the-art VNE

algorithms from the ALEVIN framework: RW-MM-SP/PS [37], DViNE [38], and

ASID [87]. Unfortunately, none of these were able find any allocations within sev-

eral hundred seconds. This strongly suggests that at least the VNE algorithms we

evaluated are not sufficiently scalable for VDC allocation. Our findings here are

consistent with those reported in the SecondNet paper [59].

2.4.6 Allocation Robustness

In the above experiments, we showed that across many conditions, NETSOLVER

was able to make many (often hundreds) more allocations than SecondNet or Z3-

AR. One may wonder whether these additional allocations are the result of NET-

42

H-4VM-1G H-4VM-2G H-10VM-1G H-10VM-2G H-15VM-1G H-15VM-2G
VDC Type

100

101

102

103

104

105
Pe

r-V
DC

 A
llo

ca
tio

n
La

te
nc

y
(m

s)
GAR-SP GAR-PS SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.25: Latency Comparison with VNE Approaches on US-West2 Dat-
acenter with 280 Servers. We show the median per-VDC allocation
latency for allocations shown in Figure 2.24. Note that no latency is
reported for SecondNet and GAR-PS in “H-15VMs 2Gbps” because
these algorithms make no VDC allocations there.

SOLVER having a better ability to solve challenging allocations quickly (complete-

ness and efficiency), or if NETSOLVER is somehow making “smarter” allocations

early on that leave more space for later VDC allocations.

In the experiments where Z3-AR makes fewer VDC allocations (e.g., Fig-

ure 2.7), Z3-AR’s problem is excessively high allocation latency, allocating only

a handful of VDCs in datacenters with room for hundreds or thousands. In those

cases, both NETSOLVER and SecondNet can make hundreds of further allocations

starting from where Z3-AR was cut off after the 1 CPU hour limit.

The robustness question is more apropos versus SecondNet. We repeated the

experiments with the FatTree (Figure 2.12) and BCube datacenters (Figure 2.14) by

first using SecondNet to allocate as many VDCs as it can into an empty datacenter.

Then, starting from that already partially utilized datacenter, we used NETSOLVER

to allocate further VDCs. We found conclusive evidence that good early allocations

cannot be entirely responsible for NETSOLVER’s performance, by observing that

NETSOLVER can continue to allocate VDCs in cases where SecondNet can no

longer make any further allocations.

The results of this experiment are shown in Figure 2.26 and Figure 2.28. Sim-

ilarly to the earlier experiment, NETSOLVER can still allocate hundreds of addi-

43

6 VMs 9 VMs 12 VMs 15 VMs
VDC Type

0

400

800

1200

1600

Nu
m

be
r o

f V
DC

 A
llo

ca
tio

ns

SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.26: Additional Allocations by NETSOLVER in FatTree Datacenter.
We show the number of additional VDCs allocated by NETSOLVER-
SMT and NETSOLVER-ILP, after SecondNet has allocated its maxi-
mum number of VDCs. These experiments used the same VDCs and
FatTree datacenter as in Figure 2.12.

6 VMs 9 VMs 12 VMs 15 VMs
VDC Type

100

101

102

103

104

105

Pe
r-V

DC
 A

llo
ca

tio
n

La
te

nc
y

(m
s) SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.27: Latencies of Additional Allocations on FatTree Datacenter. We
show per-VDC allocation latency distribution for allocations shown in
Figure 2.26. The latency boxes show the first and third quartiles, and
whiskers show the min and max. The horizontal line inside the box is
the median.

44

6 VMs 9 VMs 12 VMs 15 VMs
VDC Type

0

400

800

1200

1600
Nu

m
be

r o
f V

DC
 A

llo
ca

tio
ns

SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.28: Additional Allocations by NETSOLVER in BCube Datacenter.
We show the number of additional VDCs allocated by NETSOLVER-
SMT and NETSOLVER-ILP, after SecondNet has allocated its maxi-
mum number of VDCs. These experiments used the same VDCs and
BCube datacenter as in Figure 2.14.

tional VDCs starting from SecondNet’s final allocation. For example, for VDCs

with 6 VMs in Figure 2.26, SecondNet makes only 718 VDC allocations. NET-

SOLVER-ILP, however, allocates 326 more VDCs (+45%) on the partially utilized

datacenter after SecondNet’s termination. Thus, the aggregate number of VDCs

allocated by NETSOLVER-ILP and SecondNet together are 1044 VDCs. On the

other hand, for VDCs with 6 VMs in Figure 2.28, SecondNet terminates after allo-

cating 1363 VDCs. Running NETSOLVER-ILP in this partially utilized datacenter

yields only 3 more VDC allocations (+0.22%) and NETSOLVER-SMT yields only

2 more VDC allocations (+0.14%). Thus, bars for NETSOLVER-SMT and NET-

SOLVER-ILP are invisible. Both versions of NETSOLVER allocate substantially

more additional VDCs when the VDCs are larger. In these additional VDC allo-

cations, NETSOLVER-ILP’s median per-VDC allocation is around 10 seconds or

less, as shown in Figure 2.27 and Figure 2.29.

An interesting comparison is between NETSOLVER-ILP and NETSOLVER-

SMT. In this case, both solvers are quite fast, and both solvers are complete in

the sense that they will find an allocation if one exists. Therefore, in the cases

where both solvers could find no more allocations, the additional allocations for

NETSOLVER-ILP must be due to NETSOLVER-ILP somehow finding “smarter”

allocations. In close examinations of the output of some of our experiments, we

45

6 VMs 9 VMs 12 VMs 15 VMs
VDC Type

100

101

102

103

104

105

Pe
r-V

DC
 A

llo
ca

tio
n

La
te

nc
y

(m
s) SecondNet NetSolver-SMT NetSolver-ILP

Figure 2.29: Latencies of Additional Allocations on BCube Datacenter. We
show per-VDC allocation latency distribution for allocations shown in
Figure 2.28. The latency boxes show the first and third quartiles, and
whiskers show the min and max. The horizontal line inside the box is
the median.

indeed found this to be the case, with NETSOLVER-ILP packing early allocations

more tightly, thereby consuming less overall bandwidth with the early allocations,

whereas NETSOLVER-SMT makes more spread-out allocations that consume more

overall bandwidth.

For example, consider one of the largest examples from experiments on com-

mercial datacenters, shown in Figure 2.17. Here, we allocate VDCs with 12 VMs

in the US-West1 datacenter with 1200 servers. We analyze and compare the first

100 VDC allocations done by each algorithm. In the first 100 VDCs allocated by

NETSOLVER-ILP, just 130 connections are to a top-of-rack (ToR) switch, and just

71 connections pass between racks, e.g., passing through gateway or aggregation

switches. Note that as each placement is for 12 VMs with multiple connections

between them, there are many more total connections between VMs than there are

VDCs allocated. As all VMs are placed on servers, and all servers are contained

in racks, anytime that connected VMs in a VDC are placed on different servers,

connections to the ToR switch will be required. Similarly, anytime that VMs from

a VDC are placed on multiple racks, connections between ToR switches will be re-

quired. In contrast to NETSOLVER-ILP, NETSOLVER-SMT’s first 100 allocations

require 603 connections to the ToR, and 449 connections between rack switches.

46

We hypothesize that this is due to the different approaches to incremental solv-

ing in ILP and SMT: an ILP solver will typically attempt to re-use a previous so-

lution, whereas an SMT solver’s main re-use strategy is to retain learned clauses.

Therefore, during the early, highly unconstrained phase of the experiments, NET-

SOLVER-ILP will tend to allocate VDCs repeatedly onto the same machines, pack-

ing them in more tightly, whereas NETSOLVER-SMT spreads the allocations more

arbitrarily around the datacenter. Although it is possible to extend NETSOLVER-

SMT to be locality-aware, the way NETSOLVER-ILP is by construction, the empir-

ical evidence suggests that NETSOLVER-ILP generally outperforms NETSOLVER-

SMT without further enhancements to NETSOLVER-SMT. (We will revisit the

value of being locality-aware in Chapter 4.)

2.5 Conclusions
We explored using constraint-solvers for VDC scheduling. In particular, we ex-

ploited the completeness property offered by constraint solvers for achieving high

datacenter utilization. We introduced a new, constraint-based VDC scheduler, NET-

SOLVER, for multi-path VDC allocation with end-to-end bandwidth. Our approach

differs from previous constraint-based approaches by making use of efficient net-

work flow encodings in the underlying constraint solvers.

NETSOLVER overcomes major limitations of current state-of-the-art approaches

for VDC scheduling. Unlike SecondNet, our approach is complete and, as a result,

is able to continue making allocations in bandwidth-constrained networks. Unlike

the abstraction-refinement techniques from Yuan et al. [135], NETSOLVER sup-

ports arbitrary datacenter topologies and has lower VDC allocation latency. Our

constraint-based approach represents the first complete VDC scheduler supporting

multi-path bandwidth allocation for arbitrary network topologies — an important

capability in modern datacenters.

NETSOLVER scales well to datacenters with up to around 1000 servers, while

substantially improving datacenter utilization as compared to previous methods.

Notably, we have demonstrated that in several settings, NETSOLVER allocates up to

3 times as many VDCs as previous approaches, with a median per-VDC allocation

latency around one second. We also saw scalability limitations of NETSOLVER,

47

where it consumed over 10 seconds to allocate VDCs with 15 VMs on a datacenter

with 800 servers. As we will see in Chapter 4, this limitation is exacerbated when

the datacenter size increases and the density of the VDC topology grows.

In the rest of this dissertation our goal is to overcome these limitations. In

addition to scalability issues, in practice, there are other limitations of the experi-

ments so far that we need to consider. Therefore, we first ask, what do real VDC

workloads look like? Unlike the synthetic VDC workloads we used in this chapter,

Chapter 3 presents VDC workloads constructed from production traces from the

Azure public cloud. We highlight the major differences between the production-

based VDC workload and the synthetic one across several dimensions, including

the dynamic nature of the production workload that includes VDC allocations, mu-

tations, and deallocations. We then ask what is the right metric for VDC scheduler

evaluation and how does NETSOLVER compare to heuristic algorithms used in

practice? In Chapter 4, we propose the revenue gain metric for evaluating VDC

schedulers. We also show that NETSOLVER has prohibitively high resource allo-

cation latency for datacenters with over a thousand servers and VDCs with dense

topologies. Thus, although one might be able to use NETSOLVER in datacenters of

the limited scale and for a subset of VDC topologies, Chapter 4 demonstrates that

the heuristics-based VDC schedulers are better suited for large-scale datacenters,

which include public clouds.

48

Chapter 3

VDC Workload

Workloads are important for measuring system performance, and a cloud system

for scheduling VDCs is no exception. Ideally, we would use a VDC workload from

a production cloud. However, no such workloads exist, because no cloud provider

offers VDCs with network bandwidth guarantees. Thus, we resort to approximating

a realistic VDC workload. We use production traces from the Azure cloud as the

workload source [40] and augment its VMs with bandwidth requirements. The

outcome is a VM workload with bandwidth requirements, which we call a VDC

workload. In this chapter, we describe our VDC workload generation methodology.

In approximating a realistic VDC workload, we face the following question:

How much inter-VM network bandwidth should the VDC workload demand?
To answer this question, we take inspiration from cloud computing history. In the

early days of cloud computing, cloud providers faced the same question, but for

compute. For example, in 2006, public cloud pioneer Amazon had to decide how

much compute capacity to offer in a VM flavor in the EC2 product. EC2 beta started

with only one VM flavor that included one virtual CPU, which offered an equiv-

alent of Intel Xeon 1.7 GHz processor [26]. They also released several customer

use-cases that might benefit from this VM flavor, such as a web-based back-office

inventory application, and three-tier web application (presentation tier, application

tier, data tier), which were popular applications at that time [26]. These use-cases

are evidence that the decision for a VM’s compute capacity was driven by what

EC2 cloud operators expected tenants to run and pay for in the cloud.

49

psw1

w2

w3

2

Physical
Datacenter ToR1 ToR2

SSW2SSW1

 1 core
2 GB[]

 1 core
2 GB[]

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

Virtual
Datacenter

1 1 33

4 4 4

2

22

S1 S2 S3

 1 core
2 GB[] 1 core

2 GB[]
Figure 3.1: Example VDC Application. The VDC runs distributed ML train-

ing on a parameter server VM (ps) and three worker VMs (w1, w2, w3).
The figure is reproduced from Figure 1.2 (on page 3).

We expect that VDC network bandwidth guarantees will evolve in the same

way: driven by what networked applications providers expect tenants to run and

pay for in the cloud. Note that this is different from today’s networked cloud ap-

plications for which free, best-effort networking is the only option. The networked

cloud applications that will run in VDCs are those that will see significant perfor-

mance benefit, such as job completion time reduced by half.

A distributed Machine Learning (ML) training is a cloud workload that was

demonstrated to significantly benefit from network bandwidth guarantees [63, 72,

106]. ML training is typically deployed across multiple communicating VMs, or as

a VDC, where each VM trains an ML model on a subset of the data. The P3 authors

show that distributed ML training jobs complete 2–3× faster with consistent inter-

VM network bandwidth guarantees [72]. These findings agree with other work in

the literature, such as TicTac [63] and ByteScheduler [106].

We will use distributed ML training as the sample VDC application in the rest

of this dissertation because it is one of the major cloud workloads [73]. Several

other big data workloads, such as HiBench and TPC-DS benchmarks [128], also

benefit from network bandwidth guarantees in the cloud. Figure 3.1 shows an ex-

ample of a distributed ML training application deployed as a VDC.

50

Distributed training is an instance of parallel computing with both sequential

and parallel phases [131]. The sequential part, parameter aggregation, is run by

the parameter server, while the parallel part, model training, is split and run across

multiple worker VMs. The worker VMs synchronize their local state over the net-

work. Thus, we can apply Amdahl’s second law (Amdahl’s I/O law) [7] to estimate

the network bandwidth requirements of distributed training.

Amdahl’s second law estimates the required network bandwidth to have a bal-

anced system. A system is balanced when it can perform a compute task without

memory or I/O bottlenecks [7, 86]. The law states that for every one instruction per

second of processing speed (Hz), a balanced computing system needs to provide

one bit per second of I/O rate (bps) and one byte of main memory capacity [86].

For example, the initial VM flavor offered by EC2 beta with a 1.7 GHz processor

was a balanced system in terms of memory (1.75 GB of RAM), but not in terms of

I/O (250 Mbps) [26]. In other words, the VM had

Amdahl memory number =
memory size (GB)
CPU speed (GHz)

= 1.75/1.7≈ 1

and

Amdahl I/O number =
bandwidth (Gbps)
CPU speed (GHz)

= 0.25/1.7≈ 0.15

Note that we use the network bandwidth, not the disk bandwidth, to derive the Am-

dahl I/O number because our distributed training application communicates param-

eter updates (from the worker VMs) to the parameter server VM over the network.

Moreover, even though parallel and sequential phases are temporally disjoint in

theory, they are optimized to overlap in practice. These optimizations avoid bursty

traffic and ensure continuous, high throughput network utilization [63, 72, 106].

We can use Amdahl’s second law to answer our question: a VM’s network
bandwidth should be proportional to its compute capacity, for example one bit
per second for every one CPU instruction in a balanced VDC application. We

call this the compute-proportional-bandwidth approach for VDC workload gener-

ation. This approach is similar to how the Google Compute Engine (GCE) scales

its VM’s egress network bandwidth as a function of vCPUs [92]. Note that unlike

VDCs in our model, GCE’s egress bandwidth is best-effort and is not between a

51

pair of VMs. Even though egress bandwidth is from an individual VM perspec-

tive, the GCE example demonstrates the practicality of a compute-proportional-

bandwidth approach in a cloud environment.

As an example, we analyze the sample VDC used in P3 [72] using Amdahl’s

second law. The VDC was deployed on an EC2 cluster of g3.4xlarge VMs where

each VM had 16 vCPUs, 122 GB memory, and up to 10 Gbps network band-

width [12]. Each g3.4xlarge vCPU is a 2.7 GHz Intel Xeon processor. Thus, each

VM has 16∗2.7 GHz ≈ 43 GHz compute capacity, which yields:

Amdahl memory number = 122/43≈ 2.84

Amdahl I/O number = 10/43≈ 0.23

This shows the P3 VDC was “over-balanced” for memory and “under-balanced”

for network I/O. If this VDC was running an application that requires

Amdahl I/O number = 1, i.e., VDC was balanced for network I/O, each VM should

have had 43 Gbps network bandwidth. Although VMs with Amdahl I/O number =

1 are not common in public clouds today, cloud network operators are already plan-

ning to increase their datacenter network bandwidth to offer such VMs [129].

An optimal Amdahl I/O number is deployment dependent, i.e., it depends on

the characteristics of the cloud application and the datacenter the application is

running on. For parallel applications, Amdahl’s second law recommends a value

of 1, which is one datapoint in a spectrum. Not all applications need a balanced

system. For example, Liang et al. demonstrate that an optimal Amdahl I/O number

for MPI-like (Message Passing Interface) applications ranges between 0.02–0.21,

while it ranges between 0.02–0.85 for Hadoop-like applications [86]. Therefore,

our generated VDC workload should be adaptable, i.e., we should be able to ad-

just the network bandwidth demand of the workload for the datacenter under test.

In Section 3.2.3, we describe a parameterized VDC workload generation method-

ology that allows adapting the VDC workload’s network bandwidth demand.

In summary, we now better understand VDCs’ inter-VM network bandwidth

requirements. We analyzed the characteristics of an emerging VDC application,

distributed ML training, established its analogy with parallel computing applica-

tions, and applied Amdahl’s second law, to derive the network bandwidth require-

52

ments of the sample VDC application.

In the rest of this chapter, we apply these findings to generate a realistic VDC

workload from a VM workload, which has no explicit network bandwidth require-

ments. In Section 3.1, we describe the VM workload. Section 3.2 describes the

Gridiron technique1 to generate a VDC workload, and Section 3.3 applies this tech-

nique to construct a VDC workload for distributed ML training. In Section 3.4, we

discuss other production traces released by public cloud providers and describe our

rational for choosing the Resource Central dataset [40] as the basis for our VDC

workload. We conclude in Section 3.5.

3.1 The Base Workload
We generate a VDC workload by augmenting the Azure cloud’s production trace

with network bandwidth requirements. The Azure trace [20] was released with

the Resource Central paper [40]. We first describe the characteristics of the Azure

trace, such as the number of VMs in the workload, and their CPU and RAM foot-

prints. We then describe how we use the deployment IDs, which are included in

the trace, to group VMs into VDCs.

The Azure trace contains a list of 2,013,767 unique VMs. For each VM, the

dataset includes 11 fields shown in Table 3.1. We use only five of these fields to

construct the base workload: deployment ID, VM creation time, VM deletion time,

VM cores, and VM memory. The timestamps are reported in seconds with five min

granularity (300 seconds); we call each such five minute interval a tick. The trace

contains 8,640 ticks.

We preprocess the Azure trace to have valid timestamps. There are two sources

of invalidity: 1) capture and 2) life span. A VM has an invalid capture timestamp if

the timestamp is not the multiple of 300 seconds (capture interval). In other words,

all timestamps should satisfy (t mod 300 = 0) equality, which 27 VMs do not. We

round invalid timestamps to the closest valid ones, as suggested by the Azure trace

authors [80]. For example, an invalid t = 1000 is rounded to a valid t = 900.

1The term “gridiron” is borrowed from the urban planning literature. Just like gridiron planning
converts implicitly connected village houses into explicitly connected network of urban residences,
the Gridiron technique converts implicitly connected tenant VMs into VDCs: a network of explicitly
connected VMs.

53

Table 3.1: Information Released in the Azure Trace [20]. These are the fields
in vmtable.csv file. The ones we use in our base workload are in bold.

Name Description

1 VM ID Unique ID for each VM.
2 Subscription ID One needs to subscribe to Azure to create a VM. It is similar

to customer IDs, although one customer can create multiple
subscriptions. There are 5,958 subscriptions in the dataset.

3 Deployment ID VMs are grouped and managed in a deployment. A
subscription can have multiple deployments and a
deployment belongs to only one subscription. There are
35,941 deployments in the dataset.

4 Timestamp
VM Created

VM creation time in seconds. It is reported in five minute
intervals. Thus, values are in increment of 300.

5 Timestamp
VM Deleted

VM deletion time in seconds. Reported in the same interval
as the VM create timestamps.

6 Max CPU Maximum CPU utilization reading during the VM’s lifetime.
CPU utilizations are read every five minutes and are reported
in percentages.

7 Average CPU Average CPU utilization during the VM’s lifetime.
8 P95 of Max

CPU utilization
The 95th percentile (p95) of max CPU utilization readings
during the VM’s lifetime.

9 VM Category VMs are put into one of three categorized based on their
performance characteristics: delay-sensitive,
delay-insensitive, or unknown.

10 VM Cores The number of virtual cores in the VM.
11 VM Memory The amount of RAM in the VM.

A VM has an invalid life span timestamp if its create and delete ticks are identi-

cal. We eliminate these VMs, which we call instant-VMs. There are 53,467 instant-

VMs (less than 2% of total), which leaves 1,960,300 VMs in the preprocessed

workload. Resource Central refers to instant-VMs as “control plane latency test

VMs” [40]; these test VMs are used to continuously evaluate VM creation latency.

In summary, there are 2,013,767 VMs in 35,941 deployments before prepro-

cessing the trace and 1,960,300 VMs in 35,870 deployments afterwards. We call

the Azure trace after preprocessing the base workload. The base workload’s com-

pute and memory demand varies by around 10% across all 8640 ticks: between

321,043 cores and 346,755 cores and between 730,314 GB and 781,767 GB.

Our base workload uses only a subset of VM information in the Azure

54

trace [20]: five out of 11 shown in Table 3.1. The Azure dataset also in-

cludes CPU readings (max, average, p95) of each VM every five minutes (in

vm cpu readings.csv file [20]). Although we do not use CPU utilization

readings to generate a VDC workload, one could use them to generate a VDC

workload with different network bandwidth requirements. We leave this to future

work. We now describe our VDC workload generation technique based on VMs’

requested resources.

3.2 From VMs to VDCs: Gridiron Technique
We use deployments to represent VDCs. There are four additional steps in the

Gridiron technique. First, VDCs have inter-VM communication topologies, which

the base workload lacks. In Section 3.2.1, we describe various topologies VDCs

can have and explain our rational for adopting an all-to-all topology. Second, VDC

sizes should be appropriate for the application(s) that these VDCs encapsulate.

In Section 3.2.2, we explain the significance of the peak VDC sizes and show peak

sizes in the base workload. Third, virtual links (vlinks) in a VDC should have

a bandwidth value. In Section 3.2.3, we use the compute-proportional-bandwidth

approach for assigning vlink bandwidths and constructing a parameterized VDC

workload. The parameterization allows us to tailor the network bandwidth demand

of the VDC workload. Fourth, the VDC workload should be feasible by construc-

tion, e.g., an empty datacenter should be able to accommodate the VDC with the

highest bandwidth demand. Section 3.2.4 explains several kinds of scenarios to be

aware of when generating the VDC workload, and Section 3.2.5 describes a model

to avoid these scenarios.

3.2.1 VDC Topologies

The design space for VDC topologies ranges from low to high connectivity. Fig-

ure 3.2 shows three different VDC topologies with sparse and dense connectivity.

An example VDC with sparse connectivity, as in Figure 3.2(a), runs a distributed

ML training application in a data-parallel method where all worker VMs connect to

a centralized parameter server in a star topology [125]. The VDC in Figure 3.1 for

distributed ML training, which we used as the sample VDC application earlier, is an

55

(a)

v0v1

v2

v3
v3v1 v5v4

v2

v0
v6

v7

(b)

v0
v1

v2
v3

(c)

Figure 3.2: VDC Topologies with Varying Connectivity: (a) star topology
with sparse connectivity, (b) pipeline topology with sparse connectiv-
ity, and (c) all-to-all topology with dense connectivity.

tick42tick20

v1v0 2

 4 cores
6 GB[] 2 cores

4 GB[]

tick5 time(a)

2

v1v0

 4 cores
8 GB[]

2

v2

4

 4 cores
6 GB[] 2 cores

4 GB[]

 4 cores
8 GB[]

2

v1v0 2

v2

4

 3 cores
6 GB[]

v3

3

3

 4 cores
6 GB[] 2 cores

4 GB[]

(b) (c)
Figure 3.3: VDC Mutation Over Time: (a) shows VDC creation with two

VMs, (b) shows VM v2 allocation, and (c) shows VM v0 deallocation
and VM v3 allocation. The VDC will continue with three VMs (v1, v2,
v3) after tick 42.

instance of VDC topology with sparse connectivity. Moreover, VDCs we used from

the existing literature in Chapter 2, such as Yuan et al. [135] and SecondNet [59],

also have sparse connectivity. A different example also with sparse connectivity,

as in Figure 3.2(b), is a big data application, such as the ETL (Extract-Transform-

Load) Spark pipeline [41]. Here, VMs load data from various sources, process it

with map-reduce-style operations, and present the data or store the results for later

processing. Finally, an example VDC with dense connectivity, as in Figure 3.2(c),

runs a distributed ML training application in a model-parallel method where every

VM acts as both a worker and a parameter server. Here, each VM stores a full copy

of the ML model and trains its local model on its distinct data slice while periodi-

cally communicating the local parameter updates to all other VMs. This method of

distributed training is also called training with a mirrored strategy [124].

Figure 3.3 shows network bandwidth assignment for a sample VDC with dense

connectivity, as in Figure 3.2(c). It also shows VDC size mutation as VMs are

56

0.9
0.95

0.99

32 65 242

C
D

F

Peak VDC Sizes

Figure 3.4: Peak VDC Sizes in the Base Workload.

added to and deleted from the VDC. Figure 3.3(a) shows an initial VDC created in

time tick 5 with two VMs: v0 and v1. The v0-v1 vlink has two “units of network

bandwidth”.2 We use the term unit of network bandwidth throughout our examples

for generality. We convert it to a specific unit, such as 6 Mbps, when we tailor the

VDC workload to a specific datacenter. The VDC expands to include VM v2 in tick

20, as shown in Figure 3.3(b). This requires allocating v0-v1 and v1-v2 vlinks. A

VDC can also shrink with VM deallocation(s), as shown in tick 42 (Figure 3.3(c)).

In tick 42, VM v0 is deallocated and VM v3 is allocated. The VM v0 deallocation

requires deallocating the v0-v1 and v0-v2 vlinks. In the Gridiron technique, VM

deletions always precede VM allocations within a tick so that datacenter resources

are first released before being consumed. The VM v3 connects to all other alive

VDC VMs, v1 and v2, which requires allocating v1-v3 and v2-v3 vlinks. Note that

VM deletions in a VDC do not have to adhere to FIFO (first in first out), LIFO (last

in first out), or any other order. The ordering is inherited from the base workload.

57

3.2.2 Peak VDC Sizes

A VDC reaches its peak size when it has the maximum number of VMs alive in the

same tick. For example, the VDC in Figure 3.3 reaches peak size P=3 in tick 20

and maintains that size until tick 42 and beyond. Figure 3.4 shows the distribution

of peak VDC sizes in the base workload. It shows that the 90th percentile (p90) of

the VDCs has 32 VMs and VDC sizes can reach as many as 1,814 VMs.

A VDC with 1,814 VMs is not common. For example, running distributed ML

training at this scale is challenging [57]. Therefore, we should be able to cap the

peak VDC size when generating a VDC workload for a particular cloud applica-

tion. In the Gridiron technique, we cap the peak VDC sizes by splitting a deploy-

ment into multiple VDCs where each VDC’s peak size is below the cap.

We split a too-large deployments into multiple VDCs via a rolling-overflow

mechanism. VDCs are processed one-by-one, keeping track of the peak VDC size

so far. If that size exceeds the cap, then subsequent allocations to the same deploy-

ment are rolled to a new VDC. In other words, a VDC will have no more VM create

events after it reaches the cap size. At the same time, if the base workload VDC

has a peak size below the cap, no capping is applied, and it will be added to the

VDC workload as-is, as a single VDC. Given that the rolling-overflow mechanism

splits a single deployment into multiple VDCs, the number of VDCs in the capped

workload will potentially exceed the number of deployments in the base workload.

Appendix B shows the pseudocode for constructing the VDC workload from the

base workload while applying the capping mechanism. The actual source code is

available in the dissertation artifact repository [81].

3.2.3 Parameterizing VDC Workload’s Network Load

We assign a bandwidth value to each vlink using a compute-proportional-bandwidth

approach. However, a vlink connects two VMs: Which VM’s compute capacity

should be used as the reference point? In the Gridiron technique, we choose the

VM with the smaller capacity, because doing otherwise introduces a flooding ef-

fect. Flooding happens when a VM with more compute capacity sends a higher

traffic volume to the VM with less compute capacity, or the weaker VM, to the

2We will describe how we derive vlink bandwidths in Section 3.2.3.

58

point where the weaker VM is no longer able to process the traffic. In practice, the

weaker VM drops the subset of packets it cannot process. Thus, the vlink band-

width is more realistic if the excess packets were not sent to begin with. For ex-

ample, in Figure 3.3, the v0-v1 vlink has two units of bandwidth as the VM with

the weaker processing capacity has two vCPU cores (VM v0). Similarly, the v1-

v2 vlink has four units of bandwidth because both VMs that it connects have four

vCPU cores. The rationale for avoiding a flood is similar to what TCP flow control

is designed for, except VDC vlinks in this work are (transport) protocol-agnostic.

We generate VDC workloads with varying bandwidth demand by parameter-

izing each vlink’s bandwidth. The key insight in parameterization is that we can

use different “units” to represent the unit of bandwidth. For example, in Figure 3.3,

the v0-v1 vlink gets assigned 2 Mbps bandwidth when we use 1 Mbps as the unit,

and 10 Mbps bandwidth when we use 5 Mbps as the unit. Given that the unit of

bandwidth of the vlink is determined by the compute capacity of the weaker VM

(that it connects), we can directly make the unit as the function of the vCPU cores

in the weaker VM. We call this unit the bandwidth per core (bpc). In our earlier

example, the v0-v1 vlink gets assigned 2 Mbps bandwidth when bpc=1Mbps, and

10 Mbps bandwidth when bpc=5Mbps (because the weaker VM has 2 vCPUs).

Thus, we can generate VDC workloads with varying bandwidth demand by as-

signing different values to bpc. For example, the workload with bpc=2Mbps has

twice higher bandwidth demand than the workload with bpc=1Mbps.

We use the bpc parameter to avoid the over-provisioned network pitfall that

SecondNet’s VDC workload suffered from. The VDC workload used in the Sec-

ondNet [59] consumed 1/50th of the datacenter bandwidth provided (Section 2.4.3).

In other words, the datacenter’s network capacity was 50× over-provisioned. Thus,

VDCs’ bandwidth requirements were mostly irrelevant during resource scheduling

despite the fact that networking was the central focus of the paper. Although this

might be acceptable when a cloud provider is willing to leave a significant portion

of their datacenter network bandwidth underutilized, it seems an unlikely scenario

in practice, because cloud providers report that datacenter network is a computa-

tion bottleneck with ToR switch uplinks frequently operating above 80% utiliza-

tion [58]. Thus, VDC schedulers should be evaluated with workloads that consume

significant portion of the datacenter network bandwidth.

59

We can tune the bpc parameter to create a VDC workload with the right

amount of bandwidth demand for the datacenter under test. As we will show in Sec-

tion 4.2.6, varying the demand allows us to evaluate the bandwidth allocation qual-

ity of different VDC schedulers. Note that it is possible to diversify vlink band-

widths across different VDCs by adopting a finer tuning mechanism for the bpc

parameter. For example, we could generate a VDC workload with more diverse

vlink bandwidths by using bpc=2Mbps in some subset of VDCs and bpc=5Mbps

in other subsets. Even though we do not see a reason for such diversity to influence

the scheduler evaluation, i.e., we hypothesize that the best VDC scheduler remains

the best regardless of the vlink diversity in VDC workload, empirical demonstra-

tion of this hypothesis is left as future work.

3.2.4 Network-bound VM Allocation Failures

Cloud services depend on hardware capabilities of the datacenter(s) they run on.

For example, cloud providers will not offer a VM flavor with 70 vCPUs if their

datacenter does not have a server with that many cores. We call these phenom-

ena datacenter-level constraints. Similar constraints apply to all cloud services,

including network bandwidth guarantees. We take datacenter-level constraints into

account when generating a VDC workload, because otherwise we risk generating

VDCs that are infeasible by construction. In this section, we discuss VM alloca-

tion failures that surface if datacenter-level-constraints are not taken into account.

A VM allocation failure happens when a tenant VM allocation request is rejected

because of insufficient residual capacity in the datacenter.

We call a VM allocation failure a network-bound VM allocation failure, or

network-bound failure, when the VM allocation request is rejected because of in-

sufficient network bandwidth in the datacenter. When bandwidth is offered as a

first class cloud service, just like the compute service, cloud providers would want

to avoid, or minimize, network-bound failures. Avoiding network-bound failures

is more complex than avoiding compute-bound failures, because unlike vCPUs,

inter-VM bandwidth is not a server-local resource: it is a cross-device resource. In

particular, we identified three specific scenarios that can produce network-bound

failures by construction. We first elaborate on each scenario and its significance.

60

AggSw1

ToR0

server0

server47
10

…

ToR1

server48

server95

…

10

ToR2

server96

server143

…

40

ToR3

server144

server191
…

40

AggSw0
16x10 16x40

Figure 3.5: Example Datacenter with Four Racks. Here, racks are connected
to two aggregation switches.

Later in Section 3.2.5, we present three constraints to enforce on VDCs such that

the maximum bandwidth each VDC might ever impose on a single server is feasi-

ble to accommodate.

The first scenario is allowing excessive bandwidth in a virtual link (vlink-

caused). Vlink-caused failures happen when a vlink’s bandwidth capacity exceeds

the aggregate uplink capacity at the most network-bandwidth-intensive server,

which we call the “fattest server-uplink”. If servers have two or more uplinks

(multi-homed), the fattest server-uplink’s capacity will be equal to a server’s aggre-

gate uplink bandwidth. Vlink-caused failure is analogous to the number of vCPUs

exceeding the number of CPUs at the most compute-intensive server. For example,

for the datacenter shown in Figure 3.5, a vlink with over 40 Gbps is guaranteed to

cause a network-bound failure. (The only exception is if both ends of the vlink are

colocated on the same server.)

We define the “fattest link” in terms of “server uplink” because of the network

multi-path feature, which is commonly used in modern datacenters [58]. For ex-

ample, when two VDC VMs are placed across different racks, such as on server0

and on server144 in Figure 3.5, a vlink between these VMs can span multiple

paths, such as ToR1-AggSw1-ToR2 and ToR1-AggSw2-ToR2, to pool the band-

width amount required for this vlink. In general, the vlink bandwidth should not

exceed the bandwidth across any cut in the network between the servers that host

two ends of the vlink. However, this is non-trivial to compute and depends on the

placement of the VMs, but the fattest server-uplink is always a cut, and therefore

an upper bound on the vlink bandwidth.

61

timetickN tickN+1

v1v2

v3

v4

0/3

ToR1 ToR2

AggSw2AggSw1

2 core2 core 2 core

2 core

Orig
ina

l V
DC

0/1 0/1 0/40/4

0/4 0/4 0/4

2

22

S1
0/4 core

S2
0/4 core

S3
0/4 core

2/3

ToR1 ToR2

AggSw2AggSw1

1/1 1/1 3/43/4

4/4 2/4 2/4

v1v2

v5

v4

1 core1

v3

S1 S2 S3
v1 v2 v3 v4

Ex
pa

nd
ed

 VD
C

4/4 core 2/4 core 2/4 core

Figure 3.6: This is an example of overpeering-caused VM allocation failures
where the initial VDC allocation succeeds in tick N but the expansion
of the VDC with VM v5 in tick (N+1) fails because of overpeering of
VM v1. Datacenter resource capacities are shows as used / original. For
example, 1/4 in link bandwidth means that “1” unit of bandwidth is used
out of total “4” units. We omit VM and server memory capacities for
brevity. The datacenter is empty in tick N.

The second scenario is allowing excessive VM overpeering3 (overpeering-

caused). Overpeering-caused failures happen when a VDCs’ already allocated

VM(s) get too many peering requests such that the server hosting an already-

allocated VM becomes bandwidth bottlenecked. Figure 3.6 shows an overpeering-

caused failure. In tick N, a tenant requests a VDC with four VMs (v1, v2, v3,

v4). These four VMs get placed on three servers (S1, S2, S3) as shown with the

dashed lines in the left figure. We show VM-to-server assignment with grayed

boxes placed on the servers in tick (N+1). The tenant requests to expand the orig-

inal VDC with VM v5 in tick (N+1). The v5 needs to connect to v1 with one unit

of bandwidth. However, as we can see in tick (N+1), the only two servers with

sufficient cores and memory to accommodate v5 (S2, S3) do not have sufficient

bandwidth to connect to S1, which hosts the already allocated peer VM (v1). Thus,

the VDC scheduler fails v5 allocation due to insufficient bandwidth.
3We could say “oversubscription” instead of “overpeering” because peer VM(s) actually sub-

scribe to the already-allocated peers. However, the term “oversubscription” is already used in the
cloud’s compute service. For example, saying “a server is CPU oversubscribed” means that “the
number of vCPUs VMs are consuming exceed what the host server offers”.

62

v2

v1 v3

v4

3/3

ToR1 ToR2

AggSw2AggSw1

1 core

1 core

1 core

1 core

1/2 1/2 3/33/3

1

1

1

S2
1/2 core

S1
1/2 core

S4
1/2 core

S3
1/2 core

1

1
1

3/3 3/3 3/3 3/3

VD
C

(a)

v2

v1 v3

v4

1/3

ToR1

AggSw2AggSw1

1 core

1 core

1 core

1 core

1/2 1/2 2/3

1

1

1

S2
0/2 core

S1
2/2 core

S4
2/2 core

S3
0/2 core

1

1
1

3/3 0/3 0/3 3/3

VD
C

2/3

ToR2

(b)

Figure 3.7: Effect of Colocation on Datacenter Network Bandwidth. We
show how colocation can over-stress datacenter network: (a) shows suc-
cessful VDC allocation, and (b) shows colocation-caused VM allocation
failure (v4). Datacenter resource capacities are shown as used / original.
For example, 1/4 in link bandwidth means that “1” unit of bandwidth is
used out of total “4” units. The datacenter hosts only this VDC.

The overpeering-caused failures happen for the same reason as the vlink-caused

failures: insufficient bandwidth at the server uplink level (server-to-ToR switch

links). Similarly to the vlink-caused failures, we do not include failures that happen

due to bandwidth scarcity in other datacenter network levels, such as the spine links

(because of multi-pathing). For example, in Figure 3.6, VM v5 fails because of the

S1-ToR1 server uplink. Otherwise, S2(or S3)-ToR2-AggSw2-AggSw1-ToR1 does

have one unit of bandwidth available to accommodate the v1-v5 vlink.

The third scenario is allowing excessive VM colocation, which concentrates

aggregate vlink bandwidth on a single server (colocation-caused). We say that two

VDC VMs are colocated when they are placed on the same server. Colocation-

caused failures happen when the aggregate bandwidth to colocated VDC VMs ex-

ceeds the bandwidth offered by the host server. An example is shown in Figure 3.7

where a VDC with four VMs needs to be placed on a datacenter with four servers.

VDC VMs arrive and are placed one-by-one. Figure 3.7(a) shows successful VDC

allocation when no VMs are colocated. Figure 3.7(b) shows VM v4 allocation fail-

63

ure because of colocation. This VDC consumes the maximal bandwidth on a single

physical link when VDC VMs are equally split across two servers, e.g., v1 and v2

VMs are placed on server S1, and two other VMs are placed on server S4. (We

proof this theorem in the next paragraph.) Colocated VMs do not consume any

datacenter network bandwidth to communicate with each other since they com-

municate locally (through the hypervisor), but they do consume datacenter net-

work bandwidth to communicate with every VM placed on the other server. Thus,

there are 2×2=4 vlinks, quadratic in the number of VMs placed on each server,

traversing the path between server S1 and server S4. However, the S1-ToR1 link

can accommodate only three vlinks. Hence, v2-v4 vlink allocation fails, causing

VM v4 allocation failure. Notice that VM v4 in Figure 3.7(b) fails allocation even

though colocation reduces the overall demand on datacenter network bandwidth

(four units) compared to fix units of overall bandwidth without colocation (Fig-

ure 3.7(a)). This demonstrates that the colocation-caused failures happen due to

demand concentration, not necessarily demand increase.

Theorem: A VDC imposes the greatest demand on a single server link when

its VMs are equally split across two servers.

Proof. Imagine a datacenter with servers (s ∈ S) and VDC with n VMs: x VMs

placed on server sx, y VMs placed on server sy, and all remaining (V DC \ {x,y})
VMs placed on other datacenter servers (S\{sx,sy}). The aggregate network band-

width demand of this VDC (V DCbw) is the sum of all VDC vlink bandwidths:

V DCbw = ∑
vlink∈V DC

bwvlink

VDC allocation spreads V DCbw among all servers that host VDC VMs, i.e.,

bw(sx,sy)+ ∑
i∈{S\sy}

bw(sx,i)+ ∑
j∈{S\sx}

bw(sy, j) =V DCbw (3.1)

Given that we want to find an allocation that generates the greatest demand on

(sx,sy) link, i.e., maximize bw(sx,sy) addend, we need to assign zero to two other

addends in Equation 3.1. Informally, so far we established that the demand on

(sx,sy) link is the greatest when all VDC VMs are allocated on sx and sy.

64

Now we prove that splitting VDC VMs equally between sx and sy generates the

greatest demand, i.e., maximizes bw(sx,sy). When k VMs are on sx, there are (n−k)

VMs on sy. With all-to-all VDC topology, there are (k ∗ (n− k)) vlinks on (sx,sy)

link. Assuming that vlinks require identical bandwidths, we need to simply maxi-

mize the number of vlinks traversing (sx,sy) link. We can reduce this maximization

problem to maximizing (k ∗ n− k2) quadratic equation, which has the solution at

k = n/2. Thus, we proved that a VDC imposes the greatest demand on a single

server link when (k = n/2) VMs are on server sx and (n− k = n/2) VMs are on

server sy, i.e., VDC VMs are equally split across two servers.

In summary, we described three scenarios that can cause network-bound fail-

ures due to datacenter-level constraints. These scenarios should be taken into ac-

count when generating any VDC workload. Otherwise, the VDC workload can

have VDCs that are infeasible by construction, which can produce vlink-caused,

overpeering-caused, and colocation-caused failures. Moreover, these scenarios are

not exhaustive. There could be other scenarios that cause network-bound failures.

However, in our experience these three scenarios are the most relevant ones to take

into account during VDC workload generation.

Note that in this dissertation, we assume that VMs cannot be migrated, i.e.,

VMs cannot be relocated to another server after the initial placement. Migrating

VDC VMs is particularly challenging, because a to-be-migrated VM might already

be communicating with other peer VMs. Cloud providers avoid VM migration, be-

cause it affects application performance and might even cause VM downtime [40].

In fact, the Resource Central [40] authors propose using prediction-based VM allo-

cation techniques to avoid “problematic live VM migration in practice ... and place

VMs where they can stay”.

3.2.5 Avoiding Network-bound VM Allocation Failures

Now that we have described three scenarios, we have to ensure that the VDC work-

load we generate is feasible by construction. We call such a workload datacenter-

aware. In this section, we present a series of three constraints for generating

datacenter-aware VDC workloads, which avoid vlink-caused, overpeering-caused,

and colocation-caused failures.

65

(a)

v0v1

v2

v3
v3v1 v5v4

v2

v0
v6

v7

(b)

v0
v1

v2
v3

(c)

Figure 3.8: VDC Topologies: (a) and (b) have sparse connectivity, and (c) has
dense connectivity. This is reproduced from Figure 3.2 for readability.

There are three knobs to control: (1) maximum bandwidth per vlink, (2) VDC

topology, and (3) peak VDC size. The first knob is similar to the number of vCPUs

in a VM flavor. We can cap vlink capacities to ensure that the highest bandwidth a

vlink offers does not exceed the capacity of the fattest server-uplink. For example,

for the datacenter shown in Figure 3.5, no vlink should offer over 40 Gbps. Two

other knobs, VDC topology and peak VDC size, are related to each other and can

be constrained to avoid overpeering-caused and colocation-caused failures.

Figure 3.6 shows that in constructing a VDC workload, we need to budget not

only for a VM’s current bandwidth requirements but also for its growth potential.

A VM’s growth potential is the difference between the bandwidth it consumes at

its allocation and how much more bandwidth it can consume in the future. For ex-

ample, if a VM is created with only one vlink that has 100 Mbps bandwidth but it

can create 10 more such vlinks during its lifetime, this VM’s growth potential is

1000 Mbps (11*100-100). A VMs’ growth potential is a function of two things: the

topology of its VDC, which determines the number of vlinks the VM can have, and

the peak VDC size, which defines the maximum number of VMs allowed in a VDC

at the same time. Figure 3.8 shows VDC topologies with sparse and dense connec-

tivity. VMs in a dense connectivity, as in Figure 3.8(c), have the highest growth

potential. This potential can induce overpeering- and colocation-caused failures,

because VMs have the highest aggregate bandwidth when they peer with every

other VM in the VDC, i.e., in an all-to-all topology.

We can impose restrictions on the VDC topology to avoid VDCs with dense

connectivity in the workload. For example, we could allow only two vlinks per VM

to ensure that all VDCs have a sparse, e.g., a chain-like, topology. However, this

would be too restrictive. As an example, the generated VDC workload could not

contain distributed-training-like applications that have all-to-all connectivity. In-

66

(c) ToR

server0 server1
v1 v2 v3 v4 v5

40

v0

(a) ToR

server0 server1
v3 v4 v5 v6

40

v2v1v0 v7 v8 v9

ToR

server0 server3
v0

server1 server2 server4
v1 v2 v3 v4 v5 v6 v7 v8 v9

40
(b)

Figure 3.9: Effect of Colocation on Datacenter Network Bandwidth. We
show how colocation can create bottleneck(s) in datacenter network.
VM-to-server placement is shown as VMs placed on the servers: (a)
and (b) show four colocation-caused VM failures (v6, v7, v8, v9), and
(c) shows failure-free VDC placement. VDCs in all figures have all-to-
all connectivity. Figure (b) shows connectivity for only VM v0 and VM
v1 for brevity.

stead, we can just cap the peak VDC size while granting tenants complete freedom

in the topology choice. Put differently, we can guard against the overpeering- and

colocation-caused failures by controlling only the peak VDC size knob, and leave

the topology knob free by assuming (the worst case) all-to-all VDC topology.

For example, consider the sample four-rack datacenter topology in Figure 3.5

(we generalize this example later):

1. We can avoid vlink-caused failures by capping vlink capacities to C = 40

Gbps, i.e., the fattest server-uplink capacity.

2. Avoiding overpeering-caused failures is about capping VDC size such that

the aggregate bandwidth of the VM vlinks does not exceed C. For the sample

datacenter in Figure 3.5, we need to limit the per-VM aggregate bandwidth to

40 Gbps. Assume that the peak VDC size P = 10. A VDC VM can therefore

can have up to P−1 = 9 vlinks. There, we need to ensure that the aggregate

bandwidth of nine vlinks does not exceed 40 Gbps. Thus, we conservatively

cap each vlink to have at most B = 40/9 ≈ 4.4 Gbps bandwidth to avoid

overpeering-caused VM allocation failures.

3. We can prevent colocation-caused failures by avoiding VM colocation or by

capping the VDC VM colocation degree. A VDC has colocation degree of

D when the largest number of VMs of the VDC colocated on a server is D.

For example, imagine the VDC with 10 VMs shown in Figure 3.9(a). The

VDC has an all-to-all topology where each vlink has 4.4 Gbps bandwidth

67

(B=4.4 Gbps). VMs arrive and are placed one-by-one. The first five VMs

(v0, v1, v2, v3, v4) are colocated on server0, after which server0 becomes

compute bound. Although server1 has sufficient compute capacity to accom-

modate the remaining five VMs (v5, v6, v7, v8, v9), only VM v5 gets suc-

cessfully allocated, because server0’s uplink is exhausted after nine vlinks

(five vlinks to connect v5 to the first five VMs in server0, and four vlinks to

connect v6 to the first four VMs; 4.4×9≈40) and has no bandwidth left for

v4-v6 vlink. Thus, v6, v7, v8, v9 VMs fail allocation (when D = 5).

Imagine placing this VDC on a five-server datacenter, shown in Figure 3.9(b).

Here also, VDC VMs are placed one-by-one and each vlink has 4.4 Gbps

bandwidth. Assume that servers’ compute capacity suffices to accommodate

only two VMs. The first six VMs get successfully allocated, after which

server0’s uplink is exhausted with nine vlinks (4.4×9≈40) and has no band-

width left for v1-v6 vlink. Thus, the last four VMs fail allocation even when

D = 2. Therefore, for the datacenter shown in Figure 3.5, where C = 40

Gbps, P = 10, and B = 4.4 Gbps, disabling colocation altogether (D = 1), is

the only way to avoid colocation-caused failures.

At the same time, Figure 3.9(c) shows that it is possible to leave the colo-

cation degree unconstrained when P = 6 (while C = 40 Gbps and B = 4.4

Gbps) because 40 Gbps server-to-ToR links can accommodate the maximal

aggregate bandwidth of the smaller, 6-VM VDC (D= 3). Thus, Figure 3.9(c)

demonstrates that we can avoid colocation-caused failures by controlling

peak VDC size (P).

Now we generalize our findings from the sample datacenter and propose a

method for generating datacenter-aware VDC workload. The datacenter-aware VDC

workload should satisfy the following three constraints to avoid all three causes of

network-bound failures:

1. vlink-caused failures:

B≤C (3.2)

where B is the maximal per vlink bandwidth and C is the capacity of the

fattest server-uplink.

68

2. overpeering-caused failures:

B≤C/(P−1) (3.3)

where P is the peak VDC size.

3. colocation-caused failures:

B≤C/(P/2)2 (3.4)

Note that Equation 3.3 supersedes Equation 3.2, and Equation 3.4 super-

sedes Equation 3.3, when P ≥ 2. That is, limiting vlink bandwidth (B) to satisfy

the constraint in Equation 3.4 automatically satisfies the two other constraints. At

the same time, P≥ 2 is always true by VDC construction, because a VDC of size 1

is a degenerate VDC, requires no bandwidth, and therefore, is not considered. Thus,

we can exclusively focus on satisfying Equation 3.4 (avoiding colocation-caused

failures). This is what we do when generating a datacenter-aware VDC workload

for our VDC scheduler evaluation in Section 4.2.6.

The method’s purpose is not to prevent all possible network-bound failures, but

to bound vlink bandwidths such that the generated VDC workload is datacenter-

aware. The method is useful in generating VDC workloads that are feasible by

construction and sufficiently network intensive to evaluate the VDC schedulers.

3.3 Case Study: Applying Gridiron Technique to ML
Training

Deployment sizes in the base workload reach up to 1,814 VMs. This is not realistic

for distributed ML training applications, because distributed ML training at this

scale is challenging [57]. Thus, we cap the peak VDC sizes to a realistic size.

A common way to scale distributed ML training is by parallelism. For example,

Goyal et al. scale DNN training by increasing the training batch size and executing

data-parallel training across multiple machines/devices [57]. In a VDC, multiple

VMs would execute the data-parallel training: the training data is split across VDC

VMs, and each VM runs computation on a slice of the local data (mini-batch). The

69

Table 3.2: Common Distributed DNN Training Applications. Models are
sorted by their size.

Task Model Name Model Size
(MB)

Batch
Size

Mini-Batch
Size

Number
of VMs

Recommendation DeepLight [45] 2319 211–213 2048 1–4
Translation LSTM [66] 1627 8–64 8–32 1–8
Translation BERT [46] 1274 4–256 4–32 8–64
Image classification VGG19 [116] 548 64–256 32–256 1–8
Translation UGATIT [79] 511 1–2 1 1–2
Recommendation NCF [65] 121 128–217 128–214 1–8
Object detection SSD [89] 98 1–8 1–8 1–8
Image classification ResNet-50 [64] 87 64–221 32–8192 8–256

result of the computation on a mini-batch (gradients) is broadcast to all other VDC

VMs. A VM applies gradients from all VDC VMs to its local model. For example,

in a VDC with 4 VMs using batch size 64, each VM will have mini-batch size 16.

In general, we use the following formula to derive the number of VMs in a VDC:

Number o f V Ms = Batch Size
Mini Batch Size

However, higher batch sizes hurt the learning rate, impeding linear scalability

beyond a certain batch size [57, 72, 78]. An optimal batch size differs by DNN. Ta-

ble 3.2 lists eight common DNN applications identified by Sapio et al. [113]. These

applications cover five tasks, out of six total, that were selected as the representa-

tive applications by the MLPerf training benchmarking organization [91], which

has the broadest recognition across academia and industry [95]. We surveyed the

recent literature to study the batch sizes and mini-batch sizes used to train these

DNNs, which we then used to derive the VDC size range [36, 45, 57, 64, 65, 79,

89, 97, 113, 116].4

We chose ResNet-50 training as the most common workload. ResNet-50 is

the state-of-the-art model in image classification, and is the most widely studied

model in the literature [91]. ResNet-50 achieves linear scalability for batch sizes

up to 1024 [57, 72]. Given that the most commonly used mini-batch size in the

4We report the studies that use only CPUs and GPUs. We exclude batch sizes when the model is
trained with vendor-specific accelerators, such as TPUs.

70

Figure 3.10: Peak VDC Sizes in the ML Training Workload: 48% of the
VDCs have a peak size <30, the rest have peak size of exactly 30.

literature is 32, a VDC to train ResNet-50 can have up to 32 VMs (32x32=1024),

which we round to 30. Our observations from the existing ML training literature

is that a VDC size of 30 is realistic for modern cloud environments. This size also

generalizes to models other than ResNet-50 because the workload analysis study

by Jeon et al. shows that distributed DNN training in clusters with up to 16 VMs

were already common in 2017 [73], and the cluster size has been increasing due to

increased DNN model size [113].5

Figure 3.10 shows the peak VDC size distribution after we cap the peak VDC

size at 30. The VDC workload we construct has≈2×more VDCs (73,872) than the

deployments (35,870) in the Azure trace. Although a 2× increase in VDC numbers

has no influence for evaluating VDC schedulers, the cap threshold (30) does have

an influence on the VDC workload’s potential to introduce network-bound VM

allocation failures (Section 3.2.4).

Next, to make the generated workload datacenter-aware, we need to target a

specific datacenter. We demonstrate the vlink bandwidth assignment on the sample

datacenter in Figure 3.5. Given the peak VDC size P=30 and the fattest server-

uplink capacity in the sample datacenter C=40,000 Mbps, from Equation 3.4:

B≤C/(P/2)2 = 40,000/(30/2)2 ≈ 177.78 Mbps

which means that the VDC workloads will not have VDCs that are infeasible by

5Note that the Jeon et al. study [73] is different from the Resource Central paper [40]. Jeon et
al. analyzed DNN training workloads deployed on a multi-tenant GPU cluster in Microsoft during a
75-day period (from 2017.10 to 2017.12). Their analysis contained 96,260 jobs.

71

Table 3.3: Steps in the Gridiron Technique.

Name Our Approach in the ML Training Workload

1 VDC Topology Selection Use all-to-all topology.
2 Capping the Peak VDC Sizes Cap the peak VDC sizes to 30.
3 Per-vlink Bandwidth

Assignment
Adopt compute-proportional-bandwidth approach.

4 Generating Workloads with
Bandwidth Demand

Parameterize using bpc values.

5 Making Workload
Datacenter-aware

Constrain the peak VDC sizes and vlink
bandwidths to avoid network-bound failures.

construction as long as vlinks’ bandwidth do not exceed 177 Mbps.

From the cap on vlink, we can derive bandwidth-per-core (bpc). In the Azure

workload, the largest VM has 16 cores. Therefore, we limit bpc≤11Mbps (177

Mbps / 16 cores) to ensure that vlinks never exceed 177 Mbps. Furthermore, bpc

is just a parameter. We can use different values to generate ML workloads with

different network demand. The reference VDC workload (bpc=1Mbps) consumes

between 5,828 Gbps and 6,581 Gbps. This 10% variance is similar to the variance

in CPU and RAM resources in the base workload (Section 3.1). The similarity is

by design: bpc is just a multiplier on the workload’s CPU footprint.

Table 3.3 summarizes five steps in the Gridiron technique and our approach

in generating a VDC workload that approximates ML training. One can adopt dif-

ferent approaches in one or more steps to generate different VDC workloads. For

example, it is possible to change the first step to use sparse connectivity instead of

all-to-all connectivity to generate a less network-intensive VDC workload. Simi-

larly, in the second step, one can use different value (not 30) to cap the peak VDC

sizes, although this change might require adjustments on the fifth step to avoid

network-bound failures. We leave exploring these variations to future work.

In summary, we applied the Gridiron technique to generate a realistic VDC

workload with characteristics of the distributed training application. In Chapter 4,

we will use this VDC workload (with a realistic datacenter) to evaluate different

VDC scheduling algorithms. Future work can apply the Gridiron technique to gen-

erate other VDC workloads, and use them for their scheduler evaluations.

72

3.4 Related Work
We divide the related work into two areas. The first area covers existing techniques

for VDC workload generation. We explain how the Gridiron technique differs from

the existing techniques. The second area covers publicly available traces from pro-

duction clouds. We explain our rationale for choosing the Resource Central dataset

[20] in the Gridiron technique.

Existing Techniques for Generating VDC Workloads

To the best of our knowledge, no existing work uses production cloud workload

traces to construct a VDC workload. Instead, all existing work uses a randomization-

based approach for generating VDCs and their lifetimes [8, 21, 59, 120, 133, 135].

For example, Amokrane et al. [8] generate VDCs with 5–200 VMs, where a pair

of VMs connect with a probability 0.5 with a bandwidth demand uniformly dis-

tributed between 10 and 50 Mbps. The VDC allocation requests arrive according

to a Poisson process, and VDC lifetimes follow an exponential distribution. Al-

though synthetic VDC workloads suffice for scheduling algorithm feasibility stud-

ies, such as the NETSOLVER evaluation in the previous chapter, these workloads

lack important properties, such as VDC mutation, needed to evaluate VDC sched-

uler performance in practice.

We are the first to generate a VDC workload from production cloud traces

where VDC sizes and VDC allocation requests are directly derived from the pro-

duction traces. The next chapter will show the importance of the realistic VDC

workloads for evaluating VDC schedulers in practice.

Rational for Choosing the Resource Central Dataset

We generated VDC workloads based on production traces from the Azure cloud,

which are described in and released with the Resource Central paper [40]. Ta-

ble 3.4 compares features of this dataset with other datasets released by public

cloud providers. The Resource Central 2017 dataset is well-suited for VDC work-

load generation, because a VDC is a collection of VMs, and the Resource Cen-

tral 2017 dataset contains VMs. Moreover, the dataset describes VMs with their

absolute number of CPU cores, which is essential for our compute-proportional-

73

Table 3.4: Publicly Available Production Cloud Workloads.

Workload Virtuali-
zation

CPU
cores

Group-
ing

Volume
(million)

Duration Year Provider

Resource Central [40] VM Absolute X 2 30 days 2017 Azure
Resource Central V2 [17] VM Buckets X 2.6 30 days 2019 Azure
Protean [62] VM Normalized 5.5 14 days 2020 Azure
Serverless [114] Functions X 0.6 14 days 2019 Azure
Borg 2011 [110] Container Normalized X 25.4 30 days 2011 Google
Borg 2019 [127] Container Normalized X ∼732 31 days 2019 Google
Alibaba 2017 [88] Container Absolute X 0.09 0.5 day 2017 Alibaba
Alibaba 2018 [126] Container Absolute X 14.3 8 days 2018 Alibaba

bandwidth generation approach. Lastly, VMs are grouped into “deployments” that

we can use as a proxy for establishing VDC VM membership.

The same Azure team released version 2 (V2) of the Resource Central dataset

in 2019 [17]. Although this V2 dataset has ≈33% more VMs and is more recent, it

is ill-suited as the VDC workload source because it does not describe VMs’ CPU

cores in absolute terms. In the V2 dataset, the authors anonymized the number of

VM CPU cores by grouping the number of cores into six buckets.6 Although it

is possible to generate VDCs’ inter-VM network bandwidth requirements in the

same granularity as bucket compute capacities, using the more precise CPU core

numbers, via the Resource Central 2017 dataset [40], allows us to construct a more

realistic VDC workload.

The Azure cloud team also released a larger dataset, containing 5.5 million

VM allocations and deallocations, collected over a period of 14 days. This dataset

is described in and released with the Protean paper [62]. There are two disadvan-

tages to using this dataset as a basis for a VDC workload. First, VM CPU cores

are not given in absolute numbers. They are normalized to the server that the VM

is placed on. For example, if the VM requested 4 cores and the server it is placed

on has 40 cores, the VM will be recorded as having 0.1 cores. Reverse engineering

this dataset to extract absolute cores cannot be precise because the dataset includes

multiple servers configurations and these configurations are not released. More-

over, VMs in the Protean dataset do not have grouping, i.e., all VMs are solo-VMs.

6The first bucket contains all VMs with < 2 cores, or bucket1< 2 cores for short, 2 cores ≤
bucket2 < 4 cores, 4 cores ≤ bucket3 < 8 cores, 8 cores ≤ bucket4 < 12 cores, 12 cores ≤ bucket5
< 24 cores, and bucket6 ≥ 24 cores.

74

We cannot construct a VDC from solo-VMs (Section 3.1). Therefore, the Protean

dataset is also ill-suited for using as the basis for VDC workload generation.

The bottom five datasets in Table 3.4 do not use VMs as the virtualization

unit. They use functions, e.g., Azure Functions [19], or containers, e.g., the Azure

Container Service [18]. Unfortunately, VM lifetimes are radically different from

containers and function lifetimes: VM lifetimes are on the order of hours, container

lifetimes are on the order of minutes, and function lifetimes are on the order of

seconds.7 Thus, a container trace or function trace is not an ideal starting point for

a VM-based VDC workload.

However, cloud applications are evolving and VDCs might need to be extended

to include, or be redefined in terms of, non-VM constructs, such as containers and

functions. We do not rule out non-VM VDCs dominating the future of VDCs [74].

Our work focuses on several techniques that are useful for VM-based VDCs. These

techniques may serve as the foundation for non-VM VDC research in the future.

3.5 Conclusions
We described the Gridiron technique to construct a realistic VDC workload. We

used a VM trace from the Azure production cloud as the base workload and aug-

mented its VMs with network bandwidth requirements. We used the notion of “de-

ployment” that is present in the Azure trace to derive a VM’s VDC membership.

We considered various VDC topologies and selected all-to-all connectivity. We

also capped the peak VDC size to account for realistic application properties.

We proposed the compute-proportional-bandwidth approach to develop a pa-

rameterized VDC workload generation mechanism. This mechanism allows us to

adapt VDC workloads to different datacenters. For example, we can use this mech-

anism to scale up a workload’s bandwidth requirements to make sure that the data-

center network is not over-provisioned to the point that hinders evaluation of VDC

scheduling algorithms’ efficacy.

We studied the datacenter-level constraints for VDC workloads. We described

three scenarios that may produce network-bound VM allocation failures and pro-

7More precisely, 50% of functions run for less than 3 seconds, or p50=3 seconds for short, and
p90=60 seconds [114]. Lifetime for containers are: p50=50 seconds and p90=1000 seconds [126].
VMs lifetimes are the longest: p50=900 seconds (15 mins) and p90=86,400 seconds (24 hours) [40].

75

posed a model to avoid these scenarios. The model can also be used by cloud

operators to decide the volume of network bandwidth guarantees to offer to their

tenants based on the datacenter capacities.

Finally, we applied the Gridiron technique to generate a VDC workload that

captures the characteristics of distributed ML training applications. We capped the

peak VDC size at 30 VMs to capture the scalability limitations of the distributed

training. The capping allows us to generate realistic VDC workloads, which we use

for VDC scheduler evaluation in practice, as we describe in the next chapter.

76

Chapter 4

VDC Scheduling in Practice

We collaborated with a public cloud provider, Huawei Cloud [68], to evaluate

constraint-based VDC schedulers, such as NETSOLVER, in practice. Huawei Cloud

operates dozens of datacenters across four different continents [69]. We identified

four practical concerns that needed to be addressed to have confidence in attempt-

ing to deploy NETSOLVER in practice.

The first practical concern was that NETSOLVER was evaluated using synthetic

VDC workloads on datacenters of modest size. As we described in Section 2.4, we

used three different VDC workloads to evaluate NETSOLVER: two from the previ-

ous literature, Yuan et al. [135] and SecondNet [59], and one from our industrial

collaborator: ZeroStack. Even though we used three different sources to capture

the essential properties of a realistic VDC workload, the changes in the input sizes,

such as a significantly larger Azure-cloud-based VDC workload and the datacenter

size needed to accommodate it, warrant a reevaluation of the scheduler.

The Azure-cloud-based VDC workload that we generated in Chapter 3, which

we refer to as the realistic VDC workload hereafter, is long and large. The work-

load contains every VM in an Azure datacenter cluster over 30 days. The Azure

dataset has two orders of magnitude more VDCs than did the synthetic workloads,

i.e., a few hundred VDCs in our synthetic workloads vs. tens of thousands in the

Azure workload. The datacenter size needed to accommodate the Azure work-

load is also an order of magnitude larger than what we used for the NETSOLVER

evaluation in Section 2.4, i.e., a few hundred servers vs. a few thousand servers.

77

These changes in workload and datacenter sizes likely pose scalability challenges

for NETSOLVER.

VDCs in the Azure workload are also dynamic: they grow and shrink as VMs

join and leave — events that are triggered by tenants allocating and deallocating

their VMs. This motivates the second practical concern: the metric used in the VDC

scheduler evaluation. The static metric, which was used in Yuan et al. [135], Sec-

ondNet [59], and Section 2.4, evaluates the number of VDCs allocated on an empty

datacenter until the scheduler is no longer able to allocate any VDC. However, real

workloads have VDC allocations and deallocations. High datacenter utilization is

an ongoing objective that matters not only during the initial stage of resource al-

location, which the static metric captures, but also during steady state operation

when tenants request resource allocation as well as deallocation.

The third practical concern is that NETSOLVER is architecturally incompat-

ible with state-of-the-art resource scheduling algorithms commonly deployed in

practice, such as OpenStack’s Nova filtering-based algorithm [100]. We call Open-

Stack Nova’s filtering-based algorithm NOVAFILTER. NOVAFILTER handles each

resource requirement, such as CPU and RAM, separately while NETSOLVER han-

dles all resources together. Adopting a new, NETSOLVER-like, architecturally in-

trusive approach means diverging from the established industrial approach, which

is already deployed and operational.

In theory, it is possible to combine all filtering operations into a set of con-

straints. Solving these constraints together will be functionally equivalent to run-

ning filters. However, constraint-based approaches face several operational chal-

lenges, such as scalability and extensibility. For example, extending filtering-based

algorithms with an additional filter, such as server network bandwidth filter, adds

a predictable VM allocation latency overhead because, in the worst case, the new

filter exhaustively searches over all servers. This search completes in a constant

time. However, predictability does not hold for constraint solvers. For example, as

we show in Section 4.3.5, doubling the number of constraints might increase the

constraint solving time by over 1000×. In general, our experience with constraint-

solvers is that it is hard to predict the effect of additional constraints on latency. On

the other hand, filtering-based algorithms have been demonstrated to be scalable

and extensible in Huawei Cloud [77] and Microsoft Azure [62]. That said, cloud

78

operators might consider adopting a constraint-solver-based approach only when

it brings a major advantage that is not attainable by incremental changes to the

already deployed, filtering-based scheduler.

And that leads to the fourth practical concern: absence of performance compar-

isons between NETSOLVER and state-of-the-art resource scheduling algorithms,

such as NOVAFILTER. Given a realistic VDC workload and scheduler evaluation

metric, we can make this comparison. Unfortunately, as we show in Section 4.3.2,

NETSOLVER does not scale to the realistic VDC workloads. NETSOLVER’s VM

allocation latency becomes prohibitively high when a datacenter has over a thou-

sand servers and a VDC has all-to-all connectivity. NETSOLVER’s median per-VM

allocation latency in such a large datacenter is 19 minutes, which is impractical.

Therefore, in this chapter, we design algorithms that scale to the realistic VDC

workloads and are compatible with existing cloud resource schedulers.

We address all 4 practical concerns and make the following 4 contributions:

1. Metrics: We propose the revenue gain metric for evaluating VDC sched-

ulers. We also make the case for attributing a dollar value for bandwidth,

e.g., $0.58 per Gbps/hour, and use it for revenue gain computation.

2. Algorithms: We extend and enhance NOVAFILTER to support end-to-end

network bandwidth allocation (STARNET). We demonstrate that enhancing

STARNET with locality-awareness (STARNETLA) yields comparable rev-

enue gain as NETSOLVER, which is complete, while offering three orders of

magnitude faster resource allocation latency than NETSOLVER.

3. Prototype: We integrate STARNETLA into OpenStack by extending Open-

Stack’s Nova scheduler. We demonstrate that our locality-awareness enhance-

ments are compatible with Nova’s existing filtering-based architecture.

4. Optimality: We develop an ILP-based offline optimal VDC scheduling al-

gorithm: ORACLE. Although it is not possible to deploy ORACLE in practice,

we use it to study how closely our practical algorithms approximate the theo-

retically optimal scheduler. Our experiments show that ORACLE can produce

50% higher revenue gain than STARNETLA.

79

Table 4.1: Resource Scheduling Algorithms. The “net” suffix signifies an al-
gorithm’s support for end-to-end network bandwidth allocation.

CPU&
RAM

Server
Network

End-to-end
Network

Complete

NOVASIM (NOVAFILTER) X X × ×
STARNET X X X ×
NETSOLVER X X X X
STARNETLA X X X ×
STARNETILP X X X X
STARNETLAILP X X X X

We proceed as follows: First, we describe the evolution of our improved VDC

scheduling algorithms. Then, we describe our evaluation methodology, including

the revenue gain metric. Next, we present results for all algorithms, including our

OpenStack prototype and ORACLE. We place this work in the context of existing

work and conclude in Section 4.4 and Section 4.5, respectively.

4.1 Algorithms
We explored a wide spectrum of VDC scheduling algorithms, trying to achieve

the combination of architectural compatibility, high datacenter utilization, and ac-

ceptably low resource allocation latency. Table 4.1 summarizes the algorithms we

consider. We start with NOVAFILTER: the resource scheduling algorithm used in

OpenStack. NOVASIM is our implementation of NOVAFILTER in our simulation

environment. NOVAFILTER, and therefore NOVASIM, do not support end-to-end

network bandwidth allocation. Thus, we extend NOVASIM with end-to-end net-

work bandwidth allocation to produce our baseline network bandwidth guarantee-

ing VDC scheduler: STARNET. We add locality-awareness and retries to STARNET

to produce STARNETLA. Our hybrid algorithms, STARNETILP and STARNET-

LAILP, combine fast heuristic algorithm, STARNET and STARNETLA respec-

tively, with NETSOLVER, which is complete, to achieve high datacenter utilization

and low resource allocation latency. We now elaborate on each algorithm.

80

Neutron

Keystone API

Conductor

Compute

Hypervisor

DB

Scheduler

Placement

Glance &
Cinder

Nova Service
External Service

Messaging
DB HTTP

Figure 4.1: OpenStack Architecture. OpenStack modules interact to manage
cloud resources. For example, several services of the Nova module, such
as API, Conductor, and Scheduler manage CPU and RAM resources.
Neutron manages networking. Keystone manages authentication.

4.1.1 NOVAFILTER and NOVASIM

OpenStack is a popular open-source cloud management framework [99]. Figure 4.1

shows OpenStack’s architecture.1 OpenStack’s uses filtering-based resource schedul-

ing algorithms. An algorithm takes as input a set of servers and narrows down the

set by a sequence of filters. A filter applies a resource constraint, e.g., servers with

at least X free CPUs or servers with at least X GB free memory. For example, if

VM-New requires four cores, the CPU filter will remove all servers that have fewer

than four free cores. The input to the filter pipeline is a list of all datacenter servers

or, optionally, a subset of those servers.

Today’s OpenStack implementation consists of three filters that are relevant to

our VDC scheduling: a filter on CPU, a filter on memory and a filter on a server’s

network bandwidth. Note that the server network bandwidth filter is different from

network bandwidth guarantees required by VDCs because the existing filter is not

end-to-end. This filter only reasons about the bandwidth available at the servers.

1The figure is based off the OpenStack manual at https://docs.openstack.org/nova/latest/user/
architecture.html

81

https://docs.openstack.org/nova/latest/user/architecture.html
https://docs.openstack.org/nova/latest/user/architecture.html

Algorithm 1 : VM allocation with NOVAFILTER
S: all servers in datacenter, v: to-be-allocated VM
procedure AllocateVM(v)

1: cpu passed = {∀ s ∈ S | s.avail cores ≥ v.cores}
2: ram passed = {∀ s ∈ cpu passed | s.avail ram ≥ v.ram}
3: net passed = {∀ s ∈ ram passed | s.avail band ≥ v.band}
4: candidate server = Weigher(net passed)
5: if candidate server then
6: . allocate v & record its resource usage
7: else
8: . fail v

end procedure
procedure Weigher(S’)

9: return random.choice(S’)
end procedure

The end-to-end network bandwidth VDCs require includes not only two commu-

nicating servers, but also every network node between them.

OpenStack’s CPU and memory filters are part of Nova module and server

network bandwidth filter is part of Neutron module (Figure 4.1). We will use

the name NOVAFILTER to describe all three filters that exist in OpenStack. Al-

gorithm 1 shows NOVAFILTER’s pseudocode. For each VM allocation request,

AllocateVM starts the search over the entire datacenter server pool and gradu-

ally prunes servers with insufficient CPU cores and RAM (Nova), or server network

bandwidth (Neutron) (lines 1-3). Once all filters have been applied, the Weigher

selects the final candidate server based on higher-level placement policies, such as

avoiding racks reaching their operational end of life. These policies are deployment-

dependant; the default OpenStack weigher chooses a random server from the final

feasible set. We also use the random policy (although one could imagine much bet-

ter policies). If there is at least one server that passes all three filters, the algorithm

places the VM on that server (line 6). Otherwise, the VM is not allocated (line 8).

Ideally, we would use NOVAFILTER in a real OpenStack deployment to study

its performance in practice, including VM allocation latencies. However, we do

not have a datacenter with thousands of servers to replicate the production envi-

ronment. Thus, we resort to DevStack — an emulation environment OpenStack

82

developers use for functional testing [101].

Unfortunately, DevStack is unfit for testing schedulers at scale. As we show in

our experiments in Section 4.3.6, VM allocation latency in DevStack is on the order

of 5 seconds for a small datacenter with 192 servers. Thus, processing the entire

VDC workload with≈2 million VMs would take around 115 days. Our VM alloca-

tion latency measurements in DevStack are an underestimate, because they include

only CPU and RAM filters, not the server bandwidth filter shown in Algorithm 1

(line 3). The server bandwidth filter requires enabling OpenStack Neutron, which

further increases the VM allocation latency [98]. Our estimate above excludes the

latency Neutron would introduce, if enabled.

We integrate our VDC scheduling algorithms to DevStack in Section 4.3.6 and

to evaluate algorithms in a small scale. However, for evaluating algorithms in large

scale — using VDC workload with ≈2M VMs and datacenters with over 6000

servers — we develop a lightweight simulation environment, VDCSIM. VDCSIM

architecture is described in Section 4.2.2. We implement NOVAFILTER’s filtering

functions to run in VDCSIM. We call NOVAFILTER’s VDCSIM-tailored imple-

mentation NOVASIM. NOVASIM’s pseudocode is identical to that of NOVAFIL-

TER, which we described in Algorithm 1. In other words, NOVASIM is identical

to NOVAFILTER, except NOVASIM runs in VDCSIM while NOVAFILTER runs in

real OpenStack and DevStack deployment. We need to distinguish these two al-

gorithms, because we evaluate scheduler performance in VDCSIM (Section 4.3)

and study a scheduler’s practical latency in DevStack (Section 4.3.6). VDCSIM’s

lightweight architecture allows NOVASIM to achieve three orders of magnitude

lower VM allocation latencies than NOVAFILTER running in DevStack. Therefore,

NOVASIM can process the entire base workload in around 3 hours.

Recall that NOVAFILTER, hence NOVASIM, does not support end-to-end net-

work bandwidth allocation.2 Thus, we cannot use NOVASIM for VDC scheduling.

We extend NOVASIM with end-to-end bandwidth allocation and call it STARNET.

83

Algorithm 2 : VM allocation with STARNET
net passed: servers that passed server bandwidth filter, v: to-be-allocated VM
procedure AllocateEnd2EndNetwork(v, net passed)

1: server = random.choice(net passed)
2: vlinks = list()
3: foreach peer, band in v.peers
4: if server == ServerOf(peer) then continue . peer VMs are colocated
5: vlink = AllocateVlink(server, ServerOf(peer), band)
6: if vlink == None then DeallocateVlinks(vlinks) return None
7: else vlinks.append(vlink) . vlink alloc. succeeded; handle the next peer
8: . record vlinks to belong to v; this is outside the for loop
9: return server . successfully connected v to all peers

end procedure
procedure AllocateVlink(src server, peer server, band)
10: allocated band = 0; paths = list()
11: while allocated band < band
12: remaining band = band - allocated band;
13: path = Dijkstra(src server, peer server)
14: if path == None then DeallocatePaths(paths) return None
15: end2end band = GetMinBand(path)
16: if end2end band ≥ remaining band then band2consume = remaining band
17: else band2consume = end2end band
18: foreach hop1, hop2 in path
19: . deduct band2consume from hops; append hops&band2consume to paths
20: allocated band += band2consume
21: return paths
end procedure

4.1.2 STARNET

STARNET adds end-to-end bandwidth allocation to NOVASIM. We implement it

by adding another filter, AllocateEnd2EndNetwork, which is called after the

server bandwidth filter (Algorithm 1 line 3) but before the Weigher (Algorithm 1

line 4). AllocateEnd2EndNetwork filter takes the to-be-allocated VM (VM-

New) and net passed servers as input and returns one server that can accom-

modate the end-to-end bandwidth requirements of the VM-New. That server is

2As of March 4, 2019, the date when we forked off OpenStack upstream for further development.
This is still true in January 10, 2021.

84

passed to the Weigher (Algorithm 1 line 4). Here, Weigher is redundant, be-

cause AllocateEnd2EndNetwork filter returns at most one server, which the

Weigher is guaranteed to select. We keep Weigher for compatibility with the

Nova architecture. Cloud operators can change AllocateEnd2EndNetwork

to return multiple servers and choose the final server using their own weigher. We

leave this to future work. Algorithm 2 shows pseudocode for STARNET’s end-to-

end bandwidth allocation.

AllocateEnd2EndNetwork allocates physical path(s) between the can-

didate server and peer server(s) to accommodate the virtual link(s) between VM-

New and already-allocated VM peer(s). The peer server(s) host VM-New’s already-

allocated VM peer(s), or VM-Existing VM(s) for short. The candidate server is the

one that is selected among net passed servers at random (Algorithm 2 line 1) as

the potential host for VM-New. We fail the VM allocation if we make an unlucky

random selection. However, as we show in Section 4.3.1, random candidate selec-

tion among net passed (without checking end-to-end bandwidth between the

servers) works well. Section 4.3.3 improves this further using locality-awareness.

In AllocateEnd2EndNetwork, we iterate through VM-Existing to allo-

cate a vlink between each VM in VM-Existing and VM-New (line 3). We first

check if VM-Existing is also allocated on the candidate server. If yes, we skip vlink

allocation, because we assume that network bandwidth within the same server, i.e.,

localhost interface capacity, is always available (line 4). If the servers differ, we

attempt vlink allocation by calling AllocateVlink, which takes three inputs:

two server endpoints and the bandwidth amount to connect them with (line 5).

AllocateEnd2EndNetwork expects AllocateVlink to return one of

two values. AllocateVlink can return None to indicate that vlink allo-

cation is impossible. This could happen, for example, when the peer server

(ServerOf(peer) in line 5) has less than the required bandwidth (band) avail-

able. In this case, we deallocate all successful vlink allocations for VM-New, if

any, and indicate VM allocation failure by returning None (line 6). Alternatively,

AllocateVlink can return a list of vlinks to indicate successful bandwidth al-

location between server endpoints (line 7). Once vlink allocation is successful for

all peer VMs, we record these vlinks and return the candidate server to indicate

successful placement of the VM-New on it (lines 8–9).

85

AllocateVlink allocates vlinks that are end-to-end between server end-

points, which include top-of-rack and spine level switches. We allocate vlinks on

each hop between these two servers, using multi-path, if needed. We allocate a Di-

jkstra path on an unweighted graph as a shortest path between two servers [96].

Dijkstra returns either None, to indicate absence of a path between server end-

points (line 14) or a single path with non-zero bandwidth (lines 15–20). We use

GetMinBand to find the bottleneck hop along the path. The bandwidth of this

bottleneck hop is the end-to-end bandwidth available along this path. We repeat

Dijkstra calls to map the vlink onto multiple paths, if necessary (lines 11–20).

STARNET is the first algorithm in Table 4.1 with end-to-end network band-

width allocation. We use STARNET as the baseline VDC scheduler in our evalua-

tions (Section 4.3), because it allows us to evaluate the advantages of NETSOLVER

over state-of-the-art VDC schedulers in practice. Although the end-to-end band-

width allocation in STARNET is a contribution of our own, e.g., does not exist in

OpenStack, we expect this Dijkstra-based virtual link allocation to be the default

way to implement end-to-end path allocation.

Table 4.1 also shows that STARNET is incomplete. STARNET is complete with

respect to a VM’s CPU and memory requirements, but is not complete with respect

to inter-VM bandwidth requirements. Thus, it might fail to find an allocation even

when one exists. There are two reasons for its incompleteness. First, it is greedy

— it allocates VMs to servers one-by-one, which might cause a bad placement of

earlier VMs in a VDC, making it impossible to find servers for placing later VMs

in the VDC. Second, VM allocation might fail even though there may have been a

different candidate server that could have accommodated the VM. This failure hap-

pens because end-to-end bandwidth allocation is done after the candidate server se-

lection (Algorithm 2 line 1). Although STARNET’s server network bandwidth filter

guarantees availability of the requested bandwidth at each server (otherwise these

servers would not pass that filter), intermediate network hops might not have the

required bandwidth available. We show results for different retries in Section 4.3.3.

Figure 4.2(b) illustrates the limitation of the server-only bandwidth filtering.

Here, although server S2 and server S3 have sufficient server network bandwidth

to accommodate VM v5, no bandwidth is available at the top-of-rack switch level

(ToR2) to connect these servers to the peer server S1, which hosts the already-

86

timetickN tickN+1

(a)

v1v2

v3

v4

0/3

ToR1 ToR2

AggSw2AggSw1

2 core2 core 2 core

2 core

Orig
ina

l V
DC

0/1 0/1 0/40/4

0/4 0/4 0/4

2

22

S1
0/4 core

S2
0/4 core

S3
0/4 core

2/2

ToR1 ToR2

AggSw2AggSw1

1/1 1/1 3/33/3

4/4 2/4 2/4

v1v2

v5

v4

1 core1

v3

S1 S2 S3
v1 v2 v3 v4

Ex
pa

nd
ed

 VD
C

4/4 core 2/4 core 2/4 core
(b)

Figure 4.2: Oversubscribed Datacenter Spine: (a) successful allocation of the
original VDC, and (b) unsuccessful allocation of the expanded VDC.
Datacenter resource capacities are shows as used / original. For example,
1/4 in link bandwidth means that “1” unit of bandwidth is used out of
total “4” units. The datacenter is empty in tick N. (This is a slightly
modified version of Figure 3.6 on page 62 to illustrate oversubscription.)

placed peer VM v1. Bandwidth scarcity in datacenter upstream networks is com-

mon due to oversubscription — modern datacenter topologies are designed to have

more network bandwidth capacity on the edge (servers-to-ToR switch) with less

capacity on the spine nodes for cost-effectiveness [1, 2, 27].

4.1.3 NETSOLVER

NETSOLVER eliminates both sources of incompleteness in STARNET by formu-

lating VDC allocation as a constraint satisfaction problem. The scheduler tries to

find a solution that simultaneously maps all VMs in a VDC to servers in a way that

satisfies all CPU, memory, and end-to-end bandwidth constraints. As we described

in Section 2.3, NETSOLVER can use one of two back-end constraint solvers: an

SMT (Satisfiability Modulo Theories) solver and an ILP (Integer Linear Program-

ming) solver. We use NETSOLVER with the ILP solver, NETSOLVER-ILP, as it was

shown to be more scalable and faster than NETSOLVER-SMT (Section 2.4.6).

The weakness of a constraint-solving approach is poor scalability, which sur-

faces as high VM allocation latency. The ILP solver has a worst-case runtime that

87

is exponential in the model size, and since the model considers placing each VM

in the VDC on any server, the model size grows as Ω(nm), where n and m are the

VDC and datacenter sizes, respectively. The synthetic VDCs in Section 2.4 had up

to 15 VMs. The realistic VDC workload we described in Section 3.2.2 has up to

30 VMs. Moreover, the realistic VDC workload has all-to-all connectivity, instead

of the sparse connectivity in the synthetic VDCs. The density of a VDC topology

also influences the ILP solver’s model size. As we will see in Section 4.3.2, these

added complexities significantly increase VM allocation latency: over 1,140 sec-

onds (≈20m) median per-VM allocation latency for a VDC of size 10 on a datacen-

ter topology with 6,144 servers. NETSOLVER terminates with an out-of-memory

error (50 GB) for larger VDC sizes (Figure 4.12).

Observing significant latencies in NETSOLVER, we ask what is a practical per-

VM allocation latency? Azure cloud operators state 20ms and 100ms to be the typ-

ical and maximum per-VM allocation latency budgets [33, 62], respectively. Note

that Azure’s latency budgets do not account for bandwidth allocation latency be-

cause Azure does not offer end-to-end bandwidth guarantees. Although the latency

budget is cloud- and deployment-dependent, in an environment where a sub-second

latency is the norm [33, 62], one minute is generous. For example, a tenant is un-

likely to wait for more than 10 minutes to allocate a VDC with 10 VMs. We use

this one minute budget as our practicality threshold and require schedulers’ 99th

percentile per-VM allocation latency to be under 60 seconds.3

We explored a range of options to trade off some completeness for better sched-

uler latency. In particular, we explored breaking up large VDC requests into smaller

batches of VMs, e.g., break a VDC with 30 VMs into six batches of five VMs. The

five VMs in each batch are scheduled by the ILP solver all-at-once, so we maintain

completeness within a batch — if there is any possible allocation for the batch, the

scheduler will find it. We call this the batch-level completeness. However, a bad

decision when scheduling an earlier batch could affect the feasibility of scheduling

later batches, so there is no completeness guarantee across batches. A larger batch

3The 99th percentile, or p99 for short, is an arbitrary choice. For example, one could require p99.9
or p100 to be the threshold. However, p99 covers the common cases and one can, in addition, use tail
latency reduction techniques, such as running multiple schedulers [62], to further reduce the bottom
one percentile latency.

88

size makes the scheduler more complete, but slower; a smaller batch size makes

the scheduler less complete, but faster.

We started with the batch size of 30 VMs and tried smaller and smaller sizes in

an effort to make the allocation latency low enough. However, we found that even

with a batch size of two, NETSOLVER’s 99th percentile VM allocation latency is

110s in a datacenter with 6,144 servers. The 99th percentile latency with batch

size of one is 48s, which is below the practical threshold, though still high. We

decreased the datacenter size to 192 servers (in four racks; Figure 4.13) to eval-

uate the latency at a smaller scale. Here, NETSOLVER’s 99th percentile latency

with batch size of one is 544ms, which we consider to be a practical latency. We

show full experimental results in Section 4.3.2. Note that even with a batch size

of one, NETSOLVER is still more complete than STARNET because NETSOLVER

eliminates the second source of incompleteness: STARNET’s inability to consider

all servers. Given NETSOLVER’s limited scalability for datacenters of up to 192

servers, we develop STARNETLA, which we describe next.

4.1.4 STARNETLA

STARNETLA extends STARNET with two ideas: locality-awareness and retries.

We reflect these optimizations in the algorithm’s name by using an “LA” suffix.

Locality-awareness tries colocate the communicating VMs (on the same server) to

save datacenter network bandwidth. When a VM request arrives, we first check if

there is an already-placed peer VM in the network. If so, we try to colocate the new

VM with its peer(s). If not, we retry placement on other servers.

We also added a retry heuristic. Failing to allocate a VM after one attempt is

pessimistic. Thus, we retry several times. We show experimental results for dif-

ferent retry values in Section 4.3.3. In general, the larger the number of retries,

N, the closer STARNETLA comes to achieving NETSOLVER’s completeness. For

example, the brute-force search across all datacenter servers produces complete-

ness. However, increasing N also increases VM allocation latency. Increasing N

too much can make the latency impractical.

AllocateEnd2EndNetwork implements both STARNETLA extensions,

as we show in Algorithm 3. STARNETLA’s locality and retry enhancements are

89

Algorithm 3 : AllocateEnd2EndNetwork function in STARNETLA
v: to-be-allocated VM, N: number of retries
procedure AllocateEnd2EndNetwork(v, net passed)

1: sorted servers = Sort(v, net passed)
2: retries = 0
3: while retries < N
4: candidate server = pop(sorted servers)
5: success = TryCandidateServer(v, candidate server)
6: if success then return candidate server
7: if IsEmpty(sorted servers) then return None . no more candidates; fail v
8: retries += 1
9: return None

end procedure
procedure Sort(v, S’)
10: savings = map(s← 0 | ∀ s ∈ S’) . assign 0 savings to all candidate servers
11: foreach peer vm in v.peers
12: savings[ServerOf(peer vm)] += BandwidthOf(v, peer vm)
13: return sorted(savings, key=lambda x: x[1], reverse=True)
end procedure
procedure TryCandidateServer(v, server)
14: vlinks = list()
15: foreach peer, band in v.peers
16: if server == ServerOf(peer) then continue . peer VMs are colocated
17: vlink = AllocateVlink(server, ServerOf(peer), band)
18: if vlink == None then DeallocateVlinks(vlinks) return False
19: else vlinks.append(vlink) . vlink alloc. succeeded; handle the next peer
20: . record vlinks to belong to v; this is outside the for loop
21: return True . successfully connected v to all peers
end procedure

applied to the servers that already pass CPU, RAM, and server bandwidth filters.

When multiple servers pass the previous filters, we sort them by their bandwidth

savings, as shown in Algorithm 3 line 1 with the call to Sort. In Sort, we iterate

through every VM-Existing (already-allocated peer VM) to compute the network

bandwidth between that and VM-New (to-be-allocated VM) (lines 11-12). These

per-candidate-server bandwidth values capture the amount of network bandwidth

we save should the VM-New be placed on that candidate server, which means colo-

90

cation of VM-New and VM-Existing on that candidate server.4 Sort returns the

candidate servers in the savings descending order such that the server with the

highest bandwidth savings is used first, i.e., considered as the colocation server.

STARNETLA’s retry optimization considers candidate servers in the order dic-

tated by sorted servers, as shown in Algorithm 3 line 4. Here, we keep pop-

ping candidate servers from the top of the list until we find a candidate server that

can accommodate VM-New’s network bandwidth or until we exhaust the number

of retries (N) (lines 3-9). Note that TryCandidateServer in STARNETLA is

almost identical to AllocateEnd2EndNetwork in STARNET. Both functions

consider placing VM-New on candidate server.

4.1.5 Hybrid Algorithms

Locality awareness and retry optimizations in STARNETLA only approximate com-

pleteness. We can extend STARNETLA to a complete solution by using NET-

SOLVER as a fallback scheduler. We call this a hybrid approach.

Our hybrid algorithms strive to make the scheduler complete without incurring

the high latency of the ILP solver. We begin with a heuristic filter-based algorithm,

STARNET or STARNETLA and fall back to the ILP solver approach only when the

heuristic fails. We can implement this by making the AllocateVM in Algorithm 1

call the ILP solver before failing the VM (in line 8). We call these hybrid methods

STARNETILP and STARNETLAILP. In both hybrid algorithms, a VM allocation

fails only if the ILP solver is unable to find an allocation.

However, our heuristic algorithms still do VM-at-a-time allocation. Accord-

ingly, when they fall back to NETSOLVER-ILP for allocating an individual VM,

NETSOLVER-ILP should also do VM-at-a-time allocation. Recall that NETSOLVER-

ILP provides all-or-nothing VDC allocation semantics (Chapter 2). In all-or-nothing

VDC allocation, all VDC VMs within the tick fail allocation if any VM fails. The

VDC VMs that were already allocated in the earlier ticks remain allocated. (See

the full description of all-or-nothing semantics in Section 2.3.) We relaxed NET-

SOLVER-ILP’s all-or-nothing semantics to best-effort semantics. With best-effort

4Note that the candidate server might be hosting more than VM-Existing. The per-server band-
width summation in Algorithm 3 line 12 accommodates this multi-peer-hosting by creating a per
server entry in the savings, not per VM.

91

semantics, NETSOLVER-ILP tries to allocate as many VMs of the VDC while

failing the rest. The best-effort semantics can directly support VM-at-a-time al-

location. Here, NETSOLVER-ILP considers all datacenter servers to allocate the

VM, guaranteeing the VM allocation, if possible. We call this VM-level complete-

ness. Note that VM-level completeness is theoretically superior to our heuristic

algorithms, which consider only one server (STARNET) or a subset of servers

(STARNETLA with N retries). Our hybrid algorithms provide VM-level complete-

ness. Note that we could begin the ILP solving in parallel with the heuristic algo-

rithm, but we have left that optimization for future work.

The intuition for hybrid algorithms, especially for STARNETLAILP, is as fol-

lows: Hybrid algorithms have the potential to reduce VM allocation failures with-

out increasing VM allocation latency in the common case. For example, local-

ity in STARNETLA is an approximation of the locality in NETSOLVER, because

the former is restricted to server scope. However, locality in NETSOLVER cov-

ers server-, rack-, cluster-, and pod scopes. STARNETLA performs only the ini-

tial step. Thus, STARNETLA has less potential to reduce datacenter bandwidth

consumption, which might translate into more VM allocation failures, hence, the

lower revenue gain. Similarly, retries in STARNETLA are an approximation of the

exhaustive search in NETSOLVER, since retries in STARNETLA are bounded (e.g.,

up to 100 in our experiments in Section 4.3.3) while an ILP solver explores the

entire (server) search space.

As we show in Section 4.3.4, this intuition is both elusive and unsuccessful. It is

elusive, because our experiments in Section 4.3.3 show that although NETSOLVER

is able to allocate the VM when STARNETLA is unable to (this happens ≈18%

of the time), NETSOLVER’s VM allocation latency is prohibitively high (99th per-

centile is 60.45s). Therefore, in practice, cloud providers would not benefit from

falling back to the ILP solver, because they cannot afford to wait for an ILP al-

location. Thus, STARNETLAILP being fast in the common case is elusive, since

the ILP component is still prohibitively slow. Moreover, the intuition that STAR-

NETLAILP generates higher revenue gain is unsuccessful in the long run, because

STARNETLA leaves only small room for improvement. That is, although the num-

ber of successful fall backs in which NETSOLVER succeeds are reasonably high

(≈18%), the number of VMs allocation failures STARNETLA produces is small

92

(0.17%). In our experiments (Section 4.3.4), we therefore find that the revenue

gain between STARNETLA and STARNETLAILP is statistically insignificant.

In summary, we design hybrid algorithms because they offer completeness,

which STARNETLA lacks. However, our experiments show that this completeness

is prohibitively slow when exploited and does not actually offer a higher revenue

gain. We present our evaluation results in Section 4.3.4.

We presented seven algorithms, five of which are VDC scheduling algorithms.

The first two algorithms, NOVAFILTER and NOVASIM, cannot be used for VDC

scheduling, because they lack support for end-to-end bandwidth allocation. In the

next section, we describe our methodology for evaluating VDC schedulers.

4.2 Evaluation Methodology Overview
Two of our practical concerns are about VDC scheduler evaluation with realis-

tic VDC workloads using a realistic metric. We address the first concern by con-

structing realistic VDC workloads using the Gridiron technique that we introduced

in Chapter 3. We address the second concern by proposing the revenue gain metric.

We also use realistic datacenter topologies for our VDC scheduler evaluations. We

start by describing these datacenters.

4.2.1 Datacenter Topologies

We use publicly available datacenter topologies. Jupiter is a widely studied topol-

ogy used in Google’s datacenters [117]. The full Jupiter topology can accommo-

date 64 pods, each with 1536 servers, for a total of 98,304≈100K servers. How-

ever, the Jupiter paper [117] does not describe compute and memory specifications

of these servers. We use a modern enterprise-grade server with 60 cores and 256

GB RAM, such as Dell PowerEdge R940 [44], in our Jupiter topology.

We use the ML training workload for our scheduler evaluation. Recall that

the Gridiron technique allows us to adapt the bandwidth-per-core (bpc) parame-

ter to match the VDC workload’s network demand to the target datacenter (Sec-

tion 3.2.3). Also recall that the reference VDC workload used bpc=1Mbps.

The full Jupiter topology is too big for our reference VDC workload. The refer-

ence VDC workload consumes up to 346,755 cores, 781,767 GB RAM, and 6,581

93

Gbps bandwidth (Section 3.2.2). With 60 cores, 256 GB RAM, and 40 Gbps net-

work bandwidth per server (specified as a server-to-ToR switch link bandwidth in

the Jupiter paper [117]), four pods offer sufficient compute, memory, and band-

width to accommodate the reference VDC workload. More precisely, four pods

with 6,144 servers offer 1.06× extra compute (6,144*60/346,755≈1.06), 2× ex-

tra memory (6,144*256/781,767≈2), and 37× extra server bandwidth capacity

(6,144*40/6,581≈37) of the reference VDC workload.

The disparity between compute (1.06×) and memory (2×) capacities in a 4-

pod Jupiter datacenter reflect reality, because modern datacenters are compute-

bound [40]. Network bandwidth disparity is also realistic by construction, as the

server-to-ToR switch and other node bandwidths are taken directly from the full

Jupiter topology. Moreover, the VDC workload’s network bandwidth requirement

is configurable. We scale it up to evaluate the efficacy of the VDC schedulers in

handling network bandwidth requirements (Section 4.2.6). Thus, the experimental

results from evaluating VDC schedulers on the 4-pod Jupiter datacenter will qual-

itatively hold for other datacenters. We give more elaborate description of 4-pod

and full Jupiter datacenter topologies in Appendix C.

4.2.2 VDC Scheduler Simulator: VDCSIM

Simulation-based cloud scheduler evaluation is common (e.g., [40, 55, 62]). In fact,

the Resource Central [40] and Protean [62] papers state that scheduler evaluation in

a simulator is a production deployment prerequisite. In an absence of the existing

simulator for VDC scheduling, we built our own lightweight simulator, VDCSIM.

Figure 4.3 shows the VDCSIM architecture, which is designed to evaluate al-

gorithms in a plug-in fashion. We pass a runtime flag to indicate the algorithm we

want to evaluate. VDCSIM replays the workload from a JSON file and outputs

allocation results to another JSON file. The Replayer can operate in two modes:

VDC-at-a-time or VM-at-a-time. In VDC-at-a-time mode, the Replayer feeds an

entire VDC to the scheduler for processing. Analogously, in VM-at-a-time mode,

the Replayer feeds individual VM events to the scheduler.

We run VDCSIM on a Dell PowerEdge R940 server with 2.30 GHz (30 MB L3

cache) Intel Xeon E7-4870 v2 processor with 60 cores across four NUMA nodes.

94

Replayer Collector
Scheduler

Alg1 Alg2 AlgN

allocs.jsonlworkload.jsonl

…

VD
C
Si
m

Figure 4.3: VDCSIM Architecture. The Replayer consumes a tick from the
workload and makes resource (de)allocation requests to the Scheduler.
The Scheduler performs (de)allocation decisions and passes the out-
come to the Collector. The Collector keeps outcomes in memory until
the entire tick is processed. The Collector writes all processed events to
the output file once all events in the tick are processed.

The server has 512 GB RAM that is uniformly distributed across four NUMA

nodes (128 GB each). All the algorithms are single threaded, so we disable hy-

perthreading. Thus, all algorithms use only one CPU core. The host OS is Ubuntu

20.04.1 LTS with Linux 5.4.0-58-generic kernel. Most of our experiments use un-

der 10 GB of RAM, so, we generously impose a 20 GB limit on RAM.5 Some

experiments with an ILP solver require over 20 GB memory. We relax the 20 GB

restriction for these experiments so that no experiment fails due to memory restric-

tions, unless stated otherwise.

4.2.3 Revenue Gain Metric

Cloud providers should gain extra revenue when they monetize datacenter network

bandwidth in addition to the compute, memory, and other resources they already

monetize today. However, revenue gain is not always guaranteed, because a subset

of VMs can fail allocation when datacenter network bandwidth is insufficient to

accommodate the VDC workload’s bandwidth requirements.

Revenue gain quantifies how much a cloud provider will benefit from selling

network bandwidth guarantees. It is computed in percentages relative to the base-

line revenue. Formally,

gain = (computeRevenue+networkRevenue)/baseRevenue (4.1)

5We use the runlim tool to enforce memory restrictions [123].

95

 4 cores
8 GB[]

v1

v2

4

 3 cores
6 GB[]

v3

3

3

 4 cores
6 GB[]

tick42tick20

v1v0 2

 4 cores
6 GB[] 2 cores

4 GB[]

tick5 time(a) tick50

2

v1v0

 4 cores
8 GB[]

2

v2

4

 4 cores
6 GB[] 2 cores

4 GB[]

 4 cores
8 GB[]

2

v1v0 2

v2

4

 3 cores
6 GB[]

v3

3

3

 4 cores
6 GB[] 2 cores

4 GB[]

(b) (c) (d)

Figure 4.4: Example VDC Workload: (a) shows VDC allocation with two
VMs, (b) shows VM v2 allocation, (c) shows VM v0 deallocation and
VM v3 allocation, and (d) shows deallocation of all VMs in the VDC.
We show VM v2 and its vlinks in red. (This figure is a modified version
of Figure 3.3 on page 56.)

Here, the base revenue (baseRevenue) is a revenue generated from selling VMs

with only compute resources (CPU and RAM). Our VDC schedulers fail to allocate

VMs only because of network bandwidth requirements. Since the base workload

has no network bandwidth requirements, baseRevenue includes revenue from

all VMs. The compute revenue (computeRevenue) similar to baseRevenue

in that it covers the revenue from compute resources, but only for VMs that are

successfully allocated. Thus, computeRevenue<baseRevenue holds when

a scheduler fails VM(s), otherwise computeRevenue=baseRevenue. Anal-

ogously, networkRevenue is a revenue generated from selling network band-

width for successfully allocates VMs.

We illustrate the revenue gain computation for the example workload in Fig-

ure 4.4. Assuming no VM allocation failures and given that tick duration is 5 mins,

we compute baseRevenue as the sum of compute revenue for all VMs:

• VM v0: lives for 37 ticks, from tick 5 to tick 42. The VM’s lifetime is 37 ∗
(5/60)hour = 3.08hour. If VM’s price is $0.2/hour, the revenue from this

VM is $0.62 (from 3.08∗0.2).

• VM v1: lives for 45 ticks, from tick 5 to tick 50. The VM’s lifetime is 45 ∗
(5/60)hour = 3.75hour. If VM’s price is $0.4/hour, the revenue from this

VM is $1.5 (from 3.75∗0.4).

• VM v2: lives for 30 ticks, from tick 20 to tick 50. The VM’s lifetime is

96

30 ∗ (5/60)hour = 2.5hour. If VM’s price is $0.5/hour, the revenue from

this VM is $1.25 (from 2.5∗0.5).

• VM v3: lives for 8 ticks, from tick 42 to tick 50. The VM’s lifetime is 8 ∗
(5/60)hour = 0.67hour. If VM’s price is $0.3/hour, the revenue from this

VM is $0.2 (from 0.67∗0.3).

Thus, baseRevenue=∑i∈{v0,v1,v2,v3} vmRevenuei =(0.62+1.5+1.25+0.2)= 3.57.

Hence, the workload’s baseRevenue is $3.57.

Now we compute the nominator in Equation 4.1 for the example workload

in Figure 4.4. When no VMs fail, the workload’s computeRevenue is equal to

baseRevenue. Hence, computeRevenue is also $3.57. networkRevenue

quantifies the revenue from network bandwidth guarantees, which consist of rev-

enue from successfully allocated vlinks. When no VMs fail, no vlinks fail. Con-

versely, in this work, a vlink failure is always accompanied by the VM failure be-

cause bandwidth allocation is a prerequisite for VM allocation. (See our discussion

on VM allocation failures in practice in Appendix D.) Thus, networkRevenue

is the sum of vlink revenues, which are computed as follows:

• vlink v0-v1: lives for 37 ticks, from tick 5 to tick 42. The vlink’s lifetime is

37∗ (5/60)hour = 3.08hour.

• vlink v0-v2: lives for 22 ticks, from tick 20 to tick 42. The vlink’s lifetime is

22∗ (5/60)hour = 1.83hour.

• vlink v1-v2: lives for 30 ticks, from tick 20 to tick 50. The vlink’s lifetime is

30∗ (5/60)hour = 2.5hour.

• vlink v1-v3: lives for 8 ticks, from tick 42 to tick 50. The vlink’s lifetime is

8∗ (5/60)hour = 0.67hour.

• vlink v2-v3: lives for 8 ticks, from tick 42 to tick 50. The vlink’s lifetime is

8∗ (5/60)hour = 0.67hour.

Note that vlink is a pairwise construct. Therefore, a vlink’s lifetime depends on the

lifetimes of the two VMs it connects, say, VM src and VM dst. Formally,

li f etimevlink = overlap(li f etimevlinksrc , li f etimevlinkdst)

97

Assuming that the unit of bandwidth in this workload is bpc=1Mbps and network

bandwidth price (bwPrice) is $10 per 1 Gbps/hour ($0.01 per 1 Mbps/hour), the

bandwidth-hours consumed is:

• vlink v0-v1: 2Mbps∗3.08hour ∗$0.01Mbps/hour = $0.0616.

• vlink v0-v2: 2Mbps∗1.83hour ∗$0.01∗Mbps/hour = $0.0366.

• vlink v1-v2: 4Mbps∗2.5hour ∗$0.01Mbps/hour = $0.1.

• vlink v1-v3: 3Mbps∗0.67hour ∗$0.01Mbps/hour = $0.02.

• vlink v2-v3: 3Mbps∗0.67hour ∗$0.1∗Mbps/hour = $0.02.

Thus, networkRevenue = ∑ j∈{v0−v1,v0−v2,v1−v2,v1−v3,v2−v3} vlinkRevenue j =

(0.0616+0.0366+0.1+0.02+0.02) = $0.2382. Assigning computeRevenue,

networkRevenue, and baseRevenue values to Equation 4.1 we get

gain = (3.57+0.2382)/3.57 = 1.0667 = 6.67%.

Now we demonstrate gain computation in presence of VM allocation failures.

Assume that in Figure 4.4, VM v2 fails allocation because the datacenter network

does not have enough bandwidth to accommodate it. This failure causes VM v2’s

computeRevenue and networkRevenue loss. Note that baseRevenue

does not get affected because it captures the VM revenues without network band-

width guarantees; should the VM v2 not require network bandwidth guarantees, it

would not have failed. We omit revenue for VM v2 and its vlinks (v0-v2, v1-v2,

v2-v3) in the earlier equations to compute gain as follows:

gain = (computeRevenue+networkRevenue)/baseRevenue =

((0.62+1.5+0.2)+(0.0616+0.02))/3.57 = 0.67 =−33%.

In this case, the revenue generated from selling network bandwidth guarantees

(0.0616+ 0.02 = $0.0816) was not enough to cover the revenue loss from VM

v2 allocation failure ($1.25). Thus, we have -33% revenue gain.

The general formula to compute baseRevenue, computeRevenue, and

networkRevenue are as follows:

baseRevenue = ∑
i∈allV Ms

(vmPricei ∗ li f etimei)

98

Re
ve

nu
e

G
ai

n
(%

)

Workload

Baseline
gain

loss

Ideal
Real

Figure 4.5: Revenue Gain Example. These results are not from an experi-
ment. They are manual drawings for illustration purposes.

computeRevenue = ∑
j∈allocatedV Ms

(vmPrice j ∗ li f etime j)

networkRevenue = ∑
k∈allocatedV links

(bwAmountk ∗ li f etimek ∗bwPrice)

We use a simple example to demonstrate how different schedulers achieve dif-

ferent revenue gains. Figure 4.5 shows the percent revenue gain, relative to the

baseline (Baseline), as a function of the value of bpc. The red line with circles

is Baseline that does not provide bandwidth guarantees: thus it is a horizon-

tal line at zero revenue gain. Now, assume that the total revenue for allocating all

VMs without bandwidth guarantees (baseRevenue) is $100 and that we charge

$0.01 per 1 Mbps/hour (bwPrice). Consider an ideal scheduler that never fails

a VM The blue line with stars (Ideal) shows that as bpc increase, so does rev-

enue gain: linearly with the ratio of bandwidth price to VM price. Next, consider

a realistic scheduler (Real) that fails VMs, it’s revenue will fall somewhere in the

shaded region between Ideal and Baseline. For example, the turquoise line

with triangles shows what happens when we have:

• bpc=2Mbps: Real fails no VMs. We generate $12 from selling network

bandwidth guarantees (networkRevenue) and computeRevenue is

equal to baseRevenue ($100). Thus, per Equation 4.1, gain = (100 +

12)/100 = 1.12 = 12%.

• bpc=3Mbps: Real fails 3%. We have networkRevenue=$19 and

99

computeRevenue=$97. Thus, per Equation 4.1, gain = (97+19)/100 =

1.16 = 16%.

• bpc=4Mbps: Real fails 4%. We have networkRevenue=$24 and

computeRevenue=$96. Thus, per Equation 4.1, gain = (96+24)/100 =

1.2 = 20%.

• bpc=5Mbps: Real fails 5%. We have networkRevenue=$29 and

computeRevenue=$95. Thus, per Equation 4.1, gain = (95+29)/100 =

1.24 = 24%.

• bpc=6Mbps: Real fails 6%. We have networkRevenue=$35 and

computeRevenue=$94. Thus, per Equation 4.1, gain = (94+35)/100 =

1.29 = 29%.

Note that in this simple example, we assume identical VDC configurations to il-

lustrate the basic revenue gain metric. Also note that in Figure 4.5, gain with

network-intensive VDC workloads bpc={4Mbps,5Mbps,6Mbps} still gener-

ate a positive gain despite the non-zero revenue loss, because the extra revenue

collected from selling network bandwidth outweighs the loss. This outweighing is

contingent on the price of network bandwidth guarantees. A low price could be

insufficient to cover the loss and result in a net negative revenue gain. We now

discuss prices for VMs and network bandwidth guarantees.

4.2.4 VM Pricing

We use VM pricing rates from the Azure cloud since we generated our VDC work-

load from the Azure cloud traces. The Azure trace contains 16 VM flavors (Ta-

ble 4.2): see “vCPU cores” and “RAM” columns (in italics) that are part of the

trace. The other two columns, “Flavor Name” and “Price ($/hour)”, are not part of

the trace and we describe them below. The first column, “Flavor #”, is added for

ease of reference to each flavor.

Recall that the Azure traces were collected over 30 days, starting from Novem-

ber 16, 2016. We retrieved Azure’s hourly VM rates for that period from Azure’s

pricing page snapshot saved in the Internet Archive’s Wayback Machine [94]. The

100

Table 4.2: Virtual Machine Pricing in Azure Cloud. The “vCPU cores” and
“RAM” columns are part of the Azure workload. We use VM prices in
the “Price” column in this work.

Flavor # Flavor Name vCPU cores RAM (GB) Price ($/hour)

1 A0 Basic 1 0.75 0.018
2 A1 Basic 1 1.75 0.044
3 A1 v2 Standard 1 2 0.043
4 A2 Basic 2 3.5 0.088
5 A2 v2 Standard 2 4 0.091
6 D11 2 14 0.175
7 A2m v2 Standard 2 16 0.149
8 A3 Basic 4 7 0.176
9 A4 v2 Standard 4 8 0.191
10 D12 4 28 0.35
11 A4m v2 Standard 4 32 0.297
12 A4 Basic 8 14 0.352
13 A8 v2 Standard 8 16 0.4
14 D13 8 56 0.7
15 A8m v2 Standard 8 64 0.594
16 D14 16 112 1.387

VM Flavors

Ra
te

 ($
/h

ou
r)

Figure 4.6: Virtual Machine (VM) Pricing in Azure Cloud. We show hourly
rates on Dec. 24, 2016. The solid line connects minimum rates for all
VM flavors. Spikes on the line show the price range for that VM flavor.

Wayback Machine has multiple snapshots in that period. We use the Dec. 24, 2016

snapshot as it is the first one after the trace collection start day.

Figure 4.6 shows price ranges for all 16 VM flavors in the Azure trace. The

flavor indices are consistent across Table 4.2 and Figure 4.6. For example, flavor

#8 in Table 4.2 shows the properties of that flavor, including the hourly price we

use for it, while flavor #8 in Figure 4.6 shows the possible price range for that

101

flavor. Figure 4.6 shows price range because the Azure traces contain incomplete

information about the VMs. As we explained in the base workload description

(Section 3.1) and showed in Table 4.2, the Azure traces contain only the amount of

CPU and RAM. The trace omits other resources VMs might have had such as stor-

age space and networking capabilities. For example, as we can see in Figure 4.6,

the lowest hourly rate for flavor D14 with 16 cores and 112 GB RAM is $1.387,

while the highest rate is $2.14, for flavor H16r (not shown). The H16r flavor is

more expensive, because it has 2,000 GB storage space and is equipped with low-

latency network interface (RDMA) while D14 has only 800 GB disk space and

no low-latency networking. We cannot tell which flavor the Azure trace contains,

because the disk space and other information, are not recorded in the trace. The

collected trace could actually contain both D14 and H16r flavors but collapse them

into the single flavor in the released dataset.

However, the released information is sufficient to compare revenue gain across

different VDC schedulers. The revenue gain of VDC scheduler A and VDC sched-

uler B is identical if both schedulers fail identical VMs (e.g., as in Figure 4.4)

and identical VM pricing is used for both schedulers. In theory, when schedulers

fail different VMs, it is possible for scheduler A’s revenue gain to be higher than

scheduler B’s revenue gain with pricing X, and vice-versa with pricing Y.6 How-

ever, we do not expect minor variations in pricing to change our qualitative results

in Section 4.3, because the number of failed VMs are 60× higher with scheduler

A versus scheduler B.7 Thus, for all of our evaluations (Section 4.3), we use the

minimum rates for all VMs, as shown with the continuous line in Figure 4.6.

6As a contrived example, consider pricing X where VM1 is $1/hour and VM2 is $2/hour. Sched-
uler A successfully allocated all VMs, except VM1. Thus, scheduler A’s gain is (max gain-$1).
Similarly, scheduler B successfully allocated all VMs, except VM2. Thus, scheduler B’s gain is
(max gain-$2). Therefore, with pricing X, scheduler A is better than scheduler B (A>B). If we
use pricing Y where VM prices are swapped, our scheduler preference will also be swapped. That
is, with pricing Y, VM1 is $2/hour and VM2 is $1/hour. Just like before, scheduler A fails VM1
and scheduler B fails VM2. Thus, scheduler A’s gain is (max gain-$2) and scheduler B’s gain is
(max gain-$1). Hence, scheduler B is better than scheduler A (A<B).

7For example, in Figure 4.17(b), when bpc=6Mbps, STARNET fails 190,640 VMs out of
1,960,300 VMs (9.73%) and STARNETLA fails 3,427 VMs out of 1,960,300 VMs (0.17%) .

102

4.2.5 Virtual Network Bandwidth Guarantee Pricing

Charging for Network Bandwidth Guarantees

Oktopus was the first work to propose virtual network bandwidth guarantees as a

standalone cloud service for which tenants can be charged independently from the

compute service [21]. The Oktopus authors’ observation is that the cost of network

bandwidth is already part of the bill that tenants pay for the compute service, be-

cause even though it is not directly visible to a tenant (the invoice does not list the

cost of the network bandwidth) the total running time for application on a VDC de-

pends on the network. For example, some data intensive job might complete twice

as quickly if the VDC were given sufficient network bandwidth to avoid stalling

on network I/O. Every second the VM stalls for network I/O, the compute service

generates no value but incurs additional compute cost. Tenants might actually re-

duce their bill by explicitly paying for network bandwidth guarantees so network

I/O stalls do not happen. Building on this idea, we develop a model to show how

much the cloud operators can charge for network bandwidth guarantees and how

much revenue they can generate from offering these guarantees.

A Case Study with ML Training Application

We present a case study demonstrating that billing tenants for the network band-

width guarantees does not change cloud affordability, at least for a subset of cloud

applications that share performance characteristics with the application we study.

A network bandwidth price is called affordable if tenants get an equivalent or bet-

ter utility by paying for the network bandwidth guarantee (compared to best-effort

networking offered today). Analogously, cloud providers get revenue neutrality if

the price tenants pay for that utility, e.g., completing a data processing job, does

not change with and without network bandwidth guarantees.

We use the ML training workload in P3 [72] for our case study. The P3 authors

run ML training workloads on a cluster of g3.4xlarge Linux VMs, where each

VM has 16 vCPUs, 122 GB memory, and up to 20 Gbps (best-effort) network

bandwidth using EC2’s “enhanced networking” feature [14]. The g3.4xlarge VMs

103

cost $1.14/hour8. However, Uta et al. observe that the actual bandwidth available

is significantly lower when VMs generate continuous traffic [128]. For example,

EC2’s c5.large flavor is listed as offering up to 10 Gbps but achieves only 1 Gbps

when Uta et al. make c5.large VMs generate continuous traffic. Although Uta et

al. do not analyze the g3.4xlarge flavor, which the P3 authors use, it is likely to

behave similarly, because both c5.large and g3.4xlarge flavors use EC2’s enhanced

networking feature. For illustration purposes, we assume that g3.4xlarge VMs offer

2 Gbps continuous network bandwidth.

The P3 authors show that network-intensive ML training workloads complete

2–3× faster with consistent 5 Gbps inter-VM bandwidth instead of consistent 2

Gbps bandwidth. Thus, we can conclude that network-intensive ML workloads’

job completion time decreases by at least half with 5 Gbps bandwidth compared to

2 Gbps bandwidth. Therefore, for this workload, selling network bandwidth guar-

antees at the same price rate as the compute service does not change cloud afford-

ability for tenants, because bandwidth guarantees allow tenants to shorten their VM

runtimes. In other words, a 2× increase in tenant billing rate is canceled out by 2×
shorter VM rental time. Given that the g3.4xlarge VM’s hourly price is $1.14, the

tenants can pay $1.14/hour for 5 Gbps bandwidth guarantees and get the same util-

ity from the cloud provider. Thus, the bandwidth cost is $1.14 for 5 Gbps/hour,

which we can use for deriving the price of 1 Gbps/hour, as follows:

bwPrice = ($1.14 / 5) Gbps/hour = $0.228 per 1 Gbps/hour

Note that this is a pessimistic view on cloud affordability, because tenants’ will-

ingness to pay the same amount for completing the same job in a shorter time is

an underestimate. In reality, tenants might be willing to pay more when their jobs

complete more quickly, in addition to the bandwidth guarantee price they have al-

ready paid. Thus, our pricing for bandwidth is conservative, because we do not

attribute any dollar cost for the speedup introduced by the bandwidth guarantees.

Our case study demonstrates that the cost of 1 Gbps bandwidth can be a func-

tion of the VM’s compute cost, depending on how much performance improvement

the guaranteed 1 Gbps bandwidth adds to the application running on the VM. If a

VM’s performance, e.g., job completion time, increases twice with 1 Gbps band-

8As of March 3, 2021 in US East (Northern Virginia) AWS Region [14]. Also, note that g3.4xlarge
is the VM used only in our case study. It is not the VM flavor in Azure traces.

104

Ba
nd

w
id

th
 P

ric
e

($
 p

er
 1

G
bp

s/
ho

ur
)

VM Runtime Reduction with 1 Gbps/hour (%)

0.114

0.228

201050 15

y=0.15 p Provider-Win

Tenant-Win

Figure 4.7: Network Bandwidth Price in ML Training Application. The line
shows the equilibrium pricing that offers a revenue neutrality for the
cloud provider without changing cloud affordability for the tenants. The
region below the line (Tenant-Win) makes the bandwidth price more af-
fordable for the tenants. The region above the line (Provider-Win) offers
a higher provider revenue by charging tenants more for the bandwidth.

width, we can maintain tenant’s affordability and cloud provider’s revenue neutral-

ity by pricing 1 Gbps bandwidth at the identical rate of the VM. Similarly, if VM’s

performance increases only by 10%, 1 Gbps should cost 10% of the VM’s rate.

Figure 4.7 visualizes the relationship between the bandwidth guarantee price

and a VM’s compute price for g3.4xlarge VMs in the ML training application. We

call the prices on the equilibrium line justified because they offer revenue neutrality

(for cloud providers) without changing cloud affordability (for the tenants). For

example, when bandwidth is priced at $0.228 per 1 Gbps/hour ($0.228× 5 = $1.14

for 5 Gbps/hour) and the VM speeds up by 20% with a 1 Gbps bandwidth (2×
with 5 Gbps), a tenant’s $0.228 per 1 Gbps/hour expense is canceled out by 2×
shorter VM rental time. Similarly, assuming a linear VM speedup with a unit of

bandwidth, a tenant’s $0.114 per 1 Gbps/hour payment is canceled out by 10%

reduction of VM runtime. The prices that are outside the line are not justified. For

example, if a tenant pays $0.15 per 1 Gbps/hour when the application they run on

g3.4xlarge VM speeds up by only 10%, as shown with the point p in Figure 4.7,

a cloud provider’s revenue would increase at the tenant’s expense. Thus, prices

above the equilibrium line are bad for the tenants (decreased cloud affordability)

and prices below the line are bad for the cloud provider (negative revenue gain).9

9We use a game-theoretic terminology for readability. The revenue from network bandwidth guar-
antees does not always have zero-sum nature for tenants and providers. For example, as we show in
Section 4.3.1, cloud providers can operate their datacenter network in a moderate utilization level so
that their revenue increases without extra expense on the tenants.

105

We apply the justified bandwidth price to all VDC workloads to study the worst

case scenario from a VDC scheduling perspective. The worst case scenario hap-

pens when datacenter network bandwidth is insufficient to accommodate all tenant

requests such that a subset of requests fail. Assigning a uniform bandwidth (i.e.,

compute-proportional-bandwidth) to all VDCs and attributing the same 1 Gbp-

s/hour dollar price to the entire cloud workload lets us evaluate the worst case

(minimum) revenue gain produced by the VDC scheduler. If part of the cloud work-

load does not require network bandwidth guarantees, i.e., the workload consumes

only CPU and RAM (as data analytics workloads in Ousterhout et al. [104]), the

bandwidth offered by the existing best effort networking setup would be sufficient

and would not cause any failures. This is analogous to running a network-light

workload in the cloud where no VMs fail due to network bandwidth scarcity. As

we show in Section 4.3.1, these network-light cloud workloads, e.g., bpc=2Mbps

VDC workload, have only positive revenue gain. Therefore, augmenting the entire

cloud workload with network bandwidth requirements and studying the revenue

gain using that workload is about evaluating VDC schedulers in the pathological

setting. The reality, where not all VDCs require network bandwidth, can only be

better. That is, the revenue gain in reality is always higher than the one in the patho-

logical case, which means that the VDC scheduler we propose will do better (more

revenue) than what we demonstrate in our evaluations (Section 4.3).

The case study is constructive. It shows an example for pricing network band-

width guarantees by deriving 1 Gbps/hour price without changing the cloud afford-

ability for the tenants. Cloud providers can use this example to encourage tenants to

start using bandwidth guarantees in their (network-heavy) applications. This exam-

ple is analogous to EC2-beta advertising the three-tier web application as a sample

use case of the cloud VMs [26] or like adding GPU (or SSD, persistent memory, or

any other new hardware) service in the cloud: only applications that benefit from

GPUs use the newly added GPU service; others do not. The case study paves the

way for an incremental adoption of a network bandwidth guarantee service.

Finally, our case study with the ML training workload is descriptive, not pre-

scriptive. We do not require characteristics of training application to hold in other

workloads. For example, Ousterhout et al. observe that several cloud data analyt-

ics workloads have little dependency on the network so that even infinite band-

106

width would improve application performance by only 2% [104]. Although this

might seem like it contradicts the findings by Uta et al. [128], P3 [72], TicTac [63],

and ByteScheduler [106], the contrasting findings only point to the fact that cloud

workloads are more diverse than any individual study.

In summary, our case study with ML training application shows that both ten-

ants and cloud providers will benefit from a network bandwidth guarantees service.

The case study outlines a methodology for deriving a justified price for 1 Gbps/hour

service. Later, we use this methodology to derive the 1 Gbps/hour service price in

other cloud environments. Moreover, augmenting the entire cloud workload with

network bandwidth guarantees, as in our case study application, and applying the

bandwidth price to the entire workload allows us to stress test the VDC scheduler

under conditions that produce the largest VM allocation failures. Finally, our case

study is constructive. It shows the kind of existing cloud applications that are ripe

for adopting a network bandwidth guarantee service.

Network Bandwidth Price in the Reference VDC Workload

Now we apply our findings from the case study to scheduling a VDC workload

on our 4-pod Jupiter datacenter. Here, we restrict discussion to the parts that are

relevant for deriving bandwidth cost in the Azure workload and defer the more

elaborate discussion (of algorithm evaluation results) until Section 4.3.

Figure 4.8(a) compares a cloud provider’s revenue for VDC workloads with

and without network bandwidth guarantees, using the baseline VDC scheduling

algorithm, STARNET, on a 4-pod Jupiter datacenter. Each line in Figure 4.8(a)

represents a workload with a different bandwidth demand. Higher bpc values cor-

respond to higher bandwidth demand, because we scale each vlink’s bandwidth

proportionally to the number of VM vCPUs. Note that we study the effect of only

bandwidth price on the revenue. We keep the VM prices constant (Table 4.2). One

could also consider changing VM prices, which would also influence revenue.

However, many other factors outside our control influence VM pricing, such as

capital and operational expenses for servers. Thus, we keep VM prices constant in

our study.

Figure 4.8(a) also shows a cloud provider’s revenue change when a unit of

107

x=0.5798Re
ve

nu
e

G
ai

n
(%

)

Bandwidth Price ($ per 1 Gbps/hour)(a)

Ba
nd

. P
ric

e
($

 p
er

 1
 G

bp
s/

h)

Runtime Reduction w/ 1 Gbps/h (%)

0.0297

0.594

201050 15

0.6935

1.387

(b)

Flavor #16
(x=19,y=0.5798)

(x=8.4,y=0.5798)

Flavor #15

Figure 4.8: Effect of Network Bandwidth Price: (a) shows how cloud
provider’s revenue changes when 1 Gbps/hour network bandwidth
guarantee is priced differently across various VDC workloads
(bpc=[2-6]Mbps) that are allocated on the 4-pod Jupiter datacenter
using STARNET, (b) shows expectations on VM performance improve-
ments to make the $0.5798 per 1 Gbps/hour price justified. Note that in
figure (a), for readability, we label the horizontal axis ticks differently
from the bandwidth price we use in our experiments. Thus, the markers
on lines are misaligned with the ticks. The actual prices used for this
experiment are (0.1387, 0.2774, 0.5548, 0.8322, 1.1096, 1.387).

bandwidth (Gbps) is priced differently. The origin (marked with a star) shows the

revenue with best-effort networking offered today where tenants do not explicitly

pay for network bandwidth. The bpc lines show the revenue change when ten-

ants explicitly pay for network bandwidth guarantees. (Note that offering network

bandwidth guarantees also increases VM allocation latencies, which Figure 4.8(a)

does not show, but we discuss it in Section 4.3.1.)

Recall that in Section 4.2.5, we derived 1 Gbps/hour price by using the price of

the VM in the case study application from P3 [72]. Specifically, we used AWS EC2

g3.4xlarge VM’s price, $1.14/hour, to derive $0.228 per Gbps/hour price because

a 5 Gbps network bandwidth guarantee increased VM’s performance (or shortened

the VM allocation time) by 2×. Our VDC workload is based on the traces from

the Azure cloud, not AWS, so we cannot use the EC2 g3.4xlarge VM’s price as

the reference point. However, we can imagine an identical ML training applica-

tion running in the Azure cloud. We derive the price of 1 Gbps/hour bandwidth

guarantees with this assumption. As we can see in Table 4.2, the D14 VM flavor

in the Azure cloud has identical CPU and RAM specs as the EC2 g3.4xlarge VM.

108

Table 4.2 also shows that the Azure D14 VM costs $1.387/hour. Assuming that the

Azure D14 VM has a similar performance profile as the EC2 g3.4xlarge VM, the

price of the 5 Gbps/hour bandwidth guarantee in the Azure cloud should also be

equivalent to D14 VM’s hourly rate ($1.387/hour). This gives the ($1.387 per 5

Gbps/hour) = ($0.2774 per 1 Gbps/hour) bandwidth guarantees in the Azure cloud.

The horizontal axis in Figure 4.8 covers a range of prices for 1 Gbps/hour, in-

cluding the $0.2774 per 1 Gbps/hour price point. The lowest price in this range

($0.1387 per 1 Gbps/hour) captures the case when a 5 Gbps network bandwidth

guarantee improves application performance by 10% (1.387/0.1387); hence, 1 Gbps

improves the performance by 2%. On the other end, the highest price in this range

($1.387 per 1 Gbps/hour) captures the case when a 5 Gbps network bandwidth

guarantee improves application performance by 100% (1.387/1.387); hence, 1 Gbps

improves the performance by 20%.

We study the revenue change with different VDC workloads to find the 1 Gbp-

s/hour price that provides cloud revenue neutrality across all studied workloads. For

example, Figure 4.8(a) shows that in the bpc=2Mbpsworkload, a cloud provider’s

revenue increases 5–50% compared to the best-effort case offered today. The extra

revenue is generated from the monetization of bandwidth. Figure 4.8(a) also shows

that a cloud provider loses revenue when a VDC workload’s network demand is

too high and the bandwidth price is too low. The loss happens when some VM

allocations fail due to insufficient datacenter network capacity. Unallocated VMs

account for the lost revenue. For example, the highest revenue loss of 27% happens

in the most network-intensive VDC workload (bpc=6Mbps) and the lowest band-

width price of $0.1387 per 1 Gbps/hour, because the scheduler fails to allocate the

largest number of VMs (9.73% of VMs; not shown) in this case.10

However, cloud providers can recover the lost revenue by increasing the band-

width price. For example, $0.5798 per 1 Gbps/hour and higher rates increase cloud

provider’s revenue for all workloads shown in Figure 4.8(a). Another way to in-

terpret this rate is that if cloud providers want to utilize their datacenter network

as highly as in the bpc=6Mbps workload (where ≈10% of VMs might fail allo-

cation due to bandwidth scarcity), they should price 1 Gbps/hour service as 42%

10There are 190,640 failed VMs out of 1,960,300 VMs (9.73%) in the workload (Section 3.1).

109

(0.5798/1.387) of D14 flavor’s price to remain revenue neutral. From a tenant’s per-

spective, it means that tenants should not buy network bandwidth guarantees unless

their workload performance improves by at least 42% with 1 Gbps bandwidth.

Figure 4.8(b) illustrates the effect of $0.5798 per 1 Gbps/hour rate from a ten-

ant’s perspective. The top plot shows the equilibrium line for the D14 flavor (flavor

#16 in Table 4.2) where 1 Gbps/hour bandwidth guarantee improves D14 VM’s

performance (reduces its runtime) by 8.4% (42% for 5 Gbps). Hence, the $0.5798

per 1 Gbps/hour price is justified. If the tenant decides to run the application on a

different VM flavor, that flavor’s performance speedup should increase to make the

$0.5798 per 1 Gbps/hour price justified. The bottom plot in Figure 4.8(b) demon-

strates the bandwidth price versus performance speedup for flavor #15 (Table 4.2).

A flavor #16 VM’s compute rate ($1.387/hour) is more expensive than flavor #15’s

($0.594/hour), so X% performance speedup in an expensive VM saves more com-

pute money; hence, more money is available to pay for bandwidth guarantees.

However, a VM with a lower compute rate saves less money with X% performance

speedup; hence, less money is available to pay for bandwidth guarantees. There-

fore, an application running on flavor #15 VMs should achieve higher performance

speedup than the application running on flavor #16 VMs to make the $0.5798 per

1 Gbps/hour price justified. The bottom plot in Figure 4.8(b) shows that an appli-

cation running on the flavor #15 VMs should achieve 19% performance speedup to

justify the $0.5798 per Gbps/hour price. The lower speedup point for the $0.5798

per 1 Gbps/hour price goes above the equilibrium line, which make the cloud less

affordable for the tenant (Figure 4.7).

Note that the bandwidth price versus performance speedup points above ap-

ply to the datacenter that accommodates bpc=6Mbps VDC workload, i.e., the

datacenter network utilization is high. A justified price for 1 Gbps network band-

width guarantee would be lower, or higher, should the datacenter network uti-

lization be lower, or higher, respectively. For example, if a cloud provider runs

bpc=2Mbps like workload that generates low network datacenter utilization

(where no VMs fail; Figure 4.8(a)) a justified price for 1 Gbps/hour service can

be 10% (0.1387/1.387) of D14 flavor’s compute price ($0.1387 per Gbps/hour), or

even 1%, to increase the cloud provider revenue. This low pricing allows tenants to

purchase network bandwidth guarantees even if their workload (or VM) gets only

110

1% performance speedup from 1 Gbps network bandwidth guarantees.

The exact network bandwidth price depends on multiple factors, including

the utilization level cloud providers operate their datacenter network at, the sig-

nificance of bandwidth guarantees for tenant applications, the price of VM fla-

vors (without bandwidth guarantees), and even the tenants’ behavior when a cloud

provider introduces VM flavors with network bandwidth guarantees. In our earlier

example, the VDC workloads with different network demand (bpc=[2-6]Mbps),

the case study with an ML training application, Azure VM pricing (Table 4.2), and

the range of 1 Gbps/hour price rates in Figure 4.8 illustrate one plausible scenario.

Although, cloud providers are likely to cap their datacenter network utilization to

a similar level as the bpc=4Mbps VDC workload to avoid substantial VM alloca-

tion failures. This is similar to how compute services are operated today, i.e., VM

scheduling failures in the Azure cloud normally do not exceed 0.1% [40].11

In summary, the price of a 1 Gbps/hour network bandwidth guarantee is de-

ployment dependent. Cloud providers need to choose a price by following the fac-

tors we have outlined above, including the significance of network bandwidth guar-

antees for VDC applications and the datacenter network utilization levels providers

target. In the rest of this chapter, we use $0.5798 per 1 Gbps/hour price for all VDC

workloads. As we showed in Figure 4.8, $0.5798 per 1 Gbps/hour price point is the

lowest price that achieves cloud provider revenue neutrality for the VDCs workload

shown in that figure. Although all of our experiments use $0.5798 per 1 Gbps/hour

price, we round this number to $0.58 and use a reader friendly $0.58 value in the

rest of this dissertation for readability. We use the same 4-pod Jupiter datacenter

and VDC workloads in bpc=[2-6]Mbps range for evaluating VDC schedulers,

as we explain next.

4.2.6 VDC Workloads for Scheduler Evaluation

In our VDC scheduler evaluation, we allocate VDC workloads on a 4-pod Jupiter

datacenter. We use the bandwidth-per-core (bpc) parameter to adapt the reference

VDC workload to the 4-pod Jupiter topology and to vary the workloads’ network

demand. The bpc parameter plays a key role in deciding compliance of the VDC

11The difference between VM allocation failures in this work versus the “failures” (under-
performance operation) in the Resource Central paper [40] is discussed in Appendix D.

111

workload with the network-bound failure avoidance model in the Gridiron tech-

nique (Section 3.2.5). In that model, we need to input values for the peak VDC size

(P) and capacity of the fattest server-uplink (C) to derive the maximal vlink band-

width (B). Recall that P=30 in our reference VDC workload (Section 3.3). Given

that C=40,000 Mbps in the Jupiter topology (because all server uplinks are 40

Gbps as described in Section 4.2.1), we get the following from Equation 3.4:

B≤C/(P/2)2 = 40,000/(30/2)2 ≈ 177.78 Mbps

which means that it is possible to allocate VDCs without causing network-bound

failures as long as vlinks do not exceed the 177 Mbps bandwidth cap.

The compute-proportional-bandwidth approach that we used for deriving vlink

bandwidths makes each vlink’s maximal bandwidth a function of the number of

VM cores. Given that the most compute-intensive VM flavor in the Azure traces has

16 cores (Table 4.2), we need to satisfy the bpc≤11Mbps (177 Mbps / 16 cores)

constraint. Note that VM allocation failures can still happen, because a datacenter

network is oversubscribed, i.e., even though server uplinks have network band-

width to accommodate more VMs, the network links above ToR switches might

become a bottleneck, causing VM allocation failures.

We use bpc=[2-6]Mbps range based on empirical evidence. Recall that the

reference VDC workload has bpc=1Mbps. Our experiments with the baseline al-

gorithm, STARNET, showed that STARNET is able to fully accommodate the refer-

ence VDC workload on a 4-pod Jupiter datacenter, i.e., STARNET produced no VM

allocation failures. Thus, we generated VDC workloads with higher bpc values,

i.e., more network-intensive workloads, so that STARNET fails a subset of VMs,

and we can evaluate if other algorithms can do better. We used bpc=[2-10]Mbps,

and saw that values above bpc=6Mbps produce over 10% VM allocation failures

(e.g., 17% failures for bpc=7Mbps), which we thought to be unrealistically high.

Thus, we decided to use a bpc=[2-6]Mbps range in our evaluations.

In summary, this section outlined our methodology for VDC scheduler evalua-

tion. First, we described full and 4-pod Jupiter datacenter topologies on which we

allocate our VDC workloads. Second, we described the lightweight simulation en-

vironment, VDCSIM, that allows rapid evaluation of VDC scheduling algorithms.

Third, we described the revenue gain metric for VDC scheduler evaluation. Fourth,

we showed how we derive pricing for VM flavors and 1 Gbps/hour network band-

112

width guarantees. We used an example ML training application to justify the band-

width price and described how cloud providers can use this example application to

pave the way for adoption of the network bandwidth guarantees service. Finally,

we generated VDC workloads by using the network load parameterization mecha-

nism in the Gridiron technique (Section 3.2.3). Next, we use these VDC workloads

for evaluating several VDC scheduling algorithms.

4.3 Evaluation Results
We answer six research questions designed to address all four concerns regarding

the VDC scheduler deployment in practice:

1. What is the latency overhead of end-to-end network bandwidth alloca-
tion in the baseline algorithm, STARNET? Today, public cloud operators,

such as Microsoft Azure, budget under 100ms to allocate a VM [33, 62].

In Section 4.3.1, we evaluate VM allocation latencies with and without net-

work bandwidth requirements. Our experiments show that the VM allocation

latency budget needs to be increased by an order of magnitude to accommo-

date end-to-end bandwidth allocation. However, as we show in Section 4.3.6,

the scheduler latency conservatively accounts for less than 0.1% of the total

VM allocation time in our OpenStack prototype; increasing our budget to 1s

still (conservatively) consumes only 15% of the total VM allocation time.

2. Does NETSOLVER scale to our environment? In Section 4.3.2, we eval-

uate NETSOLVER’s VM allocation latency and find that NETSOLVER does

not scale to datacenters with over 6,000 servers, which is the size of data-

center needed to accommodate our realistic VDC workloads. NETSOLVER’s

VM allocation latency is practical only in a small datacenter, e.g., 4-rack

datacenter with around 200 servers.

3. How does STARNETLA compare with STARNET in terms of revenue
gain and VM allocation latency? STARNETLA is an enhanced version

of STARNET with locality-awareness and retries. As we will see in Sec-

tion 4.3.3, STARNETLA generates up to 63% higher revenue than STARNET

by reducing VM allocation failures by up to 9%. STARNETLA also reduces

113

the tail (99th percentile) VM allocation latency by up to 45% by colocating

38% more virtual links than STARNET.

4. How do hybrid algorithms, STARNETILP and STARNETLAILP, com-
pare to STARNETLA in terms of revenue gain and latency? In Sec-

tion 4.3.4, we evaluate hybrid algorithms, combining STARNET variants

with NETSOLVER to demonstrate the revenue and the latency difference be-

tween hybrid algorithms and STARNETLA is statistically insignificant.

5. How far is STARNETLA from optimal? In Section 4.3.5, we design an

ILP solver based VM allocation engine that we call ORACLE. ORACLE is

a clairvoyant offline algorithm, e.g., it uses the full workload to minimize

VM allocation failures. We show that ORACLE can produce 50% higher rev-

enue gain than STARNETLA. Although ORACLE is not practical, because

clairvoyance is not practical, it shows that STARNETLA works quite well,

although there is still room for improvement.

6. How much should existing cloud management frameworks change to
support end-to-end bandwidth allocation? In Section 4.3.6, we extend

OpenStack to support end-to-end bandwidth allocation. Our prototype shows

that OpenStack Nova’s existing filtering-based scheduler readily accommo-

dates the end-to-end bandwidth allocation filter. We allocate VDCs in our

prototype and show that the extra latency introduced by bandwidth alloca-

tion is insignificant in the context of the full VM allocation pipeline latency.

Note that most of this section focuses on the VM instead of the VDC because

our VDC scheduler evaluation metric, revenue gain, relies on VMs. As we demon-

strated in Section 4.2.3, the revenue gain metric is descriptive. It captures the full

compute and network bandwidth capacity the scheduler provided. Using VDCs,

on the other hand, is a too coarse grained and ill-suited unit for evaluating a sched-

uler’s efficacy. The VDC metric neither captures the compute capacity of the VDC

VMs nor their inter-VM network bandwidth requirements. The only place we use

a VDC as the unit of resource allocation is in Section 4.3.2 where we evaluate

the scalability of NETSOLVER’s VDC-at-a-time allocation feature. However, even

114

Number of VM PeersV
M

 A
llo

c.
 L

at
en

cy
 (m

s) (b)

C
D

F

(a)

VM Allocation Latency (ms)

no-net.
with-net.

Figure 4.9: End-to-end Network Bandwidth Allocation Overhead: (a) shows
the CDF of latencies for workloads with and without network band-
width requirements, and (b) shows latencies as a function of the number
of peers of a VM. The line in (b) shows latencies for all VMs with con-
fidence internals; medians are in bold. Confidence intervals are invisible
in the plot because of their tight bounds.

there, we evaluate the scheduler’s efficacy in terms of revenue gain and per-VM

allocation latency.

4.3.1 STARNET

We evaluate STARNET’s VM allocation latencies and revenue gain. Recall that

STARNET extends NOVASIM with the end-to-end bandwidth allocation feature.

This Dijkstra-based multi-path allocation is also inherited by STARNETLA and

our hybrid algorithms. Thus, it is important to understand the latency overhead

of this feature. We first study this overhead using the reference VDC workload

(bpc=1Mbps). Afterwards, we demonstrate STARNET’s VM allocation latencies

on VDC workloads with higher network demands (bpc=[2-6]Mbps). We also

compare STARNET’s revenue to the case where the cloud provider does not mone-

tize network bandwidth.

The Latency Overhead of End-to-end Network Bandwidth Allocation

We evaluate the latency overhead by comparing scheduler latencies for workloads

with and without network bandwidth requirements. We use the reference VDC

workload as the networked workload and remove its network bandwidth require-

ments to generate a workload without networking (no-network workload).

115

Figure 4.9 shows STARNET’s VM allocation latencies when allocating the ref-

erence VDC workload (bpc=1Mbps) on the 4-pod Jupiter datacenter. As we can

see in Figure 4.9(a), end-to-end bandwidth allocation increases the median VM

allocation latency by 47× and the tail (99th percentile (p99)) latency by ≈470×.

STARNET has a 5.41ms median VM allocation latency on the no-network workload

and a 255ms (47×) median VM allocation latency on the networked workload. In

the p99 range, STARNET’s 6.86ms latency (470×) on no-network workload soars

to 3,288ms on the networked workload. Here, and in other experiments we analyze

p99 latency, not p100. One could apply tail latency reduction techniques, such as

running multiple schedulers [62], to further reduce the tail one percentile latency.

Moreover, all of our schedulers are single-threaded. One could explore improving

latencies by using multiple threads. We leave these improvements to future work.

Figure 4.9(b) shows VM allocation latencies as a function of the number of

peers of a VM. For example, a VM with 10 peers requires allocating 10 virtual

links (vlinks). The maximum number of vlinks a VM can have is 29 because we

cap the peak VDC size at 30 in our VDC workloads. We omit solo-VMs, which

have no peer VMs, and VMs with colocated vlinks, which do not actually allocate a

vlink, from Figure 4.9(b) because they obscure the relationship between a VM’s al-

location latency and its number of vlinks. The reference VDC workload has 2.22%

solo-VMs and STARNET colocates 3.53% of the non-solo VMs. Thus, 5.75% of

the VMs are omitted from Figure 4.9(b). As we can see in Figure 4.9(b), VM al-

location latency grows linearly with the number of its (non-colocated) vlinks. For

example, a VM with 10 peers takes around 320ms to be allocated while a VM with

20 vlinks takes around 640ms. Thus, we can conclude that a vlink allocation in the

4-pod Jupiter datacenter takes around 32ms. Figure 4.9(b) also plots the confidence

intervals for VM allocation latencies, which are barely visible.

VM Allocation Latencies with Other VDC Workloads

Figure 4.10 shows STARNET’s VM allocation latencies when allocating the full

VDC workloads (bpc=[2-6]Mbps) in the 4-pod Jupiter datacenter. The full

VDC workload has ≈2M VMs and latencies are shown for a single run of the

experiment. Overall, our observations in Figure 4.9 hold for these workloads as

116

Figure 4.10: VM Allocation Latencies in STARNET. The latency boxes show
the first and third quartiles, and whiskers show the min and 99th per-
centile. The horizontal line inside the box is the median.

well. STARNET’s median latency across all workloads is around 300ms while p99

is around 3s. These latencies show that the 100ms VM allocation latency budget

adopted by cloud operators today [62] needs to be relaxed for VDC allocation with

end-to-end network bandwidth.

Figure 4.10 also shows a noticeable variation in VM allocation latencies. We

attribute these variations to the non-deterministic host server selection during VM

placement, which can place two communicating VMs on servers with varying net-

work diameter across the datacenter. Here, the time consumed by the Dijkstra-

based path allocation is proportional to the network diameter, i.e., allocating a vlink

with a shorter diameter is faster.

Revenue Gain

Figure 4.11 shows STARNET performance when allocating full VDC workloads in

the 4-pod Jupiter datacenter. Figure 4.11(a) shows revenue gain12 and Figure 4.11(b)

shows VM allocation failure percentages that cause STARNET’s revenue gain to

fall short of the Ideal. STARNET’s revenue is identical to that of Ideal in the

bpc=2Mbps VDC workload, because STARNET fails no VM allocations. The

revenue gains diverge when STARNET start to fail VMs due to insufficient data-

center network bandwidth. The divergence is 0.13% with the bpc=3Mbps work-

12Our plots do not show absolute revenues. The Baseline revenue is US $11,416,553.

117

(b)(a)

Ideal
StarNet

Ideal
StarNet

baseline

Figure 4.11: Revenue Gain with STARNET: (a) revenue gain and (b) VM al-
location failures that cause the revenue loss. Results are for allocating
full VDC workloads in the 4-pod Jupiter datacenter.

load but is invisible because the percentage of failed VMs is small (0.02%: 397

out of 1,960,300 VMs). The divergence grows as STARNET fails to allocate more

VMs, 9.73% VMs fail with the bpc=6Mbps, and drops to almost zero, because

the extra revenue generated by network bandwidth guarantees in successful VMs

is canceled out by the lost revenue from the failed VMs.

Note that the revenue equality between STARNET and the Ideal in bpc=6Mbps

workload is not accidental. They match because we intentionally priced the net-

work bandwidth guarantees, $0.58 for 1 Gbps/hour such that the cloud provider

remains revenue neutral with and without network bandwidth guarantees. In other

words, should the bandwidth guarantees be priced differently, e.g., lower (or higher),

or slightly more (or less) VMs fail due to non-determinism in STARNET, the

provider would end up with a negative (or a positive) revenue gain.

STARNET Summary

In summary, the 100ms VM allocation latency budget adopted by cloud operators

today needs to be relaxed or implementation get improved for VDC allocation with

end-to-end bandwidth. For example, allocating a VM with 29 vlinks (or peers) can

take around 1s, which is an order of magnitude higher than the current latency

budget. In Section 4.3.3, we show how VM allocation latency can be reduced by

favoring VDC VM colocation, but the tail (p99) latency is still on the order of a

second. In Section 4.3.6, we prototype network bandwidth allocation in OpenStack,

118

which shows that scheduler latency on the order of a second might be acceptable in

practice, because this latency is insignificant when we consider the time consumed

by other OpenStack modules during VM allocation.

Cloud providers can adjust their revenue by pricing network bandwidth guar-

antees differently. Setting the price right is particularly important for maintain-

ing (cloud provider) revenue neutrality when datacenter network bandwidth is

scarce, which happens when cloud providers operate their datacenter networks at

high utilization. On the other hand, when datacenter network bandwidth is not

scarce, cloud providers can generate up to 32% revenue gain (bpc=3Mbps in Fig-

ure 4.11(a)) by offering network bandwidth guarantees.

4.3.2 NETSOLVER

STARNET fails VMs because it is not complete. NETSOLVER is complete but does

it scale? Scalability is the major limitation of constraint-solver based resource allo-

cation tools, such as NETSOLVER [31]. Depending on the VDC size, the constraint

solver might take over a dozen minutes to allocate a VM, because the size of the

encoded ILP constraints grows in proportion to the number of VMs in the VDC.

We quantify this growth in our environment by measuring per-VM allocation time

as a function of VDC size. We use all-or-nothing VDC allocation semantics where

all VDC VMs within the tick fail allocation if any VM fails. The VDC VMs that

were already allocated in the earlier ticks remain allocated. For example, AWS

CloudFormation, a tool for creating and managing cloud application stacks, allows

customers to delete all VMs in their stack if any one or more VMs fail [107]. (See

description of all-or-nothing semantics in Section 2.3.)

The Micro-benchmarking Results

We micro-benchmark NETSOLVER to evaluate its scalability in a controlled en-

vironment. Recall that the datacenter size required to accommodate the reference

VDC workloads is at least 6× bigger than the datacenters we used to evaluate

NETSOLVER in Chapter 2: ≈6,000 servers versus ≈1,000 servers. Moreover, the

reference VDC workload has dense connectivity; the VDC VMs are connected in

an all-to-all topology (Figure 3.2).

119

We evaluate NETSOLVER’s scalability by manually constructing two kinds of

workloads: VDC workloads and no-network workloads. Each VDC workload has

only one VDC containing N VMs created in one tick and deleted in the next tick.

Each VM has 8 cores, 16 GB RAM, and 1 Mbps network bandwidth to every other

VDC VM in an all-to-all topology. We also evaluate the VM allocation latency us-

ing a no-network workload, because it allows us to deconstruct the VDC allocation

latency into the VM allocation component and the vlink allocation component. We

generate the no-network version of each VDC workload by removing the network

bandwidth requirements from all VMs. This is similar to how we generated the

no-network workload for STARNET evaluation (Section 4.3.1). We allocate work-

loads on an empty 4-pod Jupiter datacenter where each server has 60 cores and 256

GB RAM (Section 4.2.1). Note that only 7 VMs (with 8 cores each) can be colo-

cated on a server; beyond this the server becomes CPU-bound. Also note that, no

allocation fails in this micro-benchmark as the 4-pod Jupiter topology (with 6,144

servers) has ample space to accommodate even the largest VDC (with 30 VMs).

We do not batch VMs either: VDC VMs are allocated as all-at-once.13

Figure 4.12 shows VM allocation latencies for workloads with and without

network bandwidth requirements. As we can see, the median VM allocation la-

tency for the no-network workload ranges between 13ms for VDCs of size 1 and

8,505ms when the VDC size is 15. The experiments for VDC sizes of 20 and higher

terminate by hitting the memory limit of 50 GB. We analyze NETSOLVER’s vlink

allocation latency for the completed runs, instead of rerunning the experiments

with a higher memory limit. Notice a significant jump in VM allocation latency for

the VDC workloads. The jump is between VDC size 7, with under 1 second me-

dian VM allocation latency, and VDC size 8, with ≈300s median VM allocation

latency. The jump is due to VDC size 8 exceeding a server’s maximum coloca-

tion capacity. Recall that each server in the 4-pod Jupiter datacenter has 60 CPU

cores, which can hold up to 7 VMs, each with 8 cores. When the VDC size is 8,

the 8th VM gets allocated on another server that requires NETSOLVER to allocate

13Recall that “batching” groups multiple VMs of the VDC for allocation at the same time. For
example, a VDC allocation request with 30 VMs can be broken into six batches of five VMs (Sec-
tion 4.1.3). The all-or-nothing VDC allocation semantics still apply with batching, i.e., a VM failure
in any batch (e.g., the 24th VM; in the 5th batch) will fail the entire VDC.

120

V
M

 A
llo

ca
tio

n
La

te
nc

y
(s

)

M

Number of VMs in VDC

M

M M

M M M

Figure 4.12: VM Allocation Latencies with NETSOLVER. Here, NET-
SOLVER allocates two kinds of VDC workloads in the 4-pod Jupiter
datacenter. We allocate the whole VDC at once and divide that latency
by the VDC size to get the average per-VM latency. We plot the re-
sults of 10 runs for each data point. The boxes show the first and third
quartiles, and whiskers show the min and max values. “M” stands for
out-of-memory with 50 GB RAM.

7 vlinks between the two servers. We do not observe this phenomena when VDC

size is 7 because NETSOLVER colocates all VDC VMs, completely obviating the

vlink allocation. The VM allocation latency grows further for VDC size 9 with al-

most 1000s median VM allocation latency, and VDC size 10 with well over 1000s

median latency, after which NETSOLVER terminates due to memory limit (50 GB).

We derive NETSOLVER’s vlink allocation latency by contrasting latencies in

the VDC workload and in its no-network counterpart. More precisely, we take the

difference between VM allocation latency in a VDC size N workload and in no-

network workload with N VMs. The outcome gives us the allocation latency for

(N − 1) (non-colocated) vlinks that are present in the VDC workload but not in

its no-network counterpart. For example, when VDC size is 8, the median VM

allocation latency is 288s while it is ≈1s in the no-network workload with 8 VMs.

Thus, NETSOLVER’s vlink allocation latency is≈41s (288/7) when VDC size is 8.

The vlink allocation latency grows further for larger VDCs: 106s when VDC size

is 9 and 126s when VDC size is 10. Therefore, we conclude that NETSOLVER’s

vlink allocation latency in the 4-pod Jupiter datacenter is at least 41 seconds, which

is three orders of magnitude (1280×) higher than that of STARNET (32ms).

The micro-benchmarking results show that NETSOLVER does not scale to a

121

ToR0

server0

server47
40

…

ToR1

server48

server95

…

40

ToR2

server96

server143

…

40

ToR3

server144

server191
…

40

MB
16x40

Figure 4.13: Four-rack Jupiter Datacenter Topology.

4-pod datacenter. Its VM allocation latency is prohibitively high when VDC VMs

cannot be colocated, e.g., allocating a VM with only two non-colocated vlinks takes

at least 82 seconds, which exceeds the per-VM latency budget of 60s we consider

to be practical (Section 4.1.3). For example, 82 seconds are 12× higher than VM

allocation latency (6.5s) in our OpenStack prototype (Section 4.3.6).

Smaller Datacenter

We study NETSOLVER’s scalability at smaller scales. There are two ways to reduce

NETSOLVER’s ILP model size so that latency will drop: smaller VDCs or smaller

datacenters. Reducing the VDC size is too restrictive for the tenants. As we de-

scribed in VDC workload generation (Section 3.2.2), popular machine learning

applications that commonly run in the cloud today, including the one we presented

in our case study (Section 4.2.5), require dozens or more VMs in a VDC. Thus, we

explore the second option: reducing the datacenter size. This option is practical be-

cause, cloud management frameworks support splitting a datacenter into multiple

allocation units, e.g., OpenStack Cells [102].

Figure 4.13 shows a scaled down Jupiter datacenter with four racks. The 4-rack

Jupiter topology maintains the rack-level properties of the 4-pod Jupiter datacenter

that we use in our full experiments. Just like in the 4-pod datacenter, servers in

the 4-rack datacenter are connected to one top-of-rack (ToR) switch with 40 Gbps

links. This gives 16x40G downlink capacity to each ToR switch. At the same time,

each ToR switch connects to a single Middle Block (MB) switch with 16x40G

links. A Jupiter MB offers 64x40G downlink capacity, which suffices for four ToR

switches: 16x40G uplink for each ToR switch (Section 4.2.1). Thus, ToR switches

122

(c)

(b)

(a)

3% workload

100% workload

3% workload

100% workload

3% workload

100% workload

Figure 4.14: Resource Footprint of the 3% VDC Workload. The 100% work-
load footprint is described in Section 3.1 and Section 3.3. Both 3% and
100% workloads use bpc=1Mbps for network bandwidth.

in both 4-rack and 4-pod topologies have 48:16=3:1 downlink:uplink oversubscrip-

tion ratio. Moreover, servers have 60 cores and 256 GB RAM in both topologies.

There are 192 servers in the 4-rack datacenter.

Partial VDC Workload

We also scale down the reference VDC workload volume to ensure that the peak

CPU and memory consumed by the VDC workload does not exceed the 4-rack dat-

acenter’s capacity. Note that reducing workload volume is different from reducing

peak VDC size, which we discounted because it is too restrictive a mechanism for

reducing the ILP model size. In fact, we strive to maintain a consistent VDC size

distribution across the full and partial VDC workloads by adopting randomized

VDC sampling. Here, we collect a list of all VDC UUIDs in the reference VDC

workload and randomly select k% of these VDCs to be included in the partial work-

load. We choose k = 3%, because the number of servers in the 4-rack datacenter is

reduced by 32× (6144/192).

We summarize the CPU, RAM, and network bandwidth footprints of the 3%

VDC workload. This summary highlights the scale of workload NETSOLVER is

able to handle without introducing prohibitively high resource allocation latency.

123

Figure 4.15: Peak VDC Sizes in Partial (3%) and Full VDC Workloads.

Figure 4.14 compares 3% VDC workload’s (bpc=1Mbps) footprints with the ref-

erence VDC workload’s footprints (100% workload, bpc=1Mbps). As we can see

in Figure 4.14, the 3% workload’s duration is also (coincidentally) 3.6% shorter

(8322 ticks) than the the reference VDC workload’s duration (8640 ticks). Fig-

ure 4.14(a) shows that the number of consumed cores in the 3% workload ranges

between 8,789–10,920 cores, while it ranges between 321,943–341,279 (≈36×)

in the reference VDC workload. Similarly, Figure 4.14(b) shows that the mem-

ory footprint of the 3% workload ranges between 18,360–27,939 GB, while it

ranges between 730,314–781,767 GB (≈40×) in the reference VDC workload.

Finally, Figure 4.14(c) shows that the network bandwidth footprint of the 3% work-

load ranges between 171–214 Gbps, while it is between 5,828–6,580 Gbps in the

reference workload (≈34×).

Figure 4.15 compares peak VDC sizes in the 3% and the reference VDC work-

loads. As we can see, the CDF lines overlap, meaning that VDC size distribution

in the 3% VDC workload closely reflects the one in the reference VDC workload.

There are 2,216 unique VDCs in the 3% VDC workload, while there are 73,872

VDCs in the reference VDC workload (≈33×) (Section 3.2.2). Moreover, the 3%

VDC workload has 57,809 VMs while there are 1,960,300 VMs in the full VDC

workload (≈34×).

VM Allocation Latencies

Figure 4.16 compares VM allocation latencies in NETSOLVER and STARNET on

the 3% VDC workload in the 4-rack datacenter. We show NETSOLVER’s alloca-

124

StarNet
batch-size=1
batch-size=2

Figure 4.16: NETSOLVER’s Allocation Latencies on the 3% VDC Workload
with Two Batch Sizes. We also show STARNET’s VM allocation laten-
cies for comparison.

tion latencies for batch size of one VM (batch-size=1) and batch size of one VMs

(batch-size=2), which we contrast with that of STARNET’s. Recall that we can

batch VDC VMs in NETSOLVER to trade-off completeness with lower allocation

latencies. As we can see in Figure 4.16, the larger batch size increases VM alloca-

tion latency: by 84% in 50th percentile (from 360 ms in batch-size=1 to 661 ms in

batch-size=2) and by ≈300% in 99th percentile (from 465 ms in batch-size=1 to

1,387 ms in batch-size=2). However, NETSOLVER’s VM allocation latencies are at

least 24× higher than those of STARNET, which has 6 ms in 50th percentile and

17 ms in 99th percentile.

We conclude that NETSOLVER’s VM allocation latencies are too high in a 4-

pod datacenter with over 6000 servers. NETSOLVER can handle smaller datacen-

ters, such as the one with 192 servers we showed in Figure 4.13. Even at this small

scale, we need to constrain NETSOLVER to tiny batch size (e.g., batch-size=1, or

VM-at-a-time) to get something approximating acceptable latency (≈1s).

4.3.3 STARNETLA

Since NETSOLVER is impractical at scale, we enhance STARNET with locality-

awareness and retries (STARNETLA) to see if we can obtain some of the benefit

that NETSOLVER provides. We first evaluate STARNETLA with locality enhance-

ment and only then enable retries to distinguish the relative contribution of each

125

(b)(a)

Ideal
StarNet
StarNetLA

Ideal
StarNet
StarNetLA

baseline

Figure 4.17: Revenue Comparison with STARNET and STARNETLA. Rev-
enue gain and VM allocation failures by STARNET and STARNETLA
on 4-pod Jupiter datacenter with full VDC workload with varying net-
work load: (a) shows revenue gain, and (b) shows VM allocation fail-
ures. The revenue gain and latencies for STARNET in this figure are
identical to the ones in Figure 4.11.

enhancement on revenue gain and VM allocation latency. We use STARNETLA to

indicate that retries=0, and use “STARNETLA (N)” to explicitly state the number

of retries (N) in STARNETLA.

Figure 4.17 shows the effects of locality-awareness on revenue gain and VM

allocation failures. As we can see in Figure 4.17(a), which shows the bpc=2Mbps

workload, both STARNET and STARNETLA generate an identical 21% rev-

enue gain compared to the baseline where the cloud provider does not offer

network bandwidth guarantees. The revenue from STARNET and STARNETLA

in the bpc=2Mbps workload is equal to the Ideal revenue because neither of

these algorithms fail any VM allocations. Zero VM failures is also shown for

bpc=2Mbps workload in Figure 4.17(b). The number of VM allocation failures,

hence the revenue gain, start to diverge between STARNET and STARNETLA from

bpc=3Mbpsworkload onward, reaching the peak VM allocation failures of 9.73%

as shown in Figure 4.17(b) and no revenue gain at bpc=6Mbps, as shown in

Figure 4.17(a). On the other hand, STARNETLA fails no VM allocations until

bpc=6Mbpsworkload. Thus, the revenue gain with STARNETLA equals the Ideal

revenue gain for bpc=[3,4,5]Mbps workloads. With the bpc=6Mbps work-

load, STARNETLA fails only 0.1748% of VM allocations (3427 out of 1,960,300

VMs) generating 63.19% revenue gain (0.66% less than the Ideal). These exper-

126

(b)(a)

StarNet StarNetLA StarNet StarNetLA

Figure 4.18: VM Allocation Latencies with STARNET and STARNETLA. We
show results for allocating full VDC workloads with varying network
demand in the 4-pod Jupiter datacenter: (a) shows VM allocation la-
tencies, and (b) shows the percentage of colocated virtual links. The
latency boxes show the first and third quartiles, and whiskers show
the min and 99th percentile. The horizontal line inside the box is the
median. The VM allocation latencies for STARNET in this figure are
identical to the ones in Figure 4.10 (on page 117).

iments show that VM colocation significantly decreases VM allocation failures,

producing up to 63% revenue gain compared to the STARNET algorithm, which

lacks locality-awareness.

The VM colocation optimization also reduces VM allocation latencies, as shown

in Figure 4.18(a). Figure 4.18(a) shows that STARNETLA has 45–61% (119–

220ms) lower median VM allocation latency than STARNET. The tail latency (99th

percentile) difference between STARNETLA and STARNET ranges in 24–45%

(645–1651ms); STARNETLA is faster. Figure 4.18(b) shows the reason behind

STARNETLA’s lower latency: VM colocation. Recall that we use the Dijkstra-

based virtual link (vlink) allocation technique when we cannot colocate VMs.

Avoiding vlink allocation altogether for all (or some) vlinks in a VM reduces VM

allocation latency. As we see in Figure 4.18(b), STARNET consistently colocates

only ≈0.02% of the vlinks across all workloads, while STARNETLA consistently

colocates ≈38% of the vlinks.

We now describe experimental results with different retry values. As we ex-

plained in Section 4.1.4, the intuition why more retries might help is because retries

approximate NETSOLVER’s completeness optimization: trying more servers makes

127

STARNETLA more complete by decreasing the probability of missing the server

that can accommodate the to-be-allocated VM’s end-to-end bandwidth require-

ments. For this experiment, we chose the full VDC workload with bpc=6Mbps

because STARNETLA produces zero VM allocation failures for VDC workloads

with lower bpc values. We want to see if retries reduce the number of VM allo-

cation failures and thereby generate a higher revenue gain. We experiment with 10

different retry values: 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, and 100. Here, retry=N means

that STARNETLA attempts VM allocation N times, e.g., N=1 means STARNETLA

tried only one server, which is identical to the STARNETLA analyzed above.

Figure 4.19 shows the results from our experiment. Contrary to our intuition,

Figure 4.19(a) shows that the revenue gain does not increase with more retries.

The revenue gain by STARNETLA is almost equal across all retry values. Fig-

ure 4.19(b) shows STARNETLA VM allocation latencies with different numbers

of retries. Similar to the revenue gain, the latencies (for successful VM allocations)

also have no dependency on the number of retries. As we can see in Figure 4.19(b),

p50 VM allocation latencies are in 137–147ms (7% variance) range while p99 la-

tencies range in 1,950–2,032ms (5% variance). These latencies neither consistently

increase nor decrease as the number of retries goes up. We repeated the experiment

with bpc=7Mbps workload and its results were qualitatively similar, leading us

to the same conclusions.

More retries do not improve STARNETLA’s revenue gain, because the locality-

awareness optimization itself failed only 0.1748% of all allocations; it already

achieves high datacenter utilization. To confirm this hypothesis, we collected uti-

lization levels of every physical link in the 4-pod Jupiter datacenter at the end of

each tick. That is, we record the link utilization percentage after all events in the

tick are processed by the scheduler. We then generate the heatmap of the datacenter

network utilization over time (i.e., across all ticks), as shown in Figure 4.20.

Figure 4.20 compares the heatmap from STARNET with the heatmap from

STARNETLA (with no retries). On the horizontal axis, we show the number of

ticks (8640) in the workload. On the vertical axis, we enumerate individual phys-

ical links in the datacenter. We divide physical links into three categories and

plot them separately (bottom, middle, top) to visualize link utilizations across the

datacenter network hierarchy. Recall that in a leaf-spine datacenter topology, the

128

(a)

StarNetLA

baseline

Number of VM Allocation Tries (b) Number of VM Allocation Tries

Figure 4.19: STARNETLA Performance with Different Retries. We show re-
sults for allocating the full VDC workloads with bpc=6Mbps in the
4-pod Jupiter datacenter: (a) shows revenue gains, and (b) shows VM
allocation latencies for different retry values. The latency boxes show
the first and third quartiles, and whiskers show the min and 99th per-
centile. The horizontal line inside the box is the median.

Ticks(a) Ticks(b)

Values are in percentages: 0% (light blue) indicates an idle link, and 100% (dark red) is otherwise.

Se
rv

er
-T

oR
To

R-
M

B
M

B-
SB

Figure 4.20: Datacenter Network Bandwidth Utilization Heatmap Over
Time. We show results for allocating the full VDC workload with
bpc=6Mbps in the 4-pod Jupiter datacenter: (a) shows utilization with
STARNET, and (b) shows utilization with STARNETLA (no retries).

129

bottom-most level of the network hierarchy is the leaf level that connects servers

to ToR switches. The leaf link utilizations are shown on the bottom-most plots

in Figure 4.20. There are 6144 leaf links in the 4-pod Jupiter datacenter, which

correspond to the length of the vertical axis of the bottom-most plots. The middle

plots show link utilizations in the aggregation level that connect ToR switches to

Middle Blocks (MB) in the Jupiter datacenter topology. There are 1024 aggrega-

tion links. Finally, the top-most plots show link utilizations of the core links that

connect MBs to the Spine Blocks (SB) in the Jupiter datacenter topology. There are

512 core links. A colorful horizontal line in each plot shows the utilization level

of a physical link across all 8640 ticks. For example, the point corresponding to

x=1000 and y=500 on the bottom-most plot of Figure 4.20(a) shows the utilization

level of the 500th leaf link after the scheduler processed all events in tick number

1000. The darker the (purple) color of the point the higher the link utilization. The

link’s color will change to the opposite side of the spectrum (light blue) in tick

number 1001 if all VMs that are consuming bandwidth on the 500th leaf link are

deallocated in tick number 1001.

As we see in Figure 4.20(b), datacenter network bandwidth utilization levels

with STARNETLA are high. The links at the ToR-MB layer are the bottleneck in

this datacenter. Thus, increasing the number of STARNETLA retries is fruitless,

because link utilization levels are already high even without retries. More retries

are not able to overcome this bottleneck.

On the other hand, Figure 4.20(a) shows that it is possible to achieve even

higher utilization at ToR-MB layer as the heatmap of the middle plot in Fig-

ure 4.20(a) is darker than that of Figure 4.20(b). However, higher utilization levels

in Figure 4.20(a) are the result of inefficient bandwidth allocation because STAR-

NET reaches this utilization level after failing to allocate 9.73% of VMs while

STARNETLA achieves the utilization level in Figure 4.20(b) failing only 0.1748%

of VMs. Thus, we conclude that STARNETLA’s bandwidth allocation is efficient,

even without retries. (The heatmap plots like in Figure 4.20 also show where the

network operators should add more capacity to increase datacenter utilization.)

130

(b)(a)

StarNetLA

baseline
StarNetLAILP

Ideal

StarNetLA StarNetLAILP

Figure 4.21: STARNETLA vs. STARNETLAILP Revenue and La-
tency. We show results for allocating full VDC workload with
bpc=[2-6]Mbps in the 4-pod Jupiter datacenter: (a) compares
revenue gains, and (b) compares VM allocation latencies.

4.3.4 Hybrid Algorithms

Since retries did not enable STARNETLA to achieve completeness, we experi-

ment with two hybrid algorithms: STARNETILP and STARNETLAILP. Both of

these algorithms use NETSOLVER-ILP as the fall-back engine to the corresponding

heuristic algorithm. Intuitively, hybrid algorithms should reduce the number of VM

allocation failures, hence generate a higher revenue gain, compared to the incom-

plete heuristic algorithms. Hybrid algorithms, on the other hand, provide VM-level

completeness. We first discuss STARNETLAILP results, followed by discussion

of the results with STARNETILP.

We repeated the STARNETLA experiments in Section 4.3.3 with STARNET-

LAILP to compare these two algorithms. In other words, we allocated the full

VDC workloads with bpc=[2-6]Mbps on the 4-pod Jupiter datacenter. Fig-

ure 4.21 compares the performance of these two algorithms: both algorithms

produce identical revenue gain (Figure 4.21(a)) and VM allocation latency (Fig-

ure 4.21(b)) for bpc=[2-5]Mbps workloads because the primary algorithm

(STARNETLA) did not fall back to the secondary algorithm (NETSOLVER-ILP).

The fallback does not happen because the primary algorithm does not fail any VMs

for these workloads. Although barely visible in Figure 4.21, the algorithms’ perfor-

mance does differ slightly at the bpc=6Mbps workload for which STARNETLA

fails to allocate 0.1748% of VMs and thereby falls back to NETSOLVER-ILP to

131

reattempt the allocation.

We analyze STARNETLAILP’s performance for bpc=6Mbpsworkload by re-

running the experiment with debug output, which allows us to track the fallbacks.

Collecting debugging information is intrusive and it increases VM allocation la-

tency. Therefore, Figure 4.21 shows results from the debug disabled run. However,

the number of VM allocation failures are similar14 in both runs and the conclusions

regarding fallbacks from one run generalize to others.

STARNETLAILP has 4,111 fallbacks of which 746 are successful. Thus, STAR-

NETLAILP fails to allocate 3,365 VMs, which represent 0.1717% of the full VDC

workload. The allocation latency of these 746 VMs ranges between 26 and 65

seconds where the 50th percentile (p50) latency is 43.49s and the 99th percentile

(p99) latency is 60.45s. Here, p50 latency of the fallback scheduler (NETSOLVER-

ILP) is 310× higher and p99 latency is 30× higher than the primary scheduler’s

(STARNETLA) respective latencies. The results demonstrate that fallback sched-

uler’s latencies are impractical. Therefore, although it is possible to reduce the VM

allocation failures by leveraging NETSOLVER-ILP’s VM-level completeness, the

latency of these allocations render them useless in practice.

Our experiments with the other hybrid algorithm, STARNETILP, are likely

to lead to the same conclusion, except that it will take us longer to arrive at

that conclusion. The reason for the longer experimental time is because there are

significantly more fallbacks to the secondary scheduler in STARNETILP, which

are caused by the primary scheduler (STARNET) failing to allocate a signifi-

cantly larger number of VMs compared to STARNETLA. For example, in the full

VDC workload with bpc=6Mbps, STARNET fails to allocate 190,640 VMs and

even with 26s per-VM allocation latency (the minimum latency of the fallback

scheduler in our earlier experiment with STARNETLAILP), the STARNETILP

experiment will require 57 days. In our actual experiments, STARNETILP com-

pleted the bpc=2Mbps and bpc=3Mbps workloads in 9 days and 14 days,

respectively. There were no fallbacks with these workloads because STARNET

14There are 0.28% VM allocation failures (5,472 VMs out of 1,960,300 VMs) with debug disabled
(shown in Figure 4.21) and 0.1748% failures (3,237 VMs out of 1,960,300 VMs) with debug enabled
(not shown). The outcome differs across the multiple experimental runs due to non-deterministic
server selection in the Weigher function in STARNET (see Algorithm 2 line 1 on page 84).

132

successfully allocated all VMs by itself. The experiments with other workloads

(bpc=[4,5,6]Mbps) were still running after 25 days, after which we termi-

nated them. Thus, those experiments are unlikely to produce any new finding, i.e.,

the fallback scheduler will still have high latency, because the fallback scheduler is

identical in STARNETILP and STARNETLAILP. Thus, we conclude that hybrid

algorithms are not useful in practice.

4.3.5 STARNETLA Optimality Approximation

In Section 4.3.3, we saw that locality-awareness reduces VM allocation failures by

up to≈9%, which generated up to 63% revenue gain. Can we do better? Constraint-

solvers can be used to answer this question. However, the constraint encodings we

proposed for NETSOLVER (Section 2.3) are not the right ones. These encodings

are online optimal, while we need globally optimal to answer the question above.

In online optimal, a constraint-solver makes piecemeal decisions about VDC (or

a VM batch) placement, i.e., given a VDC (or VM batch) allocation request the

solver finds a satisfying solution that minimizes VM allocation failures in each

allocation. However, an optimal decision in each allocation step is greedy and it

does not necessarily lead to an optimal decision across multiple allocations. For

example, when allocating 10 VMs in a piecemeal fashion, the online algorithm

might fail to allocate V M5 and V M8, resulting in two VM allocation failures. On

the other hand, if we encode constraints for all 10 VMs together and minimize for

failures at once, the constraint-solver could deliberately fail an earlier VM, e.g.,

V M3, to avoid failing V M5 and V M8. Thus, the globally optimal constraints may

produce fewer VM allocation failures than the online optimal constraints.

We developed a globally optimal algorithm that we call ORACLE. ORACLE has

two major changes on top of NETSOLVER-ILP. First, ORACLE removes the tem-

poral aspect from NETSOLVER-ILP: instead of building constraints for each VM

allocation and solving them separately, we build a collective constraint model for

all VMs in the workload. Second, in addition to VM allocations, VM deallocations

are also part of the collective model. The deallocation constraints are the duals of

their allocate constraints, where, if the constraint-solver satisfies the allocate event

it must also satisfy the respective deallocate event. ORACLE solves the collective

133

ToR1 ToR2100

S2S1 S4S3

333 333 333 333

 16 core
64 GB[] 16 core

64 GB[] 16 core
64 GB[] 16 core

64 GB[]
Figure 4.22: Four Server Datacenter used in ORACLE. Network links are in

Mbps. We maintain 3:1 downlink:uplink oversubscription ratio in the
ToR level as in the Jupiter topology.

model by maximizing the number of VM allocations. Although ORACLE faces

scalability challenges for large workloads and datacenter sizes, we compared VM

allocation failures in ORACLE and STARNETLA (our algorithm with the least VM

allocation failures) on a limited scale.

We gradually increased the workload and datacenter size, and here we report

results from the biggest scale that ORACLE completed in ≈5 CPU minutes (295

seconds).15 We use the small four server datacenter show in Figure 4.22. We se-

lect a single VDC from the reference VDC workload that has the peak size of 20

VMs. Overall, this VDC has 30 VMs that are created/deleted over 12 ticks. Eval-

uation with a single VDC workload is desired as it presents the most challenging

resource allocation scenario that imposes network bandwidth scarcity. We make

sure no VMs fail with bpc=1Mbps and we gradually increase the bpc value until

a subset of VDC VMs fail (because of insufficient datacenter network bandwidth).

We report results for bpc=6Mbps, which consumes 1278 Mbps peak bandwidth.

ORACLE failed to allocate one VM while STARNETLA failed to allocate three

VMs out of 30 VMs total. These correspond to 51% revenue gain by ORACLE, and

35% revenue gain by STARNETLA. Thus, ORACLE has 50% ((51-35)/35) higher

revenue gain than STARNETLA. The ideal revenue gain is 60% for this workload.

This result shows that STARNETLA works quite well, although there is still room

15ORACLE is slow. We give examples of larger workloads that we tried but ORACLE could not
complete (on time). A VDC from the full Azure workload that has the peak size of 30 VMs, with 55
VMs spread over 18 ticks did not complete after 4 CPU days (102 hours). A larger VDC with the
peak size of 30 VMs, and 512 VMs spread over 70 ticks did not complete after 28 CPU days (673h).

134

for improvement. The major advantage ORACLE has compared to other algorithms,

including STARNETLA, is clairvoyance. As we described in our example above,

ORACLE can deliberately fail some (early) VMs to keep room for (a bigger set of)

future VMs. This large improvement in scheduler quality shows great potential for

prediction based algorithms that can approximate ORACLE’s perfect knowledge

about the workload. For example, the Resource Central paper [40] and the follow-

up paper [33] by Microsoft Azure describe machine learning based techniques to

predict VM lifetimes and how these predictions can improve the VM scheduler

quality. We would like to explore this direction in the future.

4.3.6 OpenStack Prototype

We prototyped STARNETLA in OpenStack with two goals: (1) to confirm STAR-

NETLA’s compatibility with OpenStack Nova’s filtering-based scheduler archi-

tecture, and (2) to evaluate the latency impact of our scheduler on the overall VM

allocation pipeline. Achieving the first goal required several changes to OpenStack,

such as modeling every physical hop with its capacity to enable end-to-end band-

width allocation, making the scheduler aware of VM delete events, and adding

inter-VM bandwidth requirements to the VM creation CLI. To achieve the second

goal, we did lightweight instrumentation of OpenStack’s Nova module and quanti-

fied the latency contribution of each Nova submodule in the VM creation pipeline.

We elaborate on each goal.

Scheduler’s OpenStack Integration

We integrated STARNETLA as an additional Nova scheduler filter. We call our

filter NovaNet. NovaNet runs as part of the Nova scheduler and has scheduler

and DeleteNotifier components, as shown in Figure 4.23.16 NovaNet translates

OpenStack-specific VM create requests into STARNETLA input. This approach

allows us to plug our algorithms directly into Nova.

DeleteNotifier keeps the datacenter inventory consistent between NovaNet and

DB. Nova’s stateless scheduler design processes VM delete events without sched-

16The figure is based off the OpenStack manual at https://docs.openstack.org/nova/latest/user/
architecture.html

135

https://docs.openstack.org/nova/latest/user/architecture.html
https://docs.openstack.org/nova/latest/user/architecture.html

Neutron

Keystone API

Conductor

Compute

Hypervisor

DB

Placement

Glance &
Cinder

Nova Service
External Service

Messaging
DB HTTP

NovaNet

Rabbit
MQ

StarNetLA
DeleteNotifier

Scheduler

Figure 4.23: OpenStack Prototype Architecture. All modules exists in Open-
Stack except the NovaNet scheduler on the top-right. This is the mod-
ified version of Figure 4.1 to illustrate new modules, in blue.

uler involvement. That is, when a VM is deleted, the Placement module directly

updates the DB. For quick prototyping, we designed NovaNet to be stateful: in-

stead of fetching datacenter inventory from the DB in every VM create request,

NovaNet maintains internal state. The DeleteNotifier makes NovaNet VM-delete-

aware by updating STARNETLA’s internal state in each VM delete event.

Scheduler’s Latency Contribution

We added lightweight instrumentation to Nova submodules to quantify the latency

contribution of each submodule. The instrumented submodules include API, Con-

ductor, Scheduler, and NovaNet scheduler, as shown in Figure 4.23. We run our

OpenStack deployment on a server separate from the simulation (VDCSIM) server

to avoid performance interference. Our single-node OpenStack deployment (De-

vStack) runs on a server with 2.40 GHz (10 MB L3 cache) Intel Xeon E5-2407 v2

processor with eight cores across two NUMA nodes and hyperthreading disabled.

The host OS is Ubuntu 16.04.6 LTS with 32 GB RAM that is uniformly distributed

(16 GB each) across both NUMA nodes.

136

Table 4.3: Latency Contribution of Different OpenStack Submodules. We
show the relative latency contribution of each Nova submodule to the
VM creation pipeline. The numbers are average of 30 samples (VM cre-
ations). The contribution of the STARNETLA algorithm makes up only
0.036% of the overall time.

Submodule Name Absolute Latency (ms) Percentage of Total Latency

API 949.42 14%
Conductor 362.79 5.964%
Scheduler 1284 20%
STARNETLA 2.37 0.036%
Compute 3953 60%

Total 6552 100%

Table 4.3 shows results from our runtime analysis. We used the same single

VDC workload we used for ORACLE evaluation. The VDC has the peak size of 20

VMs, with 30 VMs spread over 12 ticks. We allocated the VDC on the four-rack

Jupiter topology (Figure 4.13 on page 122). This experiment had no VM failures.

The average VM allocation latency with STARNETLA is 6.5s while the Scheduler

submodule takes only 1.28s (20% of total). The STARNETLA algorithm is exe-

cuted entirely within the Scheduler submodule, and it completes in 2.37 millisec-

onds (0.036% of total). Note that the runtime for the slowest submodule, Compute,

does not include VM creation time by the hypervisor as our prototype does not ac-

tually create the VM. Thus, our reported STARNETLA latency contribution is an

overestimate as the actual VM creation takes even longer, making STARNETLA’s

latency contribution even smaller. Moreover, VM creation in production can be

even longer as our analysis does not include other modules involved in VM cre-

ation, such as Keystone (authentication service), Cinder (block storage service),

Glance (VM image service), and Neutron (networking service) [103].

4.4 Related Work
In Section 2.1, we already discussed existing literature on VDC scheduling. Here,

we revisit some of those works to highlight the parts that are relevant to the topics

we discussed in this chapter. We start by stating our rationale for omitting perfor-

137

mance comparison between SecondNet’s VDCAlloc algorithm [59] and the heuris-

tic algorithms introduced in this chapter, such as STARNETLA.

In the SecondNet paper [59], Guo et al. introduce the VDCAlloc algorithm for

VDC scheduling. VDCAlloc is a heuristic algorithm that scales well to datacenters

with up to 100,000 servers. We do not directly compare STARNETLA to VDCAl-

loc, because we have already demonstrated the superiority of NETSOLVER in its

VDC packing ability in Chapter 2, where NETSOLVER allocated up to 3× more

VDCs than VDCAlloc, although NETSOLVER’s latency is impractical for realis-

tic VDC workloads and datacenter with thousands of servers. As we demonstrated

in Chapter 2, VDCAlloc’s limitations come from its bipartite graph matching prop-

erty, which is used to reduce VDC allocation latency.

VDCAlloc uses bipartite graph matching where it models VDC topology as a

graph to be matched with the datacenter topology graph. The datacenter servers

are grouped into clusters of varying size and sorted in an ascending order by the

number of servers in the cluster. VDC VMs are also sorted in a descending or-

der by their bandwidth requirements such that the VM with the highest network

bandwidth requirement is allocated first. These two sorting techniques produce a

fail-fast property that allows VDCAlloc to quickly fail clusters without sufficient

capacity to accommodate a VDC’s largest bandwidth requirement. VDCAlloc ex-

haustively retries clusters with more servers until it finds a cluster that can accom-

modate the entire VDC.

The bipartite matching heuristics fundamentally prevents VDC VM colocation

by strictly assigning VDC VMs to separate servers. In fact, VDCAlloc considers

VM colocation only when tenants explicitly request it. This assumption does not

hold in our VDC workload, because neither the Azure cloud nor any other public

cloud provider offer an option for tenants to express their colocation preferences.

As we saw in Section 4.3.3, colocation can be inferred by the cloud provider, with-

out tenant input and is useful in practice. Colocation reduces median VM allocation

latencies between 45–61% and generates up to 63% extra revenue.

Zhani et al. introduce VDC Planner for VDC scheduling [137]. Similar to Sec-

ondNet [59], VDC Planner models VDC scheduling as a graph embedding prob-

lem but mainly focuses on VDC VM migration for minimizing datacenter resource

defragmentation. VDC Planner associates a cost with migrating VMs to different

138

parts of the datacenter and maximizes the datacenter utilization by minimizing the

migration cost. The production workload traces from Azure cloud that we use in

this work do not have a VM migration construct nor is there a cost model for

migrating VMs [40]. In fact, the Resource Central [40] authors propose to use a

prediction-based VM allocation techniques to avoid “problematic live VM migra-

tion in practice ... and place VMs where they can stay”. Thus, we do not compare

our work to VDC Planner.

4.5 Conclusions
We reexamined VDC scheduling in practice. In particular, we addressed four prac-

tical concerns for the deployment of VDC schedulers in cloud datacenters. We ad-

dressed these practical concerns in five steps. First, we constructed realistic VDC

workloads using the Gridiron technique. Second, we proposed the revenue gain

metric for VDC scheduler evaluation. Third, we developed STARNET: NOVAFIL-

TER with end-to-end network bandwidth allocations. Fourth, we compared NET-

SOLVER with STARNET using realistic VDC workloads and the revenue metric.

Fifth, we enhanced STARNET with locality-awareness and retries to further im-

prove state-of-the-art algorithms’ performance.

The revenue gain metric not only captures a VDC scheduler’s ability to effi-

ciently allocate datacenter network bandwidth, but it also allows cloud operators to

directly measure the extra generated revenue when using a particular VDC sched-

uler. We also made a case for attributing a dollar value, $0.58 per 1 Gbps/hour,

for network bandwidth guarantees. We demonstrated that this price offers revenue

neutrality for cloud providers without changing cloud affordability for the tenants.

Our evaluations show that NETSOLVER has a prohibitively high VM allocation

latency on allocating a realistic VDC workload on the 4-pod Jupiter datacenter with

over 6,000 servers. NETSOLVER’s average vlink allocation latency is 41s, which is

three orders of magnitude higher than that of STARNET (32ms). Moreover, NET-

SOLVER’s average VM allocation time is ≈20mins when allocating a VDC with

10 VMs, and it is not able to allocate VDCs with more VMs because it runs out of

memory (50 GB) when given larger VDCs. These results show that NETSOLVER

does not scale to datacenters with thousands of servers, but can handle scheduling

139

VDCs in a smaller datacenters, such as the ones with ≈200 servers.

We demonstrated the importance of locality-awareness when scheduling VDCs.

Our locality-aware heuristic VDC scheduling algorithm, STARNETLA, reduces

the median VM allocation latencies between 45–61% and, as a result achieves un-

der 220ms median VM allocation latency. Moreover, STARNETLA generates up

to 63% revenue gain by being locality-aware.

We also showed that, unlike NETSOLVER, STARNETLA does not raise a

scheduler compatibility concern. We confirmed this by integrating STARNETLA

into OpenStack. Our OpenStack prototype demonstrated that end-to-end band-

width allocation can be integrated to OpenStack without significant changes. In

fact, Nova scheduler’s existing filtering-based architecture readily accommodates

STARNETLA as one of the scheduler filters. Moreover, our VM allocation latency

evaluations in OpenStack prototype demonstrate that the extra latency introduced

by end-to-end bandwidth allocation is insignificant (0.036%) when we take into

account latencies of other OpenStack modules. Thus, we conclude that OpenStack-

based cloud deployments, and perhaps cloud deployments with other cloud man-

agement frameworks, can readily support end-to-end bandwidth allocation.

In conclusion, our close examination improves our confidence in the practical-

ity of VDC scheduling. Our revenue gain analysis shows that cloud providers can

maintain revenue neutrality and cloud affordability by setting the right price for

the virtual network bandwidth guarantees. Our scheduler latency analysis shows

that it is possible to achieve practical VM allocation latencies when VMs request

end-to-end network bandwidth allocation. Our OpenStack prototype also shows

that the extra latency introduced by end-to-end bandwidth allocation is insignifi-

cant in practice. Therefore, this chapter brings us one step closer to offering virtual

network bandwidth guarantees as a new cloud service.

140

Chapter 5

Conclusions and Future Work

We have constructed efficient VDC schedulers that can achieve high datacenter uti-

lization while offering practical resource allocation latency. Specifically, we made

the following five contributions:

1. Workload: We propose a new technique, Gridiron, to generate a realistic

VDC workload to evaluate VDC schedulers. The Gridiron technique aug-

ments an existing production VM workload with network bandwidth re-

quirements to generate a VDC workload. Our VDC workload is the first

publicly available production-based cloud workload with inter-VM network

bandwidth requirements.

2. Metrics: We proposed the revenue gain metric for evaluating VDC sched-

ulers. We also demonstrated how charging for network bandwidth guaran-

tees can increase a cloud provider’s revenue by up to 63% without changing

cloud affordability for the tenants.

3. Algorithms: We developed several constraint-solver-based and heuristic-

based VDC scheduling algorithms. Specifically, we proposed a constraint-

solver-based VDC scheduling algorithm, NETSOLVER-ILP, that scales to

datacenters with over hundred of servers, and a heuristic-based algorithm,

STARNETLA, that scales well to datacenters with thousands of servers.

4. Optimality: We constructed a constraint-solver-based, offline VDC schedul-

141

ing algorithm, ORACLE, for minimizing VM allocation failures. We showed

that ORACLE can generate 50% higher revenue gain compared to STAR-

NETLA. This shows that STARNETLA works quite well, although there is

still room for improvement.

5. Prototype: We demonstrated the practicality of STARNETLA by integrating

it into OpenStack. We also showed that the additional latency introduced

by end-to-end network bandwidth allocation is insignificant in practice. The

additional per-VM latency of 2.37ms makes up only 0.036% of the total time

required to allocate a VM in our OpenStack deployment.

Future Work

There are three directions in which we could extend this work:

1. Workload: We studied the previous literature to identify classes of cloud

workloads that would benefit from network bandwidth guarantees. Directly

deploying a wide range of modern cloud workloads and quantifying their

performance improvements when the cloud offers network bandwidth guar-

antees remains important work to be done.

2. Prototype: We evaluated our OpenStack prototype on a single-node deploy-

ment where we simulated a datacenter with 192 servers. Moreover, we dis-

abled actual VM creation and did not enforce inter-VM network bandwidth

reservations. Deploying our prototype on a multi-node OpenStack cloud,

evaluating VM creation latencies by actually creating VMs, and enforcing

inter-VM network bandwidth across server NICs and datacenter switches

will bring our prototype closer to a minimum viable product.

3. Scheduler: We demonstrated that ORACLE outperforms STARNETLA by

exploiting clairvoyance: perfect knowledge of the future. The Resource Cen-

tral paper [40] and the followup paper [33] by the same group in the Azure

cloud demonstrate that an imperfect future knowledge is also useful for

the cloud scheduler. Specifically, these works demonstrate how predictions

about various VM characteristics, such as VM lifetimes and its peak deploy-

ment sizes (peak VDC size) can be used to reduce VM scheduling failures

142

by 2.5× (from 0.25% to 0.1%). Integrating similar prediction models into

STARNETLA will further increase its revenue.

Closing Thoughts

Network bandwidth guarantees will become increasingly important for the future

of the cloud. We foresee at least three other use cases for bandwidth guarantees:

1. Heterogeneity: Datacenter hardware is becoming increasingly heterogeneous

to support a wide range of tenant applications. For example, the global tech-

nology analysis firm Gartner forecasts that

Infrastructure as a Service will grow 24% year over year, which is

the highest growth rate across all market segments. This growth is

attributed to the demands of modern applications and workloads,

which require infrastructure that traditional data centers cannot

meet. [54]

One example of the new infrastructure for modern workloads is domain spe-

cific accelerators [11]. Using accelerators for large scale workloads requires

connecting them with sufficient network bandwidth. Tenants’ ability to re-

quest and reserve sufficient network bandwidth for their VMs and accelera-

tors allows them to efficiently use heterogeneous cloud resources.

2. Disaggregation: High performance networking is important for new data-

center architectures, such as Disaggregated Datacenters (DDC) [53]. DDCs

have a resource-centric architecture, instead of the server-centric architecture

in traditional datacenters. In DDCs, compute, memory, storage, accelerators,

and other resources are decoupled into separate blades where each blade

hosts one type of resource. These blades are interconnected via high perfor-

mance network fabric [71], because applications running on DDCs rely on

low latency and network bandwidth guarantees for their performance [53].

Tenants consume a slice of these resources to run their workload. The VDC

abstraction directly captures the resource slice tenants want to allocate in the

cloud, and cloud providers can directly apply our VDC schedulers to effi-

ciently share DDC resources.

143

3. Inter-Cloud: An emerging application that requires inter-cloud network band-

width guarantees is Software Defined Wide Area Network (SD-WAN) prod-

uct, such as VMWare SD-WAN [130]. Service providers use SD-WAN to

build a secure, reliable, and scalable WAN over the (public) cloud infras-

tructure. The SD-WAN can be used by many types of applications, such as

for setting up a remote office that requires connectivity between office staff,

which are potentially distributed across the globe. The SD-WAN product is

typically offered as a scalable alternative to existing, perhaps more expen-

sive, MPLS links offered by telecommunication providers [132].

Scheduling VDCs in a datacenter is analogous to scheduling SD-WANs over

clouds. Here, a VDC is akin to SD-WAN, for they both capture bandwidth re-

quirements between the nodes in the virtual network, and a datacenter is akin

to a cloud availability zone that offers network bandwidth for the SD-WAN.

Our VDC scheduling algorithms, particularly locality-awareness optimiza-

tion, are directly applicable to scheduling SD-WANs.

In summary, network bandwidth guarantees will become increasingly impor-

tant for the future of the cloud. It will be critical for supporting datacenter hetero-

geneity, new datacenter architectures, emerging inter-cloud services, and offering

new kinds of cloud services, such as the inter-VM network bandwidth guarantees

service that we focused on this dissertation. As one of the cloud infrastructure vet-

erans, Luiz Barroso at Google, put it “The data center is now the computer” [105].

The datacenter network is for a cloud what a system bus is for a computer. They

are both the (network) fabric of the computing infrastructure. Just as mainframes

and personal computers relied on the system bus bandwidth for connecting com-

pute, memory, storage, and other peripherals, and enabled a wide range of ap-

plications over the past 50+ years, future cloud applications will rely on the dat-

acenter network. This dissertation, a work on VDC scheduling, describes several

approaches for efficiently sharing datacenter network bandwidth between such net-

worked cloud applications.

144

Bibliography

[1] D. Abts and B. Felderman. A Guided Tour through Data-Center
Networking: A Good User Experience Depends on Predictable
Performance within the Data-Center Network. Queue, 10(5):10–23, 2012.
URL https://doi.org/10.1145/2208917.2208919. → page 87

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication, SIGCOMM ’08, page 63–74. ACM,
2008. URL https://doi.org/10.1145/1402958.1402967. → page 87

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese, et al. CONGA:
Distributed congestion-aware load balancing for datacenters. In ACM
SIGCOMM Computer Communication Review, volume 44, pages 503–514.
ACM, 2014. → page 11

[4] Amazon. AWS and Zoom Extend Strategic Relationship, 2020. URL
https://press.aboutamazon.com/news-releases/news-release-details/aws-
and-zoom-extend-strategic-relationship. → page 1

[5] Amazon. AWS: Case Studies, 2021. URL
https://aws.amazon.com/solutions/case-studies. → page 1

[6] Amazon. AWS: Retail Case Studies, 2021. URL
https://aws.amazon.com/retail/case-studies. → page 1

[7] G. M. Amdahl. Computer Architecture and Amdahl’s Law. Computer, 46
(12):38–46, 2013. URL https://doi.org/10.1109/MC.2013.418. → page 51

[8] A. Amokrane, M. F. Zhani, R. Langar, R. Boutaba, and G. Pujolle.
Greenhead: Virtual data center embedding across distributed
infrastructures. IEEE transactions on cloud computing, 1(1):36–49, 2013.
URL https://doi.org/10.1109/TCC.2013.5. → page 73

145

https://doi.org/10.1145/2208917.2208919
https://doi.org/10.1145/1402958.1402967
https://press.aboutamazon.com/news-releases/news-release-details/aws-and-zoom-extend-strategic-relationship
https://press.aboutamazon.com/news-releases/news-release-details/aws-and-zoom-extend-strategic-relationship
https://aws.amazon.com/solutions/case-studies
https://aws.amazon.com/retail/case-studies
https://doi.org/10.1109/MC.2013.418
https://doi.org/10.1109/TCC.2013.5

[9] A. Andreyev, X. Wang, and A. Eckert. Reinventing Facebook’s data center
network, 2019. URL https://engineering.fb.com/2019/03/14/data-center-
engineering/f16-minipack. → page 11

[10] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska.
End-to-end performance isolation through virtual datacenters. In
Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’14, page 233–248, USA, 2014. USENIX
Association. URL https://dl.acm.org/doi/abs/10.5555/2685048.2685067.
→ page 10

[11] AWS. Amazon EC2 F1 Instances, 2020. URL
https://aws.amazon.com/ec2/instance-types/f1. → pages 1, 143

[12] AWS. Amazon EC2 G3 Instances, 2020. URL
https://aws.amazon.com/ec2/instance-types/g3. → page 52

[13] AWS. AWS CloudFormation - Infrastructure as Code and AWS Resource
Provisioning, 2021. URL https://aws.amazon.com/cloudformation. →
page 4

[14] AWS. Amazon EC2 G3 Instances Price; March 3, 2021 snapshot, 2021.
URL https://web.archive.org/web/20210303021517/https:
//aws.amazon.com/ec2/instance-types/g3. → pages 103, 104

[15] AWS. Amazon Virtual Private Cloud Documentation, 2021. URL
https://docs.aws.amazon.com/vpc. → page 1

[16] AWS Solutions Builder Team. Real-Time Analytics with Spark Streaming,
2021. URL https://docs.aws.amazon.com/solutions/latest/real-time-
analytics-spark-streaming/welcome.html. → page 1

[17] Azure. AzurePublicDatasetV2, 2019. URL https://github.com/Azure/
AzurePublicDataset/blob/master/AzurePublicDatasetV2.md. → page 74

[18] Azure. Azure Kubernetes Service, 2021. URL
https://azure.microsoft.com/en-ca/services/kubernetes-service. → page
75

[19] Azure. Azure Functions documentation, 2021. URL
https://docs.microsoft.com/en-us/azure/azure-functions. → page 75

[20] M. Azure. Microsoft Azure VM Traces (AzurePublicDatasetV1), 2017.
URL https://github.com/Azure/AzurePublicDataset/blob/master/
AzurePublicDatasetV1.md. → pages 53, 54, 55, 73

146

https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack
https://dl.acm.org/doi/abs/10.5555/2685048.2685067
https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/ec2/instance-types/g3
https://aws.amazon.com/cloudformation
https://web.archive.org/web/20210303021517/https://aws.amazon.com/ec2/instance-types/g3
https://web.archive.org/web/20210303021517/https://aws.amazon.com/ec2/instance-types/g3
https://docs.aws.amazon.com/vpc
https://docs.aws.amazon.com/solutions/latest/real-time-analytics-spark-streaming/welcome.html
https://docs.aws.amazon.com/solutions/latest/real-time-analytics-spark-streaming/welcome.html
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV2.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV2.md
https://azure.microsoft.com/en-ca/services/kubernetes-service
https://docs.microsoft.com/en-us/azure/azure-functions
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md

[21] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable
datacenter networks. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, page 242–253, New York, NY, USA, 2011.
Association for Computing Machinery. URL
https://doi.org/10.1145/2018436.2018465. → pages 2, 9, 10, 12, 73, 103

[22] H. Ballani, D. Gunawardena, and T. Karagiannis. Network sharing in
multi-tenant datacenters. Technical Report MSR-TR-2012-39, February
2012. URL https://www.microsoft.com/en-
us/research/publication/network-sharing-in-multi-tenant-datacenters. →
page 10

[23] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and
G. O’Shea. Chatty tenants and the cloud network sharing problem. In
Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, NSDI ’13, page 171–184, USA, 2013.
USENIX Association. URL
https://dl.acm.org/doi/abs/10.5555/2482626.2482644. → pages 10, 12

[24] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
SOSP ’03, page 164–177. ACM, 2003. URL
https://doi.org/10.1145/945445.945462. → page 3

[25] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani. Data center network virtualization: A
survey. IEEE Communications Surveys & Tutorials, 15(2):909–928, 2013.
→ page 13

[26] J. Barr. Amazon EC2 Beta, 2006. URL
https://aws.amazon.com/blogs/aws/amazon ec2 beta. → pages
1, 49, 51, 106

[27] L. A. Barroso, U. Hölzle, and P. Ranganathan. The datacenter as a
computer: Designing warehouse-scale machines, third edition. Synthesis
Lectures on Computer Architecture, 13(3):i–189, 2018. URL
https://doi.org/10.2200/S00874ED3V01Y201809CAC046. → page 87

[28] S. Bayless. SAT Modulo Monotonic Theories. PhD thesis, University of
British Columbia, 2017. URL https://dx.doi.org/10.14288/1.0343418. →
page 21

147

https://doi.org/10.1145/2018436.2018465
https://www.microsoft.com/en-us/research/publication/network-sharing-in-multi-tenant-datacenters
https://www.microsoft.com/en-us/research/publication/network-sharing-in-multi-tenant-datacenters
https://dl.acm.org/doi/abs/10.5555/2482626.2482644
https://doi.org/10.1145/945445.945462
https://aws.amazon.com/blogs/aws/amazon_ec2_beta
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://dx.doi.org/10.14288/1.0343418

[29] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu. Sat modulo monotonic
theories. AAAI’15, page 3702–3709. AAAI Press, 2015. ISBN
0262511290. URL https://dl.acm.org/doi/10.5555/2888116.2888230. →
pages 8, 15, 19, 21

[30] S. Bayless, N. Kodirov, I. Beschastnikh, H. H. Hoos, and A. J. Hu. Scalable
constraint-based virtual data center allocation. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, pages 546–554, 2017. URL
https://doi.org/10.24963/ijcai.2017/77. → page vi

[31] S. Bayless, N. Kodirov, S. M. Iqbal, I. Beschastnikh, H. H. Hoos, and A. J.
Hu. Scalable constraint-based virtual data center allocation. Artificial
Intelligence, 278, 2020. URL https://doi.org/10.1016/j.artint.2019.103196.
→ pages vi, 12, 119

[32] A. Belbekkouche, M. M. Hasan, and A. Karmouch. Resource discovery
and allocation in network virtualization. IEEE Communications Surveys &
Tutorials, 14(4):1114–1128, 2012. → page 12

[33] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, A.-M.
Constantin, T. Moscibroda, G. Magalhaes, G. Bablani, and M. Russinovich.
Toward ML-Centric Cloud Platforms. Commun. ACM, 63(2):50–59, 2020.
URL https://doi.org/10.1145/3364684. → pages 88, 113, 135, 142

[34] A. Biere and D. Kröning. SAT-based model checking. In Handbook of
Model Checking, pages 277–303. Springer, 2018. → page 8

[35] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, pages 209–224. USENIX Association, 2008. URL
https://dl.acm.org/doi/10.5555/1855741.1855756. → page 8

[36] K. Chen and Q. Huo. Training Deep Bidirectional LSTM Acoustic Model
for LVCSR by a Context-Sensitive-Chunk BPTT Approach. 24(7):
1185–1193, 2016. ISSN 2329-9290. URL
https://dl.acm.org/doi/10.5555/2992803.2992806. → page 70

[37] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang. Virtual
network embedding through topology-aware node ranking. ACM
SIGCOMM Computer Communication Review, 41(2):38–47, 2011. →
pages 9, 11, 13, 42

148

https://dl.acm.org/doi/10.5555/2888116.2888230
https://doi.org/10.24963/ijcai.2017/77
https://doi.org/10.1016/j.artint.2019.103196
https://doi.org/10.1145/3364684
https://dl.acm.org/doi/10.5555/1855741.1855756
https://dl.acm.org/doi/10.5555/2992803.2992806

[38] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network
embedding with coordinated node and link mapping. In Proceedings of the
IEEE International Conference on Computer Communications
(INFOCOM), pages 783–791. IEEE, 2009. → pages 9, 11, 12, 13, 15, 42

[39] S. B. committee. Sort benchmark home page, 2021. URL
http://sortbenchmark.org. → page 36

[40] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini. Resource central: Understanding and predicting workloads
for improved resource management in large cloud platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 153–167. USENIX Association, 2017. URL
https://doi.org/10.1145/3132747.3132772. → pages
5, 49, 53, 54, 65, 71, 73, 74, 75, 94, 111, 135, 139, 142, 174

[41] Coursera. How Coursera Manages Large-Scale ETL using AWS Data
Pipeline and Dataduct, 2015. URL
https://aws.amazon.com/blogs/big-data/how-coursera-manages-large-
scale-etl-using-aws-data-pipeline-and-dataduct. → page 56

[42] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs,
D. Rubinstein, E. C. Zermeno, E. Rubow, J. A. Docauer, J. Alpert, J. Ai,
J. Olson, K. DeCabooter, M. De Kruijf, N. Hua, N. Lewis, N. Kasinadhuni,
R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter, U. Naik, and A. Vahdat.
Andromeda: Performance, isolation, and velocity at scale in cloud network
virtualization. In Proceedings of the 15th USENIX Conference on
Networked Systems Design and Implementation, NSDI’18, page 373–387.
USENIX Association, 2018. URL
https://www.usenix.org/conference/nsdi18/presentation/dalton. → pages
3, 11

[43] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340,
2008. → page 26

[44] Dell. PowerEdge R940 Rack Server, 2020. URL
https://www.dell.com/en-ca/work/shop/productdetailstxn/poweredge-r940.
→ page 93

[45] W. Deng, J. Pan, T. Zhou, D. Kong, A. Flores, and G. Lin. DeepLight:
Deep Lightweight Feature Interactions for Accelerating CTR Predictions in
Ad Serving, 2021. URL https://arxiv.org/abs/2002.06987. → page 70

149

http://sortbenchmark.org
https://doi.org/10.1145/3132747.3132772
https://aws.amazon.com/blogs/big-data/how-coursera-manages-large-scale-etl-using-aws-data-pipeline-and-dataduct
https://aws.amazon.com/blogs/big-data/how-coursera-manages-large-scale-etl-using-aws-data-pipeline-and-dataduct
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://www.dell.com/en-ca/work/shop/productdetailstxn/poweredge-r940
https://arxiv.org/abs/2002.06987

[46] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding, 2019. URL
https://arxiv.org/abs/1810.04805. → page 70

[47] N. Dogovic. Understanding and Interpreting CPU Steal Time on Virtual
Machines, 2020. URL
https://blog.leaseweb.com/2020/09/24/understanding-and-interpreting-
cpu-steal-time-on-virtual-machines. → page 174

[48] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive. A flexible model for resource management in
virtual private networks. In ACM SIGCOMM Computer Communication
Review, volume 29, pages 95–108. ACM, 1999. → page 12

[49] N. Eén and N. Sorensson. Translating pseudo-Boolean constraints into
SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2:
1–26, 2006. → page 23

[50] S. Even, A. Itai, and A. Shamir. On the complexity of time table and
multi-commodity flow problems. In Proceedings of the 16th Annual
Symposium on Foundations of Computer Science, pages 184–193. IEEE,
1975. → page 15

[51] A. Fischer, J. F. Botero Vega, M. Duelli, D. Schlosser, X. Hesselbach Serra,
and H. De Meer. Alevin - a framework to develop, compare, and analyze
virtual network embedding algorithms. In Electronic Communications of
the EASST, pages 1–12, 2011. → pages 13, 40

[52] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach.
Virtual network embedding: A survey. IEEE Communications Surveys &
Tutorials, 15(4):1888–1906, 2013. → page 12

[53] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker. Network requirements for resource
disaggregation. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 249–264. USENIX Association,
2016. URL https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gao. → page 143

[54] Gartner. Gartner forecasts worldwide public cloud revenue to grow 17% in
2020, 2019. URL https://www.gartner.com/en/newsroom/press-
releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-
to-grow-17-percent-in-2020. → page 143

150

https://arxiv.org/abs/1810.04805
https://blog.leaseweb.com/2020/09/24/understanding-and-interpreting-cpu-steal-time-on-virtual-machines
https://blog.leaseweb.com/2020/09/24/understanding-and-interpreting-cpu-steal-time-on-virtual-machines
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020

[55] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and S. Hand.
Firmament: Fast, centralized cluster scheduling at scale. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’ 16, page 99–115. USENIX Association, 2016. →
page 94

[56] Google Cloud Blog. How Schrödinger is advancing COVID-19 drug
discovery efforts with Google Cloud, 2021. URL
https://cloud.google.com/blog/topics/healthcare-life-sciences/how-
schrodinger-is-advancing-covid-19-drug-discovery-with-google-cloud. →
page 1

[57] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He. Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour, 2018. URL https://arxiv.org/abs/1706.02677. →
pages 58, 69, 70

[58] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible data center
network. In ACM SIGCOMM Computer Communication Review,
volume 39, pages 51–62. ACM, 2009. → pages 33, 59, 61

[59] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang. Secondnet: A data center network virtualization architecture
with bandwidth guarantees. In Proceedings of the 6th International
COnference on emerging Networking EXperiments and Technologies,
Co-NEXT ’10, New York, NY, USA, 2010. Association for Computing
Machinery. URL https://doi.org/10.1145/1921168.1921188. → pages
4, 9, 10, 11, 13, 26, 27, 28, 32, 34, 35, 36, 37, 42, 56, 59, 73, 77, 78, 138

[60] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a
virtual private network: a network design problem for multicommodity
flow. In Proceedings of the thirty-third annual ACM symposium on Theory
of computing, pages 389–398. ACM, 2001. → page 15

[61] Gurobi. Gurobi optimizer reference manual, 2021. URL
https://www.gurobi.com. → pages 8, 15

[62] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda.
Protean: VM Allocation Service at Scale. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 845–861.

151

https://cloud.google.com/blog/topics/healthcare-life-sciences/how-schrodinger-is-advancing-covid-19-drug-discovery-with-google-cloud
https://cloud.google.com/blog/topics/healthcare-life-sciences/how-schrodinger-is-advancing-covid-19-drug-discovery-with-google-cloud
https://arxiv.org/abs/1706.02677
https://doi.org/10.1145/1921168.1921188
https://www.gurobi.com

USENIX Association, 2020. URL
https://www.usenix.org/conference/osdi20/presentation/hadary. → pages
3, 74, 78, 88, 94, 113, 116, 117

[63] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell. Tictac: Accelerating
distributed deep learning with communication scheduling, 2018. URL
https://arxiv.org/abs/1803.03288. → pages 2, 50, 51, 107

[64] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition, 2015. URL https://arxiv.org/abs/1512.03385. → page 70

[65] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural
collaborative filtering, 2017. URL https://arxiv.org/abs/1708.05031. →
page 70

[66] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. → page 70

[67] T. Huang, C. Rong, Y. Tang, C. Hu, J. Li, and P. Zhang. Virtualrack:
Bandwidth-aware virtual network allocation for multi-tenant datacenters.
In 2014 IEEE International Conference on Communications (ICC), pages
3620–3625. IEEE, 2014. → pages 9, 12

[68] Huawei. Huawei Public Cloud, 2021. URL
https://www.huaweicloud.com/intl/en-us. → page 77

[69] Huawei. Huawei Cloud Worldwide Infrastructure, 2021. URL
https://www.huaweicloud.com/intl/en-us/global. → page 77

[70] IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual;
Chapter 16: Solving mixed integer programming problems (MIP);
Multi-commodity flow cuts, 2017. URL https://www.ibm.com/support/
knowledgecenter/SSSA5P 12.7.1/ilog.odms.studio.help/pdf/usrcplex.pdf.
→ page 15

[71] Intel. Intel, Facebook Collaborate on Future Data Center Rack
Technologies, 2013. URL https://newsroom.intel.com/news-releases/intel-
facebook-collaborate-on-future-data-center-rack-technologies. → page
143

[72] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko.
Priority-based Parameter Propagation for Distributed DNN Training, 2019.
URL https://arxiv.org/abs/1905.03960. → pages
2, 50, 51, 52, 70, 103, 107, 108

152

https://www.usenix.org/conference/osdi20/presentation/hadary
https://arxiv.org/abs/1803.03288
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1708.05031
https://www.huaweicloud.com/intl/en-us
https://www.huaweicloud.com/intl/en-us/global
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.studio.help/pdf/usrcplex.pdf
https://newsroom.intel.com/news-releases/intel-facebook-collaborate-on-future-data-center-rack-technologies
https://newsroom.intel.com/news-releases/intel-facebook-collaborate-on-future-data-center-rack-technologies
https://arxiv.org/abs/1905.03960

[73] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F. Yang.
Analysis of large-scale multi-tenant GPU clusters for DNN training
workloads. In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 947–960, Renton, WA, 2019. USENIX Association. ISBN
978-1-939133-03-8. URL
https://www.usenix.org/conference/atc19/presentation/jeon. → pages
50, 71

[74] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez,
R. A. Popa, I. Stoica, and D. A. Patterson. Cloud programming simplified:
A berkeley view on serverless computing. Technical Report
UCB/EECS-2019-3, EECS Department, University of California, Berkeley,
Feb 2019. URL
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html.
→ page 75

[75] D. Kakadia, N. Kopri, and V. Varma. Network-aware virtual machine
consolidation for large data centers. In Proceedings of the Third
International Workshop on Network-Aware Data Management, page 6.
ACM, 2013. → page 9

[76] D. E. Kaufman, J. Nonis, and R. L. Smith. A mixed integer linear
programming model for dynamic route guidance. Transportation Research
Part B: Methodological, 32(6):431–440, 1998. → page 15

[77] X. Ke, C. Guo, S. Ji, S. Bergsma, Z. Hu, and L. Guo. Fundy: A scalable
and extensible resource manager for cloud resources. In 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD), 2021. → page
78

[78] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang.
On large-batch training for deep learning: Generalization gap and sharp
minima, 2017. URL https://arxiv.org/abs/1609.04836. → page 70

[79] J. Kim, M. Kim, H. Kang, and K. Lee. U-gat-it: Unsupervised generative
attentional networks with adaptive layer-instance normalization for
image-to-image translation, 2020. URL https://arxiv.org/abs/1907.10830.
→ page 70

[80] N. Kodirov. VM creates with invalid timestamps, 2019. URL
https://github.com/Azure/AzurePublicDataset/issues/4. → page 53

153

https://www.usenix.org/conference/atc19/presentation/jeon
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1907.10830
https://github.com/Azure/AzurePublicDataset/issues/4

[81] N. Kodirov. PhD dissertation artifacts, 2021. URL
https://github.com/DCResourceManage/nodir-phd-dissertation. → pages
vi, 5, 58

[82] KVM. Kernel Virtual Machine, 2021. URL https://www.linux-kvm.org. →
page 3

[83] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner. Cicada:
Introducing predictive guarantees for cloud networks. volume 14, pages
14–19, 2014. → page 10

[84] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma.
Application-driven bandwidth guarantees in datacenters. In ACM
SIGCOMM Computer Communication Review, volume 44, pages 467–478.
ACM, 2014. → page 10

[85] L. Lee. How cloud software and service providers addressed an education
crisis to enable remote learning at scale, 2020. URL
https://www.cio.com/article/3571408. → page 1

[86] F. Liang, C. Feng, X. Lu, and Z. Xu. Performance Characterization of
Hadoop and Data MPI Based on Amdahl’s Second Law. In The 9th IEEE
International Conference on Networking, Architecture, and Storage, pages
207–215, 2014. URL https://doi.org/10.1109/NAS.2014.39. → pages
51, 52

[87] J. Lischka and H. Karl. A virtual network mapping algorithm based on
subgraph isomorphism detection. In Proceedings of the 1st ACM Workshop
on Virtualized Infrastructure Systems and Architectures, pages 81–88.
ACM, 2009. → pages 9, 13, 42

[88] Q. Liu and Z. Yu. The Elasticity and Plasticity in Semi-Containerized
Co-Locating Cloud Workload: A View from Alibaba Trace. In Proceedings
of the ACM Symposium on Cloud Computing, SoCC ’18, page 347–360.
ACM, 2018. ISBN 9781450360111. URL
https://doi.org/10.1145/3267809.3267830. → page 74

[89] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. SSD: Single Shot MultiBox Detector. Lecture Notes in Computer
Science, page 21–37, 2016. ISSN 1611-3349. URL
http://dx.doi.org/10.1007/978-3-319-46448-0 2. → page 70

154

https://github.com/DCResourceManage/nodir-phd-dissertation
https://www.linux-kvm.org
https://www.cio.com/article/3571408
https://doi.org/10.1109/NAS.2014.39
https://doi.org/10.1145/3267809.3267830
http://dx.doi.org/10.1007/978-3-319-46448-0_2

[90] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in
integer and mixed integer programming. Discrete Applied Mathematics,
123(1-3):397–446, 2002. → page 15

[91] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, D. Kang,
D. Kanter, N. Kumar, J. Liao, D. Narayanan, T. Oguntebi, G. Pekhimenko,
L. Pentecost, V. Janapa Reddi, T. Robie, T. St John, C.-J. Wu, L. Xu,
C. Young, and M. Zaharia. MLPerf Training Benchmark. In Proceedings
of Machine Learning and Systems, volume 2, pages 336–349, 2020. URL
https://proceedings.mlsys.org/paper/2020/file/
02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf. → page 70

[92] C. McAnlis. 5 steps to better GCP network performance, 2017. URL
https://cloud.google.com/blog/products/gcp/5-steps-to-better-gcp-
network-performance. → page 51

[93] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center
networks with traffic-aware virtual machine placement. In Proceedings of
the IEEE International Conference on Computer Communications
(INFOCOM), pages 1–9. IEEE, 2010. → page 9

[94] Microsoft Azure. Linux virtual machines pricing; december 24, 2016
snapshot, 2016. URL https://web.archive.org/web/20161224165940/https:
//azure.microsoft.com/en-us/pricing/details/virtual-machines/linux. → page
100

[95] MLCommons. MLCommons, 2021. URL https://mlcommons.org. → page
70

[96] NetworkX. Network Analysis in Python:
networkx.algorithms.shortest paths.weighted.dijkstra path, 2021. URL
https://networkx.org/documentation/stable/reference/algorithms/
generated/networkx.algorithms.shortest paths.weighted.dijkstra path.html.
→ page 86

[97] NIVIDIA-AI. BERT Meets GPUs, 2019. URL
https://medium.com/future-vision/bert-meets-gpus-403d3fbed848. →
page 70

[98] OpenStack. Quality of service (qos): Guaranteed minimum bandwidth,
2020. URL

155

https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://cloud.google.com/blog/products/gcp/5-steps-to-better-gcp-network-performance
https://cloud.google.com/blog/products/gcp/5-steps-to-better-gcp-network-performance
https://web.archive.org/web/20161224165940/https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux
https://web.archive.org/web/20161224165940/https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux
https://mlcommons.org
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html
https://medium.com/future-vision/bert-meets-gpus-403d3fbed848

https://docs.openstack.org/neutron/latest/admin/config-qos-min-bw.html.
→ page 83

[99] OpenStack. Open source cloud computing infrastructure, 2020. URL
https://www.openstack.org. → page 81

[100] OpenStack. Nova Filter Scheduler, 2020. URL
https://docs.openstack.org/nova/latest/user/filter-scheduler.html. → page
78

[101] OpenStack. OpenStack Docs: DevStack, 2021. URL
https://docs.openstack.org/devstack. → page 83

[102] OpenStack. OpenStack Cells, 2021. URL
https://docs.openstack.org/newton/config-reference/compute/cells.html.
→ page 122

[103] OpenStack. OpenStack Services, 2021. URL
https://www.openstack.org/software/project-navigator/openstack-
components#openstack-services. → page 137

[104] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun.
Making sense of performance in data analytics frameworks. In Proceedings
of the 12th USENIX Conference on Networked Systems Design and
Implementation, NSDI’15, page 293–307, USA, 2015. USENIX
Association. ISBN 9781931971218. URL
https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/ousterhout. → pages 106, 107

[105] D. A. Patterson. Technical perspective: The data center is the computer.
Commun. ACM, 51(1):105, 2008. ISSN 0001-0782. URL
https://doi.org/10.1145/1327452.1327491. → pages 1, 144

[106] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo. A
Generic Communication Scheduler for Distributed DNN Training
Acceleration. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 16–29. ACM, 2019. URL
https://doi.org/10.1145/3341301.3359642. → pages 2, 50, 51, 107

[107] D. Poccia. New for AWS CloudFormation – Quickly Retry Stack
Operations from the Point of Failure, 2021. URL
https://aws.amazon.com/blogs/aws/new-for-aws-cloudformation-quickly-
retry-stack-operations-from-the-point-of-failure. → page 119

156

https://docs.openstack.org/neutron/latest/admin/config-qos-min-bw.html
https://www.openstack.org
https://docs.openstack.org/nova/latest/user/filter-scheduler.html
https://docs.openstack.org/devstack
https://docs.openstack.org/newton/config-reference/compute/cells.html
https://www.openstack.org/software/project-navigator/openstack-components#openstack-services
https://www.openstack.org/software/project-navigator/openstack-components#openstack-services
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://doi.org/10.1145/1327452.1327491
https://doi.org/10.1145/3341301.3359642
https://aws.amazon.com/blogs/aws/new-for-aws-cloudformation-quickly-retry-stack-operations-from-the-point-of-failure
https://aws.amazon.com/blogs/aws/new-for-aws-cloudformation-quickly-retry-stack-operations-from-the-point-of-failure

[108] M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in
SAT-based formal verification. International Journal on Software Tools for
Technology Transfer, 7(2):156–173, 2005. ISSN 1433-2779. URL
https://doi.org/10.1007/s10009-004-0183-4. → page 8

[109] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving datacenter performance and robustness with
multipath TCP. In ACM SIGCOMM Computer Communication Review,
volume 41, pages 266–277. ACM, 2011. → page 11

[110] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In
Proceedings of the Third ACM Symposium on Cloud Computing, SoCC
’12. Association for Computing Machinery, 2012. ISBN 9781450317610.
URL https://doi.org/10.1145/2391229.2391236. → page 74

[111] J. Rintanen. Madagascar: Efficient planning with SAT. The 2011
International Planning Competition, page 61, 2011. → page 8

[112] M. Rost, C. Fuerst, and S. Schmid. Beyond the stars: Revisiting virtual
cluster embeddings. ACM SIGCOMM Computer Communication Review,
45(3):12–18, 2015. → pages 9, 10, 11, 12

[113] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. Ports, and P. Richtarik. Scaling
distributed machine learning with in-network aggregation. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21),
pages 785–808. USENIX Association, 2021. ISBN 978-1-939133-21-2.
URL https://www.usenix.org/conference/nsdi21/presentation/sapio. →
pages 70, 71

[114] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini. Serverless in
the wild: Characterizing and optimizing the serverless workload at a large
cloud provider. In 2020 USENIX Annual Technical Conference, pages
205–218. USENIX Association, 2020. ISBN 978-1-939133-14-4. URL
https://www.usenix.org/conference/atc20/presentation/shahrad. → pages
74, 75

[115] J. Sherry. Middleboxes as a Cloud Service. PhD thesis, EECS Department,
University of California, Berkeley, Nov 2016. URL http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-165.html. →
page xv

157

https://doi.org/10.1007/s10009-004-0183-4
https://doi.org/10.1145/2391229.2391236
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/atc20/presentation/shahrad
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-165.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-165.html

[116] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition, 2015. URL https://arxiv.org/abs/1409.1556.
→ page 70

[117] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control in
Google’s Datacenter Network. SIGCOMM ’15, page 183–197. ACM,
2015. URL https://doi.org/10.1145/2785956.2787508. → pages
11, 93, 94, 169

[118] M. Y. Sir, I. F. Senturk, E. Sisikoglu, and K. Akkaya. An
optimization-based approach for connecting partitioned mobile
sensor/actuator networks. In Computer Communications Workshops
(INFOCOM WKSHPS), 2011 IEEE Conference on, pages 525–530. IEEE,
2011. → page 15

[119] N. Sorensson and N. Een. Minisat - a SAT solver with conflict-clause
minimization. SAT, 2005(53):1–2, 2005. → page 25

[120] G. Sun, D. Liao, S. Bu, H. Yu, Z. Sun, and V. Chang. The efficient
framework and algorithm for provisioning evolving VDC in federated data
centers. Future Generation Computer Systems, 73:79–89, 2017. URL
https://doi.org/10.1016/j.future.2016.12.019. → page 73

[121] W. Szeto, Y. Iraqi, and R. Boutaba. A multi-commodity flow based
approach to virtual network resource allocation. In Global
Telecommunications Conference (GLOBECOM), volume 6, pages
3004–3008. IEEE, 2003. → page 15

[122] A. N. Tantawi. A scalable algorithm for placement of virtual clusters in
large data centers. In Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2012 IEEE 20th International
Symposium on, pages 3–10. IEEE, 2012. → page 9

[123] R. team. Runlim: Linux program to control benchmarks, 2021. URL
http://fmv.jku.at/runlim. → page 95

[124] Tensorflow. Distributed training with TensorFlow, 2020. URL
https://www.tensorflow.org/guide/distributed training#mirroredstrategy. →
page 56

158

https://arxiv.org/abs/1409.1556
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1016/j.future.2016.12.019
http://fmv.jku.at/runlim
https://www.tensorflow.org/guide/distributed_training#mirroredstrategy

[125] Tensorflow. Parameter server training, 2020. URL
https://www.tensorflow.org/tutorials/distribute/parameter server training.
→ pages 4, 55

[126] H. Tian, Y. Zheng, and W. Wang. Characterizing and Synthesizing Task
Dependencies of Data-Parallel Jobs in Alibaba Cloud. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’19, page 139–151.
ACM, 2019. ISBN 9781450369732. URL
https://doi.org/10.1145/3357223.3362710. → pages 74, 75

[127] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes. Borg: the Next Generation. In
Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys’20). ACM, 2020. ISBN 9781450368827. URL
https://doi.org/10.1145/3342195.3387517. → page 74

[128] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. Rellermeyer, C. Maltzahn,
R. Ricci, and A. Iosup. Is big data performance reproducible in modern
cloud networks? In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 513–527. USENIX
Association, 2020. URL
https://www.usenix.org/conference/nsdi20/presentation/uta. → pages
2, 50, 104, 107

[129] A. Vadhat. SIGCOMM 2020 Keynote: Coming of Age in the Fifth Epoch
of Distributed Computing, 2020. URL https://youtu.be/27zuReojDVw. →
page 52

[130] VMWare. VMWare SD-WAN (Software-Defined Wide Area Network) and
SASE (Secure Access Service Edge), 2021. URL
https://sase.vmware.com. → page 144

[131] Wikipedia. Parallel computing, 2020. URL
https://en.wikipedia.org/wiki/Parallel computing. → page 51

[132] Wikipedia. SD-WAN, 2021. URL https://en.wikipedia.org/wiki/SD-WAN.
→ page 144

[133] Y. Yang, X. Chang, J. Liu, and L. Li. Towards robust green virtual cloud
data center provisioning. IEEE Transactions on Cloud Computing, 5(2):
168–181, 2015. URL https://doi.org/10.1016/j.future.2016.12.019. → page
73

159

https://www.tensorflow.org/tutorials/distribute/parameter_server_training
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3342195.3387517
https://www.usenix.org/conference/nsdi20/presentation/uta
https://youtu.be/27zuReojDVw
https://sase.vmware.com
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/SD-WAN
https://doi.org/10.1016/j.future.2016.12.019

[134] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network
embedding: substrate support for path splitting and migration. ACM
SIGCOMM Computer Communication Review, 38(2):17–29, 2008. →
pages 9, 11, 13, 15, 40

[135] Y. Yuan, A. Wang, R. Alur, and B. T. Loo. On the feasibility of automation
for bandwidth allocation problems in data centers. In Formal Methods in
Computer-Aided Design, 2013, FMCAD’ 13, pages 42–45, 2013. URL
https://doi.org/10.1109/FMCAD.2013.6679389. → pages
9, 11, 12, 25, 26, 27, 28, 29, 30, 32, 33, 37, 47, 56, 73, 77, 78

[136] ZeroStack. Zerostack private cloud, 2016. URL http://zerostack.com. →
page 36

[137] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba. VDC Planner:
Dynamic migration-aware Virtual Data Center embedding for clouds. In
2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), pages 18–25, 2013. URL
https://ieeexplore.ieee.org/document/6572965. → pages 9, 10, 138

160

https://doi.org/10.1109/FMCAD.2013.6679389
http://zerostack.com
https://ieeexplore.ieee.org/document/6572965

Appendix A

Datacenters in a Private Cloud

We show topologies of four commercial datacenters used in Section 2.4.4. Servers

have 16 cores and 32 GB RAM. Link bandwidths are in Gbps. Datacenters are

sorted in an ascending order by the number of servers in them.

161

Legend: ToR=Top-of-Rack, SSW=Spine Switch,
GSW=Gateway Switch

SSW0

…
x14

SSW1
2x40

ToR0

server0

server19
2x10

…

ToR1

server20

server39
2x10

…

ToR13

server260

server279
2x10

…

2x40

4x40

GSW
6x40

Figure A.1: US-West2 Datacenter Topology with 280 Servers.

Legend: ToR=Top-of-Rack, C=Cluster, SSW=Spine Switch, GSW=Gateway Switch

C0SSW0

…
x6

C0SSW1
2x40

C0ToR0

server0

server15
2x10

…

C0ToR1

server16

server31
2x10

…
C0ToR5

server80

server95
2x10

…

2x40

4x40

C
lu

st
er

0

C3SSW0

…
x20

C3SSW1
2x40

C1ToR0

server288

server303
2x10

…

C1ToR1

server304

server319
2x10

…

C1ToR5

server368

server383

2x10

…

2x40

4x40

C
lu

st
er

3
GSW

6x40

…
x4

Figure A.2: US-Mid1 Datacenter Topology with 384 Servers.

Legend: ToR=Top-of-Rack, SSW=Spine Switch,
GSW=Gateway Switch

SSW0

…
x40

SSW1
2x40

ToR0

server0

server19
2x10

…

ToR1

server20

server39
2x10

…

ToR39

server780

server799
2x10

…

2x40

4x40

GSW
6x40

Figure A.3: US-Mid2 Datacenter Topology with 800 Servers.

162

Legend: ToR=Top-of-Rack, C=Cluster, SSW=Spine Switch, GSW=Gateway Switch

C0SSW0

…
x40

C0SSW1
2x40

C0ToR0

server0

server19
2x10

…

C0ToR1

server20

server39
2x10

…
C0ToR39

server780

server799
2x10

…

2x40

4x40

C
lu

st
er

0

C1SSW0

…
x20

C1SSW1
2x40

C1ToR0

serv800

server819
2x10

…

C1ToR1

serv820

server839
2x10

…

C1ToR19

serv1180

server1199

2x10

…

2x40

4x40

C
lu

st
er

1
GSW

6x40

Figure A.4: US-West1 Datacenter Topology with 1200 Servers.

163

Appendix B

VDC Workload Generation
Pseudocode

We show the pseudocode for generating VDC workload, which we call

workload.json from Azure traces, which we call azure.csv. The

azure.csv is the preprocessed CSV file where we already removed instant-

VMs, VMs with create tick equal to delete tick, and already fixed the

VM create/delete timestamps by rounding their values to the nearest valid tick

(see Section 3.1).

All deployments in azure.csv will be present in the generated

workload.json. If deployment’s peak deploy size in azure.csv ex-

ceeds the max vdc size threshold, the overflow VMs will be assigned to child

VDC(s). A deployment VM is called an overflow VM if it arrives after the deploy-

ment size (peak deploy size) reaches the max vdc size. Child VDCs get

UUIDs based on this formula:

child uuid = concat(parent uuid,concat str,child index)

We use concat str = , with two underscores, because deployment UUIDs

in azure.csv do not contain this string. Using a unique string allows us to man-

ually inspect the relationship between parent and child VDCs for debugging pur-

poses. The child VDC UUID generation pseudocode is shown in

get child vdc uuid() function.

Deployments in azure.csv have 1-to-N relationship with VDCs, i.e., a de-

164

Algorithm 4 : VDC workload generation
max vdc size = 30 . cap threshold
bpc = 1 . bandwidth per core=1 Mbps
concat str = ‘ ’
vdc child index = . {parent vdc uuid: 3, ...}
nticks = get number of ticks(csv) . this is 8640 in azure.csv

procedure main()
1: ticked workload = get ticked workload(csv)
2: batched workload = batch tick vdcs(ticked workload)
3: vm peers, vm2vdc = chop vdcs(batched workload)
4: vdc workload = add network(batched workload, vm peers, vm2vdc)
5: output to json file(vdc workload)

end procedure
procedure get ticked workload(csv)

6: workload = {}
7: foreach tick in nticks:
8: workload[tick] = deque() . deque is the double ended queue
9: foreach line in csv

10: vm uuid, vdc uuid = get vm uuid(line), get vdc uuid(line)
11: cores, ram = get vm cores(line), get vm ram(line)
12: create tick = get vm create time(line)
13: delete tick = get vm delete time(line)

. add create event to the workload
14: workload[create tick].append([‘create’, vm uuid, vdc uuid, cores, ram])

. add delete event to the workload
15: workload[delete tick].appendleft([‘delete’, vm uuid, vdc uuid])
16: return workload
end procedure

ployment can produce more than one VDC. The child index variable captures

the current number of VDC children and is used to derive the child VDC UUID. For

example, a deployment with deploy uuid=abc and peak deploy size=61

in azure.csv will produce three VDCs, one parent and two child VDCs, with

the following VDC UUIDs and sizes, respectively:

vdc uuid : peak vdc size 7→ {abc : 30,abc 0 : 30,abc 1 : 1}

165

procedure batch tick vdcs(workload)
. batching ensures that all VMs in a VDC within the same tick appear
. in consecutive order as batched together, i.e., there is no VM of another
. VDC between the VMs that are being batched.
. Batching does not apply to VM delete events.

1: batched workload = {}
2: foreach tick in workload
3: batched workload[tick] = []
4: foreach tick, events in workload.items()
5: vdcs = {}
6: foreach event in events
7: if event.type == ‘delete’
8: batched workload[tick].append(event)
9: continue

. this is a create event, we just process it without appending to

. the batched workload, yet
10: if event.vdc uuid in vdcs
11: vdcs[event.vdc uuid].append(event)
12: else vdcs[event.vdc uuid] = [event]

. append VDCs one-by-one to get the VDC VMs batched
13: foreach vdc uuid, events in vdcs.items()
14: foreach event in events
15: batched workload[tick].append(event)
16: return batched workload
end procedure

166

procedure chop vdcs(workload)
. Cap each VDC size to honour max vdc size

1: vdc uuid map = {} . eg, {vdc uuid parent: vdc uuid current, ...}
2: vdc alive vms = {} . eg, {vdc uuid: [vm uuid1, vm uuid2, ...], ...}
3: vm2vdc = {} . eg, {vm uuid: vdc uuid, ...}
4: vm peers = {} . eg, {vm uuid: [peer vm uuid1, ...], ...}
5: foreach tick, events in workload.items()
6: foreach event in events . 1st pass to build the VM-to-VDC membership
7: if event.type == ‘delete’

. we must have already seen a create pair for this event
8: vdc uuid current = vm2vdc[event.vm uuid]
9: assert(vdc uuid current in vdc alive vms)

10: vdc alive vms[vdc uuid current].remove(event.vm uuid)
11: continue

. this is a create event: decide which VDC this VM gets assigned to
12: if event.vdc uuid not in vdc uuid map

. this is the first ever VM of this parent VDC
13: vdc uuid map[event.vdc uuid] = event.vdc uuid
14: vm2vdc[event.vm uuid] = event.vdc uuid
15: vdc alive vms[event.vdc uuid] = [event.vm uuid]
16: continue
17: vdc uuid current = vdc uuid map[event.vdc uuid]

. check peak vdc size and decide on child VDCs
if len(vdc alive vms[vdc uuid current]) < max vdc size

18: vdc alive vms[vdc uuid current].append(event.vm uuid)
19: vm2vdc[event.vm uuid] = vdc uuid current
20: else . create a child VDC
21: child vdc uuid = get child vdc uuid(event.vdc uuid)
22: vdc alive vms[child vdc uuid] = [event.vm uuid]
23: vdc uuid map[event.vdc uuid] = child vdc uuid
24: vm2vdc[event.vm uuid] = child vdc uuid
25: foreach event in events . 2nd pass to build VM-to-peers dictionary
26: if event.type == ‘delete’: continue

. This is a create event: add all alive VDC VM as peers. Important note:

. vdc alive vms operates on vdc uuid current, not on event.vdc uuid.
27: all peers = vdc alive vms[vm2vdc[event.vm uuid]]
28: vm peers[event.vm uuid] = all peers - event.vm uuid
29: return (vm2vdc, vm peers)
end procedure

167

procedure get child vdc uuid(parent uuid)
1: if parent uuid in vdc child index
2: vdc child index[parent uuid] += 1
3: else vdc child index[parent uuid] = 0
4: return concat(parent uuid, concat str, vdc child index[parent uuid])

end procedure
procedure add network(workload, vm2vdc, vm peers)

. the ‘workload’ in the parameter already has CPU/RAM fields;

. we add ‘net conn in mbps’ field to the ‘create’ events
5: foreach tick, events in workload.items()
6: foreach event in events
7: if event.type == delete: continue
8: conn = {}
9: for peer in vm peers

10: conn[peer] = bpc * min(event.cores, peer.cores)
11: workload[‘net conn in mbps’] = conn
12: return workload
end procedure

168

Appendix C

Datacenters with Jupiter
Topology

We first describe our reconstruction of the full Jupiter topology based on the de-

scription in the Jupiter paper [117], followed by our methodology to derive a subset

4-pod topology from the full topology.

C.1 Full Jupiter Topology
Figure C.1 shows the full Jupiter topology with a sample pod. A single pod has 32

racks, each with 48 servers, for a total 1536 servers. Each server has 1x40 Gbps

uplink to a top-of-rack (ToR) switch made of a Centauri chassis. A Centauri chassis

hosts four chips, each with 16x40G (we shorten “Gbps” to “G” for brevity) band-

width that can offer 16x40G or 64x10G, since each port can operate either in 1x40G

or in 4x10G mode. A chip’s bandwidth is split into a 3:1 downlink:uplink oversub-

scription ratio (also called south:north), i.e., 48x10G to the rack servers and the

remaining 16x10=8x2x10G to the Middle Blocks (MB). Thus, four chips in a ToR

offer 4x48x10=48x40G downlink and 4x16x10=16x40G uplink. The 16x40G up-

link chip capacity is consumed by 8 MBs, 2x10G uplinks to each MB. Figure C.1

shows an aggregate ToR-to-MB capacity, which is 4x2x10G for four chips in a

ToR. The 48x40G downlink capacity is consumed by 48 servers, 1x40G downlink

to each server. Thus, full Jupiter topology has 3:1 downlink:uplink oversubscrip-

169

Legend: ToR=Top-of-Rack, MB=Middle Block, SB=Spine Block, AB=Aggregation Block

…x256

…
x64

SB0 SB1 SB63… SB64 SB65 SB127… SB128 SB129 SB191… SB192 SB193 SB255…

…
x32C

en
ta

ur
i

ToR0

server0

server47
40

…

ToR1

serv48

server95
40

…

ToR31

s1488

s1535
40

…

4x2x10
AB0

MB0 MB1 MB4 MB7…x8

Po
d0

MB2 MB3

…
x32C

en
ta

ur
i

ToR0

s96768

s96815
40

…

ToR1

s96816

s96863
40

…
ToR31

s98256

s98303
40

…

4x2x10
AB63

MB0 MB1 MB4 MB7…x8

Po
d6

3

MB2 MB3

40

Figure C.1: Full Jupiter Datacenter Topology.

Table C.1: Node Connectivity in Full Jupiter Datacenter Topology. We show
wiring between Aggregation Blocks (AB) and Spine Blocks (SB).

AB0MB0 - SB0 AB0MB2 - SB128 ... AB1MB0 - SB0 ...
AB0MB0 - SB1 AB0MB2 - SB191 AB1MB7 - SB255 ...
...
AB0MB0 - SB63 AB0MB3 - SB192 ... AB2MB0 - SB0 ...

AB0MB3 - SB255 AB2MB7 - SB255 ...
AB0MB1 - SB64 ... AB0MB4 - SB0
AB0MB1 - SB127 ... AB63MB0 - SB0 ...

AB0MB7 - SB255 AB63MB7 - SB255

tion ratio in the ToR layer.

An Aggregation Block (AB) has 8 MBs, each with 8 chips, for a total of 64

chips. Figure C.1 shows AB in the blue dashed box. We refer to AB as a pod for

readability, i.e., all servers under an AB belong to a single pod. Each MB chip

offers 32x10G downlinks that is an aggregate 8x32x10=256x10G for 8 chips in the

MB. An MB chip accepts one 2x10G connection from each of 32 ToRs for a total

of 32x2x10=64x10G downlink bandwidth. That is 8x64x10=256x10G downlink

for 8 chips in the MB. There is no oversubscription in the MB layer. Thus, with 8

MBs in an AB, the aggregate AB uplink bandwidth is 8x256x10G.

There are 256 Spine Blocks (SB) to support 64 ABs. An SB has 16 chips

that provide an aggregate 16x8x40G downlink capacity. There is only one dual-

redundant 40G connection from an AB to SB. This means that each AB connects

to two SBs, 1x40G each. For example, only MB0 and MB4 (in an AB) connect to

170

Legend: ToR=Top-of-Rack, MB=Middle Block, SB=Spine Block, AB=Aggregation Block

…x16

…
x4

SB0 SB1 SB15

…
x32C

en
ta

ur
i

ToR0

server0

server47
40

…

ToR1

serv48

server95
40

…

ToR31

s1488

s1535
40

…

4x2x10
AB0

MB0 MB1 MB7…x8

Po
d0

4x40

…
x32C

en
ta

ur
i

ToR0

s4608

s4655
40

…

ToR1

s4656

s4703
40

…
ToR31

s6096

s6143
40

…

4x2x10
AB3

MB0 MB1 MB7…x8

Po
d3

Figure C.2: Four-pod Jupiter Datacenter Topology.

SB0. Table C.1 demonstrates AB-to-SB connectivity, which can be captured with

this formula (note: (y mod 4) expression provides the dual redundancy):

• AB(x)MB(y) connects to SB(64*(y mod 4)+i) where 0≤ x, i < 64 and

0≤ y < 8; “i” is the MB-to-SB repeat index.

The wiring layout in Table C.1 satisfies the MB uplink and SB downlink radix.

Recall that each MB chip has 8 uplinks that are 40G each (8x40G). This gives

8x8x40G uplinks for 8 chips in an MB. As the table and formula show, the repeat

index “i” ranges from 0 to 63 for each MB, giving 64 uplinks per MB. For example,

AB0MB0 has uplinks to SB0-to-SB63. Each SB chip also has 8 downlinks that are

40G each (8x40G). This gives 16x8x40=128x40G downlinks for 16 chips in an

SB. As the table and formula show, an SB connects to every 4th MB of an AB,

which is called “striping in a superblock” size of 4 MBs. With two superblocks (8

MBs) in each AB and 64 ABs in the Jupiter cluster, an SB has 2x64x40=128x40G

downlinks. For example, SB0 has downlinks to (AB0MB0, AB0MB4, AB1MB0,

AB1MB4, ..., AB63MB0, AB63MB4).

C.2 Four-pod Jupiter Topology
The 4-pod Jupiter datacenter has 16 times fewer pods compared to the full Jupiter

datacenter. Thus, we keep the first 4 pods and omit the remaining 60 pods. How-

ever, omitting 60 pods leaves many Spine Block (SB) ports idle, i.e., the SB port

171

Table C.2: Node Connectivity in Four-pod Jupiter Datacenter Topology. We
show wiring between Aggregation Blocks (AB) and Spine Blocks (SB).

AB0MB0 - SB0 AB1MB0 - SB0 ... AB2MB0 - SB0 ... AB3MB0 - SB0 ...
AB0MB0 - SB15 AB1MB0 - SB15 ... AB2MB0 - SB15 ... AB3MB0 - SB15 ...
AB0MB1 - SB0
AB0MB1 - SB15 AB1MB7 - SB0 ... AB2MB7 - SB0 ... AB3MB7 - SB0 ...
... AB1MB7 - SB15 AB2MB7 - SB15 AB3MB7 - SB15
AB0MB7 - SB0 ...
AB0MB7 - SB15

radix would differ between 4-pod and 64-pod datacenters. We avoid this by divid-

ing the number of SBs by 16 times such that no SB port is left idle in the 4-pod

datacenter. Table C.2 shows AB-to-SB connectivity where each connection’s band-

width has changed from 1x40G in the full topology to 4x40G in the 4-pod data-

center. This happens because each MB in an AB in the 4-pod datacenter connects

to 16 SBs, instead of 64 SBs in the full topology. The 4x40G connection can be

achieved by using 4 ports in MBs and SBs. We represent it with a single link with

4x40G bandwidth.

Figure C.2 shows the 4-pod Jupiter topology. Note that the pod-internal con-

nectivity is identical between the 4-pod and the full topology. The only difference

between 4-pod and full topology is MB-to-SB connectivity, which is caused by

reducing the number of SBs as mentioned earlier. Thus, the wiring layout in the 4-

pod topology has all-to-all connectivity between every MB and every SB, as shown

in Table C.2. We can capture this layout with the following formula:

• AB(x)MB(y) connects to SB(i) where 0≤ x < 4, 0≤ y < 8, and

0≤ i < 16; “i” is the MB-to-SB repeat index.

The wiring layout in Table C.2 also satisfies MB uplink and SB downlink

port radixes. Each MB chip has 8 uplinks that are 40G each (8x40G). This gives

8x8x40=64x40G uplinks for 8 chips in an MB. As the Table C.2 and the above

formula show, the repeat index “i” ranges from 0 to 16 for each MB, giving

16x4x40=64x40G uplinks per MB. For example, AB0MB0 has 4x40G uplinks to

SB0-to-SB15. Each SB chip also has 8 downlinks that are 40G each (8x40G). This

gives 16x8x40=128x40G downlinks for 16 chips in an SB. Again, as Table C.2

172

and formula show, an SB connects to every MB with 4x40G links. With 4 ABs,

8 MBs per AB, an SB has 4x8x4x40=128x40G downlinks. For example, SB0 has

downlinks to (AB0MB0, AB0MB1, AB0MB2, ..., AB0MB7, ..., AB4MB7).

173

Appendix D

VM Allocation Failures in
Practice

The revenue gain metric fundamentally depends on VMs not getting allocated, or

rejected, due to insufficient datacenter network bandwidth. One might ask a legit-

imate question: Do VM rejections happen in practice? Note that this is a general

question about all VM resources, not limited to network bandwidth guarantees. We

answer this question in the context of the most basic VM resource: compute. We

survey the prior work to answer the following question: Do cloud providers reject

a VM when a datacenter has insufficient compute capacity to host the VM? The

Resource Central paper [40], gives a negative answer. Although the Resource Cen-

tral authors do not directly state that VMs get allocated without sufficient compute

capacity available in the datacenter, they do state that server utilization can exceed

100% and this is considered a “VM scheduling failure” for the VM(s) hosted in

that server [40].

The VM scheduling failures, per the Resource Central paper [40], happen when

a VM gets successfully allocated but it operates, perhaps intermittently, with lower

compute capacity than what is “promised” in its flavor. For example, a VM gets

allocated with 12 cores but might operate with 11 cores for the duration when the

host server’s utilization is above 100%. We call this duration the under-capacity

operation time.1 The Azure cloud operators use the fact that tenant VMs do not use

1Tenants can read a VM’s “steal time” CPU counter to check if it is operating under-capacity [47].

174

all of the compute resources they request. The operators monitor the VMs’ CPU

utilization levels at runtime and adjust the server CPU oversubscription levels to

minimize the amount of time that VMs execute with CPU resources below their

requested level. In other words, the VM scheduler objective in the Resource Central

paper is to minimize the number of VM scheduling failures.

This dissertation is about scheduling datacenter network bandwidth for VDCs.

Given that our VDC workloads lack information about VDC VMs’ runtime band-

width utilization levels, i.e., the VDC workload contains only the requested band-

width, the VDC scheduler’s objective is to minimize the number of failed VMs

solely based on the request. The revenue gain metric directly captures the value

of failed VMs by omitting their revenue. Similar to how Resource Central moni-

tors VM CPU consumption at runtime, one can monitor VM network bandwidth

consumption at runtime and apply the oversubscription concept to datacenter net-

working. It will then be possible to develop a VDC scheduler whose objective is to

minimize the bandwidth under-capacity at runtime. We leave this for future work.

175

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Introduction
	2 Constraint-solver-based VDC Scheduling
	2.1 Related Work
	2.2 The Multi-path VDC Allocation Problem
	2.3 NetSolver
	2.3.1 Encoding Multi-path VDC Allocation in ILP
	2.3.2 Encoding Multi-path VDC Allocation in SMT

	2.4 Evaluation
	2.4.1 Methodology
	2.4.2 Comparison on Datacenters with Tree Topologies
	2.4.3 Comparison on FatTree and BCube Datacenters
	2.4.4 Comparison on Commercial Datacenters
	2.4.5 Comparison to Virtual Network Embedding Approaches
	2.4.6 Allocation Robustness

	2.5 Conclusions

	3 VDC Workload
	3.1 The Base Workload
	3.2 From VMs to VDCs: Gridiron Technique
	3.2.1 VDC Topologies
	3.2.2 Peak VDC Sizes
	3.2.3 Parameterizing VDC Workload's Network Load
	3.2.4 Network-bound VM Allocation Failures
	3.2.5 Avoiding Network-bound VM Allocation Failures

	3.3 Case Study: Applying Gridiron Technique to ML Training
	3.4 Related Work
	3.5 Conclusions

	4 VDC Scheduling in Practice
	4.1 Algorithms
	4.1.1 NovaFilter and NovaSim
	4.1.2 StarNet
	4.1.3 NetSolver
	4.1.4 StarNetLA
	4.1.5 Hybrid Algorithms

	4.2 Evaluation Methodology Overview
	4.2.1 Datacenter Topologies
	4.2.2 VDC Scheduler Simulator: VDCSim
	4.2.3 Revenue Gain Metric
	4.2.4 VM Pricing
	4.2.5 Virtual Network Bandwidth Guarantee Pricing
	4.2.6 VDC Workloads for Scheduler Evaluation

	4.3 Evaluation Results
	4.3.1 StarNet
	4.3.2 NetSolver
	4.3.3 StarNetLA
	4.3.4 Hybrid Algorithms
	4.3.5 StarNetLA Optimality Approximation
	4.3.6 OpenStack Prototype

	4.4 Related Work
	4.5 Conclusions

	5 Conclusions and Future Work
	Bibliography
	A Datacenters in a Private Cloud
	B VDC Workload Generation Pseudocode
	C Datacenters with Jupiter Topology
	C.1 Full Jupiter Topology
	C.2 Four-pod Jupiter Topology

	D VM Allocation Failures in Practice

