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Abstract

We present PANORAMIA, a privacy leakage measurement framework for machine

learning models that relies on membership inference attacks using generated data as

non-members. By relying on generated non-member data, PANORAMIA eliminates

the common dependency of privacy measurement tools on in-distribution non-

member data. As a result, PANORAMIA does not modify the model, training data,

or training process, and only requires access to a subset of the training data. We

evaluate PANORAMIA on ML models for image and tabular data classification,

as well as on large-scale language models. The theory we develop in this paper

provides a meaningful step towards addressing privacy measurements in this setting

and provides a more rigorous approach to privacy benchmarks for such models.

We demonstrate that PANORAMIA’s privacy measurements can also be empirically

valuable, for instance for providing improved measurements with more data.
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Lay Summary

Machine learning (ML) models power many tasks in modern society but raise

concerns about privacy and security, especially when trained on sensitive data like

personal, medical, or financial information. This creates risks of data breaches

and misuse. Privacy auditing helps assess whether a model reveals private details

from its training data, but existing methods often require retraining the model or

accessing the full original dataset. PANORAMIA is a framework that addresses these

limitations by generating synthetic data resembling the real training data. This

artificial data allows privacy leakage measurements without needing non-member

real data. PANORAMIA can accurately measure privacy risks in various ML models

and datasets, offering valuable insights for improving privacy protection.
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Chapter 1

Introduction

Training Machine Learning (ML) models with Differential Privacy (DP) [9], such as

with DP-SGD [1], upper-bounds the worst-case privacy loss incurred by the training

data. In contrast, privacy auditing aims to empirically lower-bound the privacy

loss of a target ML model or algorithm. In practice, privacy audits usually rely on

the link between DP and the performance of membership inference attacks (MIA)

[8, 14, 31]. At a high level, DP implies an upper-bound on the performance of

MIAs, thus creating a high-performance MIA implies a lower-bound on the privacy

loss. Auditing schemes have proven valuable in many settings, such as to audit

DP implementations [26], or to study the tightness of DP algorithms [21, 25, 30].

Typical privacy audits rely on retraining the model several times, each time guessing

the membership of one sample [6, 12, 35], which is computationally prohibitive,

requires access to the target model (entire) training data as well as control over the

training pipeline.

To circumvent these concerns, [30] proposed an auditing recipe (called O(1))

requiring only one training run (which could be the same as the actual training) by

randomly including/excluding several samples (called auditing examples) into the

training dataset of the target model. Later, the membership of the auditing examples

are guessed for privacy audit. However, O(1) faces a few challenges in certain setups.

First, canaries, which are datapoints specially crafted to be easy to detect when

added to the training set [21, 26, 30], cannot be employed as auditing examples

when measuring the privacy leakage for data that a contributor actually puts into the
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model, and not a worst case data point. This matches a setting in which individual

data contributors (e.g., a hospital in a cross-site Federated Learning (FL) setting or a

user of a service that trains ML models on users’ data) measure the leakage of their

own (i.e., known) partial training data in the final trained model. Second, O(1) also

relies on the withdrawal of real data from the model to construct non-member in-

distribution data. This is problematic in situations in which ML model owners need

to conduct post-hoc audits, in which case it is too late for removal [27]. Moreover,

in-distribution audits require much more data, thus withholding many data points

(typically more than the test set size) and reducing model utility. This brings us to

the question: Given an instance of a machine learning model as a target, can we

perform post-hoc estimation of the privacy loss with regards to a known member

subset of the target model training dataset?

Our contributions. We propose PANORAMIA, a new scheme for Privacy

Auditing with NO Retraining by using Artificial data for Membership Inference

Attacks. More precisely, we consider an auditor with access to a subset of the

training data and introduce a new alternative for accessing non-members: using

synthetic datapoints from a generative model trained on the member data, unlocking

the limit on non-member data. PANORAMIA uses this generated data, together with

known members, to train and evaluate a MIA attack on the target model to audit (§4).

We also adapt the theory of privacy audits, and show how PANORAMIA can estimate

the privacy loss (though not a lower-bound) of the target model with regards to the

known member subset (§5). An important benefit of PANORAMIA is to perform

privacy loss measurements with (1) no retraining the target ML model (i.e., we

audit the end-model, not the training algorithm), (2) no alteration of the model,

dataset, or training procedure, and (3) only partial knowledge of the training set.

We evaluate PANORAMIA on CIFAR10 models and observe that overfitted models,

larger models, and models with larger DP parameters have higher measured privacy

leakage. We also demonstrate the applicability of our approach on the GPT-2 based

model (i.e., WikiText dataset) and CelebA models.
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Chapter 2

Background

DP is the established privacy definition in the context of ML models, as well as for

data analysis in general. We focus on the pure DP definition to quantify privacy loss

with well-understood semantics. In a nutshell, DP is a property of a randomized

mechanism (or computation) from datasets to an output space O , noted M : D → O .

It is defined over neighboring datasets D,D′, differing by one element x ∈ X (we

use the add/remove neighboring definition), which is D′ = D∪{x}. Formally:

Definition 1 (Differential Privacy [9]). A mechanism M : D → O is ε-DP if for any

two neighbouring datasets D, D′ ∈D , and for any measurable output subset O ⊆O

it holds that:

P[M(D) ∈ O]≤ eεP[M(D′) ∈ O].

Since the neighbouring definition is symmetric, so is the DP definition, and

we also have that P[M(D′) ∈ O]≤ eεP[M(D) ∈ O]. Intuitively, ε upper-bounds the

worst-case contribution of any individual example to the distribution over outputs of

the computation (i.e., the ML model learned). More formally, ε is an upper-bound

on the privacy loss incurred by observing an output o, defined as
∣∣ ln

(
P[M(D)=o]
P[M(D′)=o]

)∣∣,
which quantifies how much an adversary can learn to distinguish D and D′ based on

observing output o from M. A smaller ε hence means higher privacy.

DP, MIA and privacy audits. To audit a DP training algorithm M that outputs

a model f , one can perform a MIA on datapoint x, trying to distinguish between

a neighboring training sets D and D′ = D∪{x}. The MIA can be formalized as

3



a hypothesis test to distinguish between H0 = D and H1 = D′ using the output

of the computation f . Dong et al. [8], Kairouz et al. [14], Wasserman and Zhou

[31] show that any such test at significance level α (False Positive Rate or FPR)

has power (True Positive Rate or TPR) bounded by eεα . In practice, one repeats

the process of training model f with and without x in the training set, and uses a

MIA to guess whether x was included. If the MIA has TPR > eεFPR, the training

procedure that outputs f is not ε-DP. This is the building block of most privacy

audits [12, 21, 25, 26, 35].
Averaging over data instead of models with O(1). The above result bounds

the success rate of MIAs when performed over several retrained models, on two
alternative datasets D and D′. Steinke et al. [30] show that it is possible to average
over data when several data points independently differ between D and D′. Let x1,m

be the m data points independently included in the training set, and s1,m ∈ {0,1}m

be the vector encoding inclusion. T0,m ∈ Rm represents any vector of guesses,
with positive values for inclusion in the training set (member), negative values
for non-member, and zero for abstaining. Then, if the training procedure is ε-DP,
Proposition 5.1 in Steinke et al. [30] bounds the performance of guesses from T
with:

P
[ m

∑
i=1

max{0,Ti ·Si} ≥ v | T = t
]
≤ P

S′∼Bernoulli( eε

1+eε )
m

[ m

∑
i=1

|ti| ·S′i ≥ v
]
.

In other words, an audit (MIA) T that can guess membership better than a Bernoulli

random variable with probability eε

1+eε refutes an ε-DP claim. In this work we build

on this result, extending the algorithm (§4) and theoretical analysis (§5) to enable

the use of generated data for non-members. The key difference compared to our

work lies in how we create the audit set. In Steinke et al. [30], the audit set is fixed,

and data points are randomly assigned to member or non-member by a Bernoulli

random variable S. Members are actually used in training the target model f , while

non-members are not (so assignment happens before training). In our framework,

we take a set of known iid. members (after the fact), and pair each point with a

non-member (generated iid. from the generator distribution). We then flip S to

sample which one will be shown to the “auditor” (MIA/baseline) for testing, thereby

creating the test task of our privacy measurement.
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Chapter 3

Related work

Recent privacy auditing work measures the privacy of an ML model by lower-

bounding its privacy loss. This usually requires altering the training pipeline of

the ML model, either by injecting canaries that act as outliers [4] or by using data

poisoning attack mechanisms to search for worst-case memorization [12, 25]. MIAs

are also increasingly used in privacy auditing, to estimate the degree of memorization

of member data by an ML algorithm by resampling the target algorithm M to bound
P(M|in)

P(M|out) [13].

The auditing procedure usually involves searching for optimal neighboring

datasets D,D′ and sampling the DP outputs M (D),M (D′), to get a Monte Carlo

estimate of ε . This approach raises important challenges. First, existing search

methods for neighboring inputs, involving enumeration or symbolic search, are

impossible to scale to large datasets, making it difficult to find optimal dataset

pairs. In addition, Monte Carlo estimation requires up to thousands of costly model

retrainings to bound ε with high confidence. Consequently, existing approaches

for auditing ML models predominantly require the re-training of ML models for

every (batch of) audit queries, which is computationally expensive in large-scale

systems [12, 21, 35].

This makes privacy auditing computationally expensive and gives an estimate

by averaging over models, which might not reflect the true guarantee of a specific

pipeline deployed in practice.

Nonetheless, improvements to auditing have been made in a variety of directions.
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For example, Nasr et al. [26] and Maddock et al. [22] have taken advantage of the

iterative nature of DP-SGD, auditing individual steps to understand the privacy of

the end-to-end algorithm. The work by Andrew et al. [2] leverages the fact that

analyzing MIAs for non-member data does not require re-running the algorithm.

Instead, it is possible to re-sample the non-member data point: if the data points

are i.i.d. from an asymptotically Gaussian distribution with mean zero and variance

1/d, this enables a closed-form analysis of the non-member case.

Recently, the authors of Steinke et al. [30] proposed a novel scheme for auditing

differential privacy with O(1) training rounds. This approach enables privacy

audits using multiple training examples from the same model training, if examples

are included in training independently (which requires control over the training

phase, and altering the target model). They demonstrate the effectiveness of this

new approach on DP-SGD, in which they achieve meaningful empirical privacy

lower bounds by training only one model, whereas standard methods would require

training hundreds of models. The key difference compared to our work lies in how

we create the audit set. In the paper by Steinke et al. [30], the audit set is fixed,

and data points are randomly assigned to member or non-member by a Bernoulli

random variable S. Members are actually used in training the target model f , while

non-members are not (so assignment happens before training). In our framework,

we take a set of known iid. members (after the fact), and pair each point with

a non-member(generated iid. from the generator distribution). We then flip S to

sample which one will be shown to the “auditor” (MIA/baseline) for testing, thereby

creating the test task of our privacy measurement.
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Chapter 4

PANORAMIA design

In this chapter, we describe in detail the design for PANORAMIA: Privacy Audit-

ing with NO Retraining using Artificial data for Membership Inference Attacks.

PANORAMIA is our privacy leakage measurement framework that allows us to

assess ML models for their privacy leakage on the data they are trained on, using

synthetic data as non-members.

Figure 4.1 summarizes the end-to-end PANORAMIA privacy measurement. The

measurement starts with a target model f , and a subset of its training data D f from

distribution D . For instance, D and D f could be the distribution and dataset of one

participant in an FL training procedure that outputs a final model f . The privacy

measurement then proceeds in two phases. Phase 1: In the first phase, PANORAMIA

uses a subset of the known training data DG ⊂ D f to train a generative model G .

The goal of the generative model G is to match the training data distribution D as

closely as possible, which is formalized in Definition 3 (§5). Using the generative

model G , we can synthesize non-member data, which corresponds to data that

was not used in the training of target model f . Hence, we now have access to an

independent dataset of member data Din = D f \DG, and a synthesized dataset of

non-member data Dout ∼ G , of size m = |Din|.
Phase 2: In the second phase, we leverage Din and Dout to audit the privacy

leakage of f using a MIA. To this end, we split Din,Dout into training and testing

sets, respectively called Dtr
in,D

tr
out and Dte

in,D
te
out. We use the training set to train a

MIA (called PANORAMIA in Figure 4.1), a binary classifier that predicts whether

7



DoutDinDout
Df 

Generative Model G

DG   

Baseline Classifier b PANORAMIA

b(precision, recall)

Phase 1: non-member data generation      

PANORAMIA(precision, recall)

Trained 
ML 

Model f
f (Din), 
f (Dout)

Phase 2: privacy leakage measurement

split

tr te teDin

tr

Figure 4.1: PANORAMIA’s two phases audit. Phase 1: training of generative
model G using member data. Phase 2: training a MIA using member
data and generated non-member data. Comparison of its performance to
that of a baseline without access to f . Notations are found under list of
notations.

a given datapoint is a member of D f , the training set of the target model f . This

MIA classifier makes its prediction based on both a training example x, as well

as information from applying the target model f to the input, such as the loss of

the target model when applied to this example loss( f (x)) (see §8, Chapter 6 for

details). We use the test set to measure the MIA performance, using the precision

at different recall values. Previous results linking the performance of a MIA on

several data-points to ε-DP bounds rely on independence between members and

non-members. This intuitively means that there is no information about membership

in x itself. When the auditor controls the training process this independence is

enforced by construction, by adding data points to the training set based on an

independent coin flip.

In PANORAMIA, we do not have independence between membership and x,

as all non-members come from the generator G ̸= D . As a result, there are two

ways to guess membership and have high MIA precision: either by using f to

detect membership (i.e., symptomatic of privacy leakage) or by detecting generated

data (i.e., not a symptom of privacy leakage). To measure the privacy leakage,

we compare the results of the MIA to that of a baseline classifier b that guesses

membership based exclusively on x, without access to f . The stronger this baseline,

the better the removal of the effect of synthesized data detection. Algorithm 1

8



Algorithm 1 PANORAMIA
Input: Target ML model f , audit set size m, confidence 1−β

Phase 1:
1: Split D f in DG,Dtr

in,D
te
in, with |Dte

in|= m
2: Train generator G on DG

3: Generate Dtr
out,D

te
out of size |Dtr

in|, |Dte
in|

Phase 2:
Train the baseline and MIA:
1: Label Dtr

in as members, and Dtr
out as non-members

2: Train b to predict labels using x ∈ Dtr
in ∪Dtr

out
3: Train MIA to predict labels using x ∈ Dtr

in ∪Dtr
out and f (x)

Measure privacy leakage (see §5):
1: Sample s ∼ Bernoulli(1

2)
m ▷ Def.2

2: Create audit set X = s ·Dte
in +(1− s)Dte

out
3: Score each audit point for membership, creating tb ≜ b(X) ∈ Rm

+ and ta ≜
MIA(X) ∈ Rm

+

4: Set vb
ub(c, t)≜ sup {v : β b(m,c,v, t)≤ β

2 } ▷ Prop.1
5: clb = maxt,c1{tb ≥ t} · s ≤ vb

ub(c,1{tb ≥ t})
6: Set va

ub(c,ε, t)≜ sup {v : β a(m,c,ε,v, t)≤ β

2 } ▷ Prop.2
7: {c+ε}lb = maxt,c,ε 1{ta ≥ t} · s ≤ va

ub(c,ε,1{ta ≥ t})
Return ε̃ ≜ {c+ε}lb − clb

summarizes the entire procedure. In the next section, we demonstrate how to relate

the difference between the baseline b and the MIA performance to the privacy loss

ε .
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Chapter 5

Formalizing PANORAMIA
framework and auditing game

In this chapter, we formalize our theoretical framework and auditing game to

quantify privacy leakage via PANORAMIA. The first step to quantifying privacy

leakage is to formalize an auditing game. PANORAMIA starts with xin ∈ X m

training points, coming from the training data distribution D to be audited (e.g., the

data distribution of one participant in an FL setting), as well as xgen ∈X m generated

points, coming from the generator distribution G (xgen ∼ G ). The sequence of

auditing samples x ∈ X m is created as follows:

Definition 2 (Auditing game).

s ∼ Bernoulli(
1
2
)m, with si ∈ {0,1},

xi = (1− si)x
gen
i + sixin

i , ∀i ∈ {1, . . . ,m}.

That is, s is sampled independently to choose either the real (si = 1) or generated

(s1 = 0) data point at each index i. This creates a sequence of m examples that

PANORAMIA will try to tell apart (i.e., guess s). The level of success achievable

in this game will quantify the privacy leakage of the target model f . We follow

an analysis inspired by that of [30], but require several key technical changes to

support auditing with no retraining using generated non-member data. The first
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major change is the introduction of a new game based on generated data, which

requires accounting for the quality of the generator in the hypothesis test and the

analysis, and interpreting results accordingly. The second adaptation is to focus on

member detection, ignoring non-members. This lets us soften the requirements put

on the data generator, which only needs to assign high likelihood to real data, but

can (and does) occasionally generate poor samples that are easy to detect.

In what follows, we first formalize PANORAMIA’s audit procedure as a hypoth-

esis test on our auditing game, for which we construct a statistical test (§5.1). Then,

we show how to use this hypothesis test to quantify privacy leakage as a lower con-

fidence interval, and interpret the semantics of our privacy leakage measurements

(§5.1.1).

5.1 Formalizing the Audit as a Hypothesis Test
We first need a notion of quality for our generator:

Definition 3 (c-closeness). For all c > 0, we say that a generative model G is

c-close for data distribution D if:

∀x ∈ X , e−cPD

[
x
]
≤ PG

[
x
]
.

The smaller c the better, as it means that generator G assigns to real data a

probability that cannot be too small compared to that of the real data distribution.

Notice that our definition of generator closeness is very similar to that of DP. This

is not a coincidence as we will use this definition to be able to reject claims of

both c-closeness for the generator and ε-DP for the target model. We further note

that contrary to the DP definition, c-closeness is one-sided, as we only bound

PG from below. Intuitively, this means that the generator has to produce high-

quality samples (i.e., samples likely under the data distribution D) with high enough

probability. Thus, it does not require that all samples are good, and the generator

is allowed to occasionally generate bad samples (that are unlikely under D). This

one-sided measure of closeness is enabled by our focus on detecting members

(i.e., true positives) as opposed to members and non-members. It is important as
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it puts less stringent requirements on the generator, which has to sometimes, but

”not always”, fool the baseline, while still enabling PANORAMIA’s audit with this

weaker constraint.

Using this definition, we can formulate the hypothesis test on our auditing game

that underpins our approach:

H : generator G is c-close, and target model f is ε-DP.

To construct a statistical test allowing us to reject H based on evidence, we

define two key mechanisms (corresponding to PANORAMIA’s auditing scheme).

First, the (potentially randomized) baseline guessing mechanism B(s,x) : {0,1}m ×
X m → Rm

+, which outputs a (non-negative) score for the membership of each data-

point xi, based on this datapoint only. That is, B(s,x) = {b(x1),b(x2), . . . ,b(xm)}.

Second, we define A(s,x, f ) : {0,1}m ×X m ×F → Rm
+, which outputs a (po-

tentially randomized) non-negative score for the membership of each datapoint,

with the guess for index i depending on x≤i and target model f . Note that if the

target model f is DP, then A is DP w.r.t. inclusion in the dataset s, outside of what

is revealed by x. We are now ready to construct a hypothesis test for H . First, we

construct tests for each part of the hypothesis separately.

Proposition 1. Let G be c-close, and T b ≜ B(S,X) be the guess from the baseline.

Then, for all v ∈ R and all t in the support of T :

PS,X ,T b

[ m

∑
i=1

T b
i ·Si ≥ v | T b = tb

]
≤ P

S′∼Bernoulli( ec
1+ec )m

[ m

∑
i=1

tb
i ·S′i ≥ v

]
≜ β

b(m,c,v, tb)

Proof. Notice that under our baseline model B(s,x) = {b(x1),b(x2), . . . ,b(xm)},

and given that the Xi are i.i.d., we have that: S<i ⊥⊥ T b
<i | X<i, since T b

i = B(S,X)i’s

distribution is entirely determined by Xi; and S≤i ⊥⊥ T b
>i | X<i since the Xi are

sampled independently from the past.

We study the distribution of S given a fixed prediction vector tb, one element

12



i ∈ [m] at a time:

P
[
Si = 1 | T b = tb,S<i = s<i,X≤i = x≤i

]
= P

[
Si = 1 | S<i = s<i,X≤i = x≤i

]
= P

[
Xi | Si = 1,S<i = s<i,X<i = x<i

]
P
[
Si = 1 | S<i = s<i,X<i = x<i

]
P
[
Xi | S<i = s<i,X<i = x<i

]
=

P
[
Xi | Si = 1,S<i = s<i,X<i = x<i

]
P
[
Si = 1

]
P
[
Xi | S<i = s<i,X<i = x<i

]
=

P
[
Xi | Si = 1

]1
2

P
[
Xi | Si = 1

]1
2 +P

[
Xi | Si = 0

]1
2

=
1

1+
P
[

Xi | Si=0
]

P
[

Xi | Si=1
] =

1

1+
PG

[
Xi

]
PD

[
Xi

] ≤ 1
1+ e−c =

ec

1+ ec

The first equality uses the independence remarks at the beginning of the proof; the

second relies on Bayes’ rule; while the third and fourth that Si is sampled i.i.d. from

a Bernoulli with probability half, and Xi i.i.d. conditioned on Si. The last inequality

uses Definition 3 for c-closeness.

Using this result and the law of total probability to introduce conditioning on

X≤i, we get that:

P
[
Si = 1 | T b = tb,S<i = s<i

]
= ∑

x≤i

P
[
Si = 1 | T b = tb,S<i = s<i,X≤i = x≤i

]
P
[
X≤i = x≤i | T b = tb,S<i = s<i

]
≤ ∑

x≤i

ec

1+ ecP
[
X≤i = x≤i | T b = tb,S<i = s<i

]
,

and hence that:

P
[
Si = 1 | T b = tb,S<i = s<i

]
≤ ec

1+ ec (5.1)

We can now proceed by induction: assume inductively that Wm−1 ≜ ∑
m−1
i=1 T b

i ·Si

is stochastically dominated (see Definition 4.8 in [30]) by W ′
m−1 ≜ ∑

m−1
i=1 T b

i ·S′i, in
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which S′ ∼ Bernoulli( ec

1+ec )m−1. Setting W1 =W ′
1 = 0 makes it true for m = 1. Then,

conditioned on Wm−1 and using Eq. A.1, T b
m ·Sm = Tm ·1{Sm = 1} is stochastically

dominated by T b
m ·Bernoulli( ec

1+ec ). Applying Lemma 4.9 from [30] shows that Wm

is stochastically dominated by W ′
m, which proves the induction and implies the

proposition’s statement.

Proof. In Appendix A.1.1.

Now that we have a test to reject a claim that the generator G is c-close for the

data distribution D , we turn our attention to the second part of H which claims

that the target model f is ε-DP.

Proposition 2. Let G be c-close, f be ε-DP, and T a ≜ A(S,X , f ) be the guess from

the membership audit. Then, for all v ∈ R and all t in the support of T :

PS,X ,T a

[ m

∑
i=1

T a
i ·Si ≥ v | T a = ta

]
≤ P

S′∼Bernoulli( ec+ε

1+ec+ε )
m

[ m

∑
i=1

ta
i ·S′i ≥ v

]
≜ β

a(m,c,ε,v, ta)

Proof. Fix some ta ∈ Rm
+. We study the distribution of S one element i ∈ [m] at a

time:

P
[
Si = 1 | T a = ta,S<i = s<i,X≤i = x≤i

]
= P

[
T a = ta | Si = 1,S<i = s<i,X≤i = x≤i

]
P
[
Si = 1 | S<i = s<i,X≤i = x≤i

]
P
[
T a = ta | S<i = s<i,X≤i = x≤i

]
≤ 1

1+ e−ε
P
[

Si=0 | S<i=s<i,X≤i=x≤i

]
P
[

Si=1 | S<i=s<i,X≤i=x≤i

]
≤ 1

1+ e−εe−c =
ec+ε

1+ ec+ε
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The first equality uses Bayes’ rule. The first inequality uses the decomposition:

P
[
T a = ta | S<i = s<i,X≤i = x≤i

]
=

= P
[
T a = ta | Si = 1,S<i = s<i,X≤i = x≤i

]
·P

[
Si = 1 | S<i = s<i,X≤i = x≤i

]
+P

[
T a = ta | Si = 0,S<i = s<i,X≤i = x≤i

]
·P

[
Si = 0 | S<i = s<i,X≤i = x≤i

]
,

and the fact that A(s,x, f ) is ε-DP w.r.t. s and hence that:

P
[
T a = ta | Si = 0,S<i = s<i,X≤i = x≤i

]
P
[
T a = ta | Si = 1,S<i = s<i,X≤i = x≤i

] ≥ e−ε .

The second inequality uses that:

P
[
Si = 0 | S<i = s<i,X≤i = x≤i

]
P
[
Si = 1 | S<i = s<i,X≤i = x≤i

]
=

P
[
Xi = xi | Si = 0,S<i = s<i,X<i = x<i

]
P
[
Xi = xi | Si = 1,S<i = s<i,X<i = x<i

]
· P

[
Si = 0 | S<i = s<i,X<i = x<i

]
P
[
Si = 1 | S<i = s<i,X<i = x<i

]
=

P
[
Xi = xi | Si = 0,S<i = s<i,X<i = x<i

]
P
[
Xi = xi | Si = 1,S<i = s<i,X<i = x<i

] · 1/2
1/2

=
PG

[
Xi
]

PD

[
Xi
] ≥ e−c

As in Proposition 1, applying the law of total probability to introduce condition-

ing on X≤i yields:

P
[
Si = 1 | T a = ta,S<i = s<i

]
≤ ec+ε

1+ ec+ε
, (5.2)

and we can proceed by induction. Assume inductively that Wm−1 ≜ ∑
m−1
i=1 T a

i · Si

is stochastically dominated (see Definition 4.8 in [30]) by W ′
m−1 ≜ ∑

m−1
i=1 T a

i · S′i,

in which S′ ∼ Bernoulli( ec+ε

1+ec+ε )m−1. Setting W1 = W ′
1 = 0 makes it true for m =
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1. Then, conditioned on Wm−1 and using Eq. A.2, T a
m · Sm = T a

m ·1{Sm = 1} is

stochastically dominated by T a
m ·Bernoulli( ec+ε

1+ec+ε ). Applying Lemma 4.9 from [30]

shows that Wm is stochastically dominated by W ′
m, which proves the induction and

implies the proposition’s statement.

Proof. In Appendix A.1.2.

We are now ready to provide a test for hypothesis H , by applying a union

bound over Propositions 1 and 2:

Corollary 1. Let H be true, T b ≜ B(S,X), and T a ≜ A(S,X , f ). Then:

P
[ m

∑
i=1

T a
i ·Si ≥ va,

m

∑
i=1

T b
i ·Si ≥ vb | T a = ta,T b = tb

]
≤ β

a(m,c,ε,va, ta)+β
b(m,c,vb, tb)

To make things more concrete, let us instantiate Corollary 1 as we do in

PANORAMIA. Our baseline (B above) and MIA (A above) classifiers return a mem-

bership guess in T a,b ∈ {0,1}m, with 1 corresponding to membership. Let us call

ra,b ≜ ∑i t
a,b
i the total number of predictions, and tpa,b ≜ ∑i t

a,b
i ·si the number of cor-

rect membership guesses (true positives). We also call the precision preca,b ≜ tpa,b

ra,b .

Using the following tail bound on the sum of Bernoulli random variables for sim-

plicity and clarity (we use a tighter bound in practice, but this one is easier to

read),

P
S′∼Bernoulli(p)r

[ r

∑
i=1

S′i
r
≥ p+

√
log(1/β )

2r

]
≤ β ,

we can reject H at confidence level β by setting β a = β b = β

2 and if either precb ≥
ec

1+ec +
√

log(2/β )
2rb or preca ≥ ec+ε

1+ec+ε +

√
log(2/β )

2ra .

5.1.1 Quantifying Privacy Leakage and Interpretation

Ideally in an audit we would like to quantify ε , not just reject a given ε claim. We

can use the hypothesis test from Corollary 1 to compute a confidence interval on c

and ε . To do this, we first need to define an ordering between (c,ε) pairs, such that

if (c1,ε1)≤ (c2,ε2), the event (i.e., set of observations for T a,b,S) for which we can
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reject H (c2,ε2) is included in the event for which we can reject H (c1,ε1). That

is, if we can reject H for values (c2,ε2) based on audit observations, we can also

reject H for values (c1,ε1) based on the same observations.

We define the following lexicographic order to fit this assumption, based on the

hypothesis test from Corollary 1:

(c1,ε1)≤ (c2,ε2) if either

c1 < c2, or

c1 = c2 and ε1 ≤ ε2

(5.3)

With this ordering, we have that:

Corollary 2. For all β ∈]0,1], m, and observed ta, tb, call va
ub(c,ε) ≜ sup {v :

β a(m,c,ε,v, ta)≤ β

2 } and vb
ub(c)≜ sup {v : β b(m,c,v, tb)≤ β

2 }. Then:

P
[
(c,ε)≥ sup

{
(c′,ε ′) : ta · s ≤ va

ub(c
′,ε ′) and tb · s ≤ vb

ub(c
′)
}]

≥ 1−β

Proof. Apply Lemma 4.7 from [30] with the ordering from Eq. 5.3 and the test

from Corollary 1.

That means that the lower bound of the confidence interval for (c,ε) at confi-

dence 1−β is the largest (c,ε) pair that cannot be rejected using Corollary 1 with

false rejection probability at most β . Hence for a given confidence level 1−β ,

PANORAMIA computes (clb, ε̃), the largest value for (c,ε) that it cannot reject.

(clb, ε̃) lower-bounds the true value for (c,ε) with probability at least 1−β . Note

that Corollaries 1 and 2 rely on a union bound between two tests, one for c and

one for c+ ε . We can thus consider each test separately. In practice we follow

previous practice [22, 30] for each test separately, and determine the best threshold

on membership score ta,b considering the whole precision/recall curve. Each level

of recall (threshold to predict membership based on ta,b) corresponds to a bound on

the precision, which we can compare to the empirical value. For each test separately,

we pick the level of recall yielding the highest lower-bound. This is shown on lines

4-7 in the last section of Algorithm 1.

We next discuss the semantics of returned values, (clb, ε̃).
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5.1.2 Audit semantics.

Corollary 2 gives us a lower-bound for (c,ε), based on the ordering from Eq. 5.3.

To understand the value ε̃ returned by PANORAMIA, we need to understand what

the hypothesis test rejects. Rejecting H means either rejecting the claim about c,

or the claim about c+ ε (which is the reason for the ordering in Eq. 5.3). With

Corollary 2, we hence get both a lower-bound clb on c, and {c+ε}lb on c+ ε .

Unfortunately, ε̃ ≜ {c+ε}lb − clb, which is the value PANORAMIA returns, does

not imply a lower-bound on ε . Instead, we can claim that “PANORAMIA could not

reject a claim of c-closeness for G , and if this claim is tight, then f cannot be more

than ε̃-DP”.

While this is not as strong a claim as typical lower-bounds on ε-DP from prior

privacy auditing works, we believe that this measure is useful and practical. Indeed,

the ε̃ measured by PANORAMIA is a quantitative privacy measurement, that will be

accurate (close to a lower-bound on ε-DP) when the baseline performs well (and

hence clb is tight).

When the baseline is good, we can thus interpret ε̃ as (close to) a lower bound

on (pure) DP. In addition, since models on the same dataset and task share the

same baseline, which does not depend on the audited model, PANORAMIA’s mea-

surement can be used to directly compare privacy leakage between models. Thus,

PANORAMIA opens a new capability, measuring privacy leakage of a trained model

f without access or control of the training pipeline or the whole training set, with

an interpretable and practically useful measurement.
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Chapter 6

Experimental setup

In this chapter, we detail the target ML models we audit. We also highlight the

architecture and experimental details for our generative model as well as the MIA

and Baseline models that we use to quantify privacy leakage and generator data

quality respectively.

6.1 Image classification target models
We choose target models based on the suitability of data classification task, and

complexity. In addition, we also choose deeper architectures and highly over-

fit models along with models that generalize well to show the extent of privacy

leakage measurement by PANORAMIA. We audit target models with the follow-

ing architectures: a Multi-Label Convolutional Neural Network (CNN) with four

layers [28], and the ResNet101 [10]. We also include in our analysis, differentially-

private models for ResNet18 [10] and WideResNet-16-4 [34] models as targets,

with ε = 1,2,4,6,10,15,20. The ResNet-based models are trained on CIFAR10

using 50k images Krizhevsky [17] of 32x32 resolution. For all CIFAR10 based

classification models (apart from the DP ones), we use a training batch size of

64. The associated test accuracies and epochs are mentioned in Table 6.1. The

Multi-Label CNN is trained on 200k images of CelebA [20] of 128x128 resolution,

training batch-size 32, to predict 40 attributes associated with each image.
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ML Model Dataset Training Epoch Test Accuracy Model Variants Names*
ResNet101 CIFAR10 20, 50, 100 91.61%, 90.18%, 87.93% ResNet101-E20, ResNet101-E50, ResNet101-E100,

Multi-Label CNN CelebA 50, 100 81.77%, 78.12% CNN E50, CNN E100
MLP Tabular Classification Adult 10, 100 86%, 82% MLP E10, MLP E100

Table 6.1: Train and Test Metrics for ML Models Audited. *”Model Variants”
trained for different numbers of epochs E.

6.2 Generative model
For both image datasets, we use StyleGAN2 [15] to train the generative model

G from scratch on DG, and produce non-member images. For CIFAR10 dataset,

we use a 10,000 out of 50,000 images from the training data of the target model

to train the generative model. For the CelebA dataset, we select 35,000 out of

200,000 images from the training data of the target model to train the generative

model. Generated images will in turn serve as non-members for performing the

MIAs. Figure 6.1 shows examples of member and non-member images used in

our experiments. In the case of CelebA, we also introduce a vanilla CNN as a

classifier or filter to distinguish between fake and real images and remove any

poor-quality images that the classifier detects with high confidence. The data used

to train this classifier was the same data used to train StyleGAN2, which ensures

that the generated high-resolution images are of high quality.

6.3 MIA and Baseline training
For the MIA, we follow a loss-based attack approach: PANORAMIA takes as input

raw member and non-member data points for training along with the loss values

the target model f attributes to these data points. More precisely, the training set of

PANORAMIA is:

(Dtr
in, f (Dtr

in))∪ (Dtr
out , f (Dtr

out))

In §5.1.1, we discussed the importance of having a tight clb so that our measure,

ε̃ , becomes close to a lower-bound on ε-DP, which requires a strong baseline. To

strengthen our baseline, we introduce the helper model h, which helps the baseline

model b by supplying additional features (i.e., embeddings) that can be viewed as

side information about the data distribution. The motivation is that h’s features
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might differ between samples from D and D ′, enhancing the performance of the

baseline classifier. This embedding model h is similar in design to f (same task and

architecture) but is trained on synthetic data that is close in distribution to the real

member data distribution. Whether for the baseline or MIA, we use side information

models (h and f , respectively) by concatenating the loss of h(x) and f (x) to the

final feature representation (more details are provided later) before a last layer of

the MIA/Baseline makes the membership the prediction. Since we need labels to

compute the loss, we label synthetic images with a Wide ResNet-28-2 in the case of

CIFAR10, and a Multi-Label CNN of similar architecture as the target model in the

case of CelebA labeling. For both instances, we used a subset of the data, that was

used to train the respective generative models, to train the “labeler” classifiers as

well.

We use two different modules for both MIA and Baseline training. More

precisely, the first module optimizes image classification using a built-in Pytorch

ResNet101 classifier. The second module, in the form of a multi-layer perceptron,

focuses on classifying member and non-member labels via loss values attributed to

these data points by f as input for the loss module of MIA and losses of e to the

baseline b respectively. We then stack the scores of both image and loss modules

into a logistic regression task (as a form of meta-learning) to get the final outputs for

member and non-member data points by MIA and baseline b. The MIA and baseline

are trained on 4500 data samples (half members and half generated non-members).

The test dataset consists of 10000 samples, again half members and half generated

non-members. The actual and final number of members and non-members that

ended up in the test set depends on the Bernoulli samples in our auditing game.

21



(a) Real (b) Synthetic

(c) Real (d) Synthetic

Figure 6.1: Member and Non-Member datasets used in our experiments for
CelebA (6.1(a), 6.1(b)) and CIFAR10 (6.1(c), 6.1(d)) image data.
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Chapter 7

Baseline Classifier Strength
Evaluation

Recall from §5.1.1 the importance of having a tight clb for our measure ε̃ to be close

to a lower-bound on ε-DP, which also requires a strong baseline. To increase the

performance of our baseline b, we mimic the role of the target model f ’s loss in the

MIA using a helper model h, which adds a loss-based feature to b. This new feature

can be viewed as side information about the data distribution. Table 7.1 shows the

clb value under different designs for h. The best performance is consistently when

h is trained on synthetic data before being used as a feature to train the b. Indeed,

such a design reaches a clb up to 1.36 larger that without any helper (CIFAR10) and

0.16 higher than when training on real non-member data without requiring access

to real non-member data, a key requirement in PANORAMIA. We adopt this design

in all the following experiments. In Figure 7.1 we show that the baseline has enough

training data (vertical dashed line) to reach its best performance. All these pieces of

evidence confirm the strength of our baseline.
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Baseline model clb
CIFAR-10 BaselineDtr

h = gen 2.508
CIFAR-10 BaselineDtr

h = real 2.37
CIFAR-10 Baselineno helper 1.15
CelebA BaselineDtr

h = gen 2.03
CelebA BaselineDtr

h = real 1.67
CelebA Baselineno helper 0.91
WikiText-2 BaselineDtr

h = gen 2.61
WikiText-2 BaselineDtr

h = real 2.59
WikiText-2 Baselineno helper 2.34
Adult BaselineDtr

h = gen 2.34
Adult BaselineDtr

h = real 2.18
Adult Baselineno helper 2.01
Table 7.1: Baseline evaluation with

different helper model scenarios

0 5000 10000 15000 20000 25000 30000
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c l
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Baseline-CIFAR10

Figure 7.1: CIFAR-10 baseline on
increasing training size.
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Chapter 8

Privacy Leakage Evaluation

We instantiate PANORAMIA on target models for four tasks from three data modal-

ities. For image classification, we consider the CIFAR10 [17], and CelebA [20]

datasets, with varied target models: a four-layers CNN [28], a ResNet101 [10] and

a differentially-private ResNet18 [10] trained with DP-SGD [1] using Opacus [33]

at different values of ε . We use StyleGAN2 [15] for G . For language models, we

fine-tune small GPT-2 [29] on the WikiText-2 train dataset [24] (we also incorporate

documents from WikiText-103 to obtain a larger dataset). G is again based on small

GPT-2, and then fine-tuned on DG. We generate samples using top-p sampling [11]

and a held-out prompt dataset Dprompt
G ⊂ DG. Finally, for classification on tabular

data, we fit a Multi-Layer Perceptron (MLP) with 4 hidden layers trained on the

Adult dataset [3], on a binary classification task predicting income > $50k. We use

the MST algorithm [23] for G .

Table 6.1 summarizes the tasks, models and performance, as well as the respec-

tive names we use to show results.

Our results are organized as follows. First, we evaluate the strength of our

baseline, previously discussed in (§7), on which the semantics of PANORAMIA’s

audit rely. Second, we show what PANORAMIA detects meaningful privacy leakage

in our settings, comparable to the lower-bounds provided by the O(1) approach [30]

(though under weaker requirements) (§8.1). Finally, we show that PANORAMIA

can detect varying amounts of leakage from models with controlled data leakage

using model size and DP (§8.3).
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Figure 8.1: Precision vs recall between PANORAMIA and the baseline b, for
our target models.

8.1 Main Auditing Results
We run PANORAMIA on models with different values of over-fitting (by varying

the number of epochs, see the final accuracy on Table 6.1) for each data modality.

More over-fitted models are known to leak more information about their training

data due to memorization [4, 6, 32]. To show the auditing power of PANORAMIA,

we compare it with two strong approaches to lower-bounding privacy loss. First, we

use a variation of our approach using real non-member data instead of generated

data (called RM;RN for Real Members; Real Non-members). While this basically

removes the role of the baseline (clb = 0), it requires access to a large sample of

non-member data from the same distributions as members (hard requirement) or the

possibility of training costly shadow models to create such non-members. Second,

we rely on the O(1) audit from Steinke et al. [30], which is similar to the previous
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Figure 8.2: {c+ ε}lb (or clb) vs recall, for our target models.

approach but predicts membership based on a loss threshold while also leveraging

guesses on non-members in its statistical test. Note that this technique requires

control of the training process. The privacy loss measured by these techniques gives

a target that we hope PANORAMIA to detect.

Figure 8.1 shows the precision of b and PANORAMIA at different levels of

recall, and Figure 8.2 the corresponding value of {c+ ε}lb (or clb for b). Dashed

lines show the maximum value of {c+ ε}lb/clb achieved (Fig. 8.2) (returned by

PANORAMIA), and the precision implying these values at different recalls (Fig.

8.1). Table 8.1 summarizes those {c+ ε}lb/clb values, as well as the ε measured by

existing approaches. We make two key observations:

First, the best prior method (whether RM;RN or O(1)) measures a larger privacy

loss (ε̃ ≤ ε), except on tabular data. Those surprising results are likely due to

PANORAMIA’s use of both raw data and the target model’s loss in an ML MIA
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Target model f Audit clb {ε + c}lb ε̃ ε

PANORAMIA 2.508 2.83 0.32 -
ResNet101 E20 PANORAMIARM;RN 0 0.42 - 0.42

O (1) RM;RN - - - 0.52
PANORAMIA 2.508 3.15 0.64 -

ResNet101 E50 PANORAMIARM;RN 0 0.61 - 0.61
O (1) RM;RN - - - 0.81
PANORAMIA 2.508 3.47 0.962 -

ResNet101 E100 PANORAMIARM;RN 0 1.03 - 1.03
O (1) RM;RN - - - 1.40
PANORAMIA 2.01 2.50 0.49 -

CNN E50 PANORAMIARM;RN 0 - 0.76
O (1) RM;RN - - - 0.99
PANORAMIA 2.01 3.03 1.02 -

CNN E100 PANORAMIARM;RN 0 - 1.26
O (1) RM;RN - - - 1.53
PANORAMIA 3.78 3.47 0 -

GPT2 E12 PANORAMIARM;RN 0 0.30 - 0.30
O (1) RM;RN - - - 1.54
PANORAMIA 3.78 4.07 0.29 -

GPT2 E46 PANORAMIARM;RN 0 2.37 - 2.37
O (1) RM;RN - - - 4.12
PANORAMIA 3.78 5.06 1.28 -

GPT2 E92 PANORAMIARM;RN 0 3.45 - 3.45
O (1) RM;RN - - - 5.43
PANORAMIA 2.37 2.47 0.10 -

MLP E10 O (1) RM;RN - - - 0.
PANORAMIA 2.37 2.71 0.34 -

MLP E100 O (1) RM;RN - - - 0.23
PANORAMIA 1.25 1.62 0.37 -

MLP E100 half PANORAMIARM;RN 0 0.64 - 0.64
O (1) RM;RN - - - 0.22

Table 8.1: Privacy audits on different target models. Here clb is the same
across same datasets, where ResNet101 is trained on CIFAR10, CNN is
trained on CelebA, GPT-2 on WikiText-2 and MLP on Adult Dataset. The
value ε̃ = {c+ ε}lb - clb then depends on the privacy leakage attributed
to a specific target model. ε is the true lower-bound when clb is tight (or
zero).

model, whereas O(1) uses a threshold value on the loss only. Overall, these results

empirically confirm the strength of b, as we do not seem to spuriously assign

differences between G and D to our privacy loss proxy ε̃ . We also note that O(1)

tends to perform better, due to its ability to rely on non-member detection, which

improves the power of the statistical test at equal data sizes. Such tests are not

available in PANORAMIA given our one-sided closeness definition for G (see §5),

and we keep that same one-sided design for RM;RN for comparison’s sake.

Second, the values of ε̃ measured by PANORAMIA are close to those of the

methods against which we compared. In particular, despite a more restrictive
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adversary model (i.e., no non-member data, no control over the training process,

and no shadow model training), PANORAMIA is able to detect meaningful amounts

of privacy loss, comparable to that of state-of-the-art methods! For instance, on

a non-overfitted CIFAR-10 model (E20), PANORAMIA detects a privacy loss of

0.32, while using real non-member (RM;RN) data yields 0.42, and controlling the

training process O(1) gets 0.52. The relative gap gets even closer on models that

reveal more about their training data. Indeed, for the most over-fitted model (E100),

ε̃ = 0.96 is very close to RM;RN (ε = 1.0) and O(1) (ε = 1.4). This also confirms

that the leakage detected by PANORAMIA on increasingly over-fitted models does

augment, which is confirmed by prior state-of-the-art methods. For instance, NLP

models’ ε̃ goes from 0.18 to 1.28 (1.54 to 5.43 for O(1)), and tabular data MLPs

from 0.1 to 0.34 (0 to 0.23 for O(1)).

The value of ε̃ for each target model is the gap between its corresponding

dashed line and the baseline one in Figure 8.2. This allows us to compute values

of ε̃ reported in Table 8.1. It is also interesting to note that the maximum value

of {c+ε}lb typically occurs at low recall. Even if we do not use the same metric

(precision-recall as opposed to TPR at low FPR) this is coherent with the findings

from [7]. We can detect more privacy leakage (higher {c+ε}lb which leads to higher

ε̃) when making a few confident guesses about membership rather than trying to

maximize the number of members found (i.e., recall). Figure 8.3, decomposes the

precision in terms of the number of true positives and the number of predictions for

a direct mapping to the propositions 1 and 2. These are non-negligible values of

privacy leakage, even though the true value is likely much higher.

8.2 Privacy Auditing of Overfitted ML Models
Methodology. Varying the number of training epochs for the target model to

induce overfitting is known to be a factor in privacy loss [6, 32]. As discussed in

Section 8.1, since these different variants of target models share the same dataset

and task, PANORAMIA can compare them in terms of privacy leaking.

To verify if PANORAMIA will indeed attribute a higher value of ε̃ to more

overfitted models, we train our target models for varying numbers of training

epochs. The final train and test accuracies are reported in Table 6.1.
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Figure 8.3: Comparison of the number of true positives and predictions on
different datasets

Figures 8.5 and 8.4 show how the gap between member data points (i.e., data

used to train the target models) and non-member data points (both real as well as

generated non-members) increases as the degree of overfitting increases, in terms

of loss distributions. We study the distribution of losses since these are the fea-

tures extracted from the target model f or helper model h, to pass respectively to

PANORAMIA and the baseline classifier. The fact that the loss distributions of mem-

ber data become more separable from non-member data for more overfitted models

is a sign that the corresponding target model could leak more information about its

training data. We thus run PANORAMIA on each model, hereafter presenting the

results obtained.

Results. In Figure 8.1, we observe that more training epochs (i.e., more overfit-
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(a) CelebA Multi-Label CNN E30.
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(b) CelebA Multi-Label CNN E100; an overfit
model.

Figure 8.4: CelebA Multi-Label CNN Loss Comparisons for a generalized vs
overfitted model.

ting) lead to better precision-recall trade-offs and higher maximum precision values.

Our results are further confirmed by Figure 8.3 with PANORAMIA being able to

capture the number of member data points better than the baseline b.

In Table 8.1, we further demonstrate that our audit output ε̃ orders the target

models in terms of privacy leakage: higher the degree of overfitting, more mem-

orization and hence a higher ε̃ returned by PANORAMIA. From our experiments,

we consistently found that as the number of epochs increased, the value of ε̃ also

increased. Our experiment is coherent with the intuition that more training epochs

lead to more over-fitting, leading to more privacy leakage measured with a higher

value of ε̃ .

8.3 Detecting Controlled Variations in Privacy Loss

Models of varying complexity:

Carlini et al. [5] have shown that larger models tend to have bigger privacy losses. To

confirm this, we conducted an audit of ML models with varying numbers of parame-

ters, from a ≈ 4M parameters Wide ResNet-28-2, to a 25.5M parameters ResNet-50,

and a 44.5M parameters ResNet-101. Figure 8.6(a) shows that PANORAMIA does

detect increasing privacy leakage, with ε̃wide−resnet ≤ ε̃resnet50 ≤ ε̃resnet101.
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Figure 8.5: Comparison of the loss distributions of real members, real non-
members, and synthetic non-members under three target models while
varying the degree of over-training on the WikiText dataset. Figure 8.5(d)
compares the loss distributions under the helper model, the model pro-
viding side information to our baseline. We train the helper with some
other synthetic samples, which effectively mimic real non-members’ loss
distributions under the target models. However, they are distinguishable
to some extent from real non-members under the helper model, thus
increasing our clb.
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(a) CIFAR-10, varying model complexities. (b) ResNet18, CIFAR-10, ε-DP for various ε

values.

Figure 8.6: {c+ ε}lb when varying privacy leakage.

DP models:

Another avenue to varying privacy leakage is by training DP models with diverse

values of ε . We evaluate PANORAMIA on DP ResNet-18 models on CIFAR10,

with ε values shown on Table 8.2 and Figure 8.6(b). The hyper-parameters were

tuned independently for the highest train accuracy. As the results show, neither

PANORAMIA nor O(1) detect privacy loss on the most private models (ε = 1,2).

At higher values of ε = 10,15 (i.e., less private models) and ε = ∞ (i.e., non-

private model) PANORAMIA does detect an increasing level of privacy leakage with

ε̃ε=10 < ε̃ε=15 < ε̃ε=∞. In this regime, the O(1) approach detects a larger (except for

ε = 10, in which PANORAMIA surprisingly detects a slightly larger value), though

comparable, amount of privacy loss.

Methodology. We evaluate the performance of PANORAMIA on differentially-

private ResNet-18 and Wide-ResNet-16-4 models on the CIFAR10 dataset under

different target privacy budgets (ε) with δ = 10−5 and the non-private (ε = ∞)

cases. The models are trained using the DP-SGD algorithm [1] using Opacus [33],

which we tune for the highest train accuracy on learning rate lr, number of epochs e,

batch size bs and maximum ℓ2 clipping norm (C) for the largest final accuracy. The

noise multiplier σ is computed given ε , number of epochs, and batch size. Both

PANORAMIA and O(1) [30] audits privacy loss with pure ε-DP analysis.
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Target model Audit clb ε + clb ε̃ ε

ResNet18 ε = ∞ PANORAMIA RM;GN 2.508 3.6698 1.161 -
O (1) RM;RN - - - 1.565

ResNet18 ε = 20 PANORAMIA RM;GN 2.508 3.6331 1.125 -
O (1) RM;RN - - - 1.34

ResNet18 ε = 15 PANORAMIA RM;GN 2.508 3.5707 1.062 -
O (1) RM;RN - - - 1.22

ResNet18 ε = 10 PANORAMIA RM;GN 2.508 2.8 0.3 -
O (1) RM;RN - - - 0.14

ResNet18 ε = 6 PANORAMIA RM;GN 2.508 1.28 0 -
O (1) RM;RN - - - 0.049

ResNet18 ε = 4 PANORAMIA RM;GN 2.508 1.989 0 -
O (1) RM;RN - - - 0

ResNet18 ε = 2 PANORAMIA RM;GN 2.508 2.065 0 -
O (1) RM;RN - - - 0.08

ResNet18 ε = 1 PANORAMIA RM;GN 2.508 1.982 0 -
O (1) RM;RN - - - 0

Table 8.2: Privacy audit of ResNet18 under different values of ε-Differential
Privacy using PANORAMIA and O(1) auditing frameworks, in which
RM is for real member, RN for real non-member and GN for generated
(synthetic) non-members.

Results. Tables 8.2 and 8.3 summarize the auditing results of PANORAMIA

on different DP models. For ResNet-18, we observe that at ε = 1,2,4,6 (more

private models) PANORAMIA detects no privacy loss, whereas at higher values of

ε = 10,15,20 (less private models) and ε = ∞ (a non-private model) PANORAMIA

detects an increasing level of privacy loss with ε̃ε=10 < ε̃ε=15 < ε̃ε=20 < ε̃ε=∞,

suggesting a higher value of ε correspond to higher ε̃ . We observe a similar

pattern with Wide-ResNet-16-4, in which no privacy loss is detected at ε = 1,2 and

higher privacy loss is detected at ε = 10,15,20,∞. We also compare the auditing

performance of PANORAMIA with that of O(1) [30], with the conclusion drawn by

these two methods being comparable. For both ResNet-18 and Wide-ResNet-16-

4, O(1) reports values close to 0 (almost a random guess between members and

non-members) for ε < 10 DP models, and higher values for ε = 10,15,20,∞ DP

models. The results suggest that PANORAMIA is potentially an effective auditing

tool for DP models that has comparable performance with O(1) and can generalize

to different model structures.

Discussion. We observe that the auditing outcome (ε̃ values for PANORAMIA

and ε for O(1)) can be different for DP models with the same ε values (Table 8.4).

We hypothesize that the auditing results may relate more to the level of overfitting
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Target model Audit clb ε + clb ε̃ ε

WRN-16-4 ε = ∞ PANORAMIA RM;GN 2.508 2.9565 0.448 -
O (1) RM;RN - - - 0.6408

WRN-16-4 ε = 20 PANORAMIA RM;GN 2.508 2.95161 0.4436 -
O (1) RM;RN - - - 0.5961

WRN-16-4 ε = 15 PANORAMIA RM;GN 2.508 2.91918 0.411 -
O (1) RM;RN - - - 0.5774

WRN-16-4 ε = 10 PANORAMIA RM;GN 2.508 2.83277 0.3247 -
O (1) RM;RN - - - 0.171

WRN-16-4 ε = 2 PANORAMIA RM;GN 2.508 2.2096 0 -
O (1) RM;RN - - - 0

WRN-16-4 ε = 1 PANORAMIA RM;GN 2.508 1.15768 0 -
O (1) RM;RN - - - 0

Table 8.3: Privacy audit of Wide ResNet16-4 under different values of ε-
Differential Privacy (DP) using PANORAMIA and O(1) auditing frame-
works, where RM is for real member, RN for real non-member and GN
for generated (synthetic) non-members.

than the target ε values in trained DP models. The difference between train and test

accuracies could be a possible indicator that has a stronger relationship with the

auditing outcome. We also observe that O(1) shows a faster increase in ε for DP

models with higher targeted ε values. We believe it depends on the actual ratio of

the correct and total number of predicted samples, since O(1) considers both true

positives and true negatives while PANORAMIA considers true positives only. We

leave these questions for future work.

Target model Audit clb ε + clb ε̃ ε Train Acc Test Acc Diff(Train-Test Acc)

ResNet18-eps-20

PANORAMIA RM;GN 2.508 3.63 1.06 - 71.82 67.12 4.70
O (1) RM;RN - - - 1.22 - - -
PANORAMIA

RM;GN
2.508 2.28 0 - 71.78 68.08 3.70

O (1) RM;RN - - - 0.09 - - -

ResNet18-eps-15

PANORAMIA RM;GN 2.508 3.63 1.13 - 69.01 65.7 3.31
O (1) RM;RN - - - 1.34 - - -

PANORAMIA RM;GN 2.508 1.61 0 66.68 69.30 2.62
O (1) RM;RN - - - 0.08 - - -

Table 8.4: DP models with the same ε values can have different auditing
outcomes.
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8.4 Comparison with Privacy Auditing with One (1)
Training Run: Experimental Details

We implement the black-box auditor version of O(1) approach [30]. This method

assigns a membership score to a sample based on its loss value under the target

model. They also subtract the sample’s loss under the initial state (or generally, a

randomly initialized model) of the target model, helping to distinguish members

from non-members even more. In our instantiation of the O(1) approach, we only

consider the loss of samples on the final state of the target model. Moreover, in their

audit, they choose not to guess the membership of every sample. This abstention

has an advantage over making wrong predictions as it does not increase their

baseline. Roughly speaking, their baseline is the total number of correct guesses

achieved by employing a randomized response (ε,0) mechanism, for those samples

that O(1) auditor opts to predict. We incorporate this abstention approach in our

implementation by using two thresholds, t+ and t−. More precisely, samples with

scores below t+ are predicted as members, those above t− as non-members, and the

rest are abstained from prediction. We check all possible combinations of t+ and t−
and report the highest ε among them, following a common practice [22, 35]. We

also set δ to 0 and use a confidence interval of 0.05 in their test. In PANORAMIA,

for each hypothesis test (whether for clb or {c+ε}lb), we stick to a 0.025 confidence

interval for each one, adding up to an overall confidence level of 0.05. Furthermore,

the audit set of O(1) is the same as the audit set of PANORAMIA.
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Chapter 9

Conclusion

With PANORAMIA, our work introduces a brand new capability in the ML auditing

toolbox: the ability to audit trained ML models (not only training algorithms) for

privacy leakage of samples from a specific data distribution for a subset of the

training set (e.g., the data distribution of one participant in an FL model; or of a sub-

population of interest), with access to only the trained model to audit, and a dataset

of members of the training set from the distribution of interest. PANORAMIA does

not require access to the training procedure, the full training set, or non-member

data from the same distribution. It does not assume control of the training procedure

(e.g., to add canaries), neither does it require changing the final model or retraining

new (shadow) models. PANORAMIA is thus a practical approach to quantifying

privacy leakage, in settings previously not amenable to privacy audits. We also

believe this new capacity can enable applications outside of direct ML privacy

audits, such as the passive detection of unintended data uses, as in [18, 19].

As a first proposal for privacy audits without retraining, PANORAMIA leaves

several technical questions open, that would benefit from further work and expand

the capability of no retraining privacy audits. The main limitation of our approach

is that the privacy loss we measure is not a proper lower-bound (see §5.1.1). Ideally,

the hypothesis test would provide an upper-bound on c, potentially with a failure

probability akin to DP’s δ . This seems challenging in the general case of a distribu-

tion: could we refine PANORAMIA’s analysis to only focus on the audited sample,

and provide an upper-bound for c in this context? This would have the added
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benefit of auditing privacy loss for a specific data subset, and not a distribution of

a subset. It would also become meaningful to audit (ε,δ )-DP. Another promising

direction is to develop better generators for c-closeness, that also favor membership

inference to strengthen the privacy audit, as well as better statistical tests. Overall,

we believe that PANORAMIA introduces an important new capability for practical

privacy audits, with several open directions to expand this capability.
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Appendix A

Supporting Materials

A.1 Proofs
For both Proposition 1 and Proposition 2, we state the proposition again for conve-

nience before proving it.

A.1.1 Proof of Proposition 1

Proposition 1. Let G be c-close, and T b ≜ B(S,X) be the guess from the baseline.

Then, for all v ∈ R and all t in the support of T :

PS,X ,T b

[ m

∑
i=1

T b
i ·Si ≥ v | T b = tb

]
≤ P

S′∼Bernoulli( ec
1+ec )m

[ m

∑
i=1

tb
i ·S′i ≥ v

]
≜ β

b(m,c,v, tb)

Proof. Notice that under our baseline model B(s,x) = {b(x1),b(x2), . . . ,b(xm)},

and given that the Xi are i.i.d., we have that: S<i ⊥⊥ T b
<i | X<i, since T b

i = B(S,X)i’s

distribution is entirely determined by Xi; and S≤i ⊥⊥ T b
>i | X<i since the Xi are

sampled independently from the past.

We study the distribution of S given a fixed prediction vector tb, one element
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i ∈ [m] at a time:

P
[
Si = 1 | T b = tb,S<i = s<i,X≤i = x≤i

]
= P

[
Si = 1 | S<i = s<i,X≤i = x≤i

]
= P

[
Xi | Si = 1,S<i = s<i,X<i = x<i

]
P
[
Si = 1 | S<i = s<i,X<i = x<i

]
P
[
Xi | S<i = s<i,X<i = x<i

]
=

P
[
Xi | Si = 1,S<i = s<i,X<i = x<i

]
P
[
Si = 1

]
P
[
Xi | S<i = s<i,X<i = x<i

]
=

P
[
Xi | Si = 1

]1
2

P
[
Xi | Si = 1

]1
2 +P

[
Xi | Si = 0

]1
2

=
1

1+
P
[

Xi | Si=0
]

P
[

Xi | Si=1
] =

1

1+
PG

[
Xi

]
PD

[
Xi

] ≤ 1
1+ e−c =

ec

1+ ec

The first equality uses the independence remarks at the beginning of the proof, the

second relies Bayes’ rule, while the third and fourth that Si is sampled i.i.d from a

Bernoulli with probability half, and Xi i.i.d. conditioned on Si. The last inequality

uses Definition 3 for c-closeness.

Using this result and the law of total probability to introduce conditioning on

X≤i, we get that:

P
[
Si = 1 | T b = tb,S<i = s<i

]
= ∑

x≤i

P
[
Si = 1 | T b = tb,S<i = s<i,X≤i = x≤i

]
P
[
X≤i = x≤i | T b = tb,S<i = s<i

]
≤ ∑

x≤i

ec

1+ ecP
[
X≤i = x≤i | T b = tb,S<i = s<i

]
,

and hence that:

P
[
Si = 1 | T b = tb,S<i = s<i

]
≤ ec

1+ ec (A.1)

We can now proceed by induction: assume inductively that Wm−1 ≜ ∑
m−1
i=1 T b

i ·Si

is stochastically dominated (see Definition 4.8 in [30]) by W ′
m−1 ≜ ∑

m−1
i=1 T b

i ·S′i, in
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which S′ ∼ Bernoulli( ec

1+ec )m−1. Setting W1 =W ′
1 = 0 makes it true for m = 1. Then,

conditioned on Wm−1 and using Eq. A.1, T b
m ·Sm = Tm ·1{Sm = 1} is stochastically

dominated by T b
m ·Bernoulli( ec

1+ec ). Applying Lemma 4.9 from [30] shows that Wm

is stochastically dominated by W ′
m, which proves the induction and implies the

proposition’s statement.

A.1.2 Proof of Proposition 2

Proposition 2. Let G be c-close, f be ε-DP, and T a ≜ A(S,X , f ) be the guess from

the membership audit. Then, for all v ∈ R and all t in the support of T :

PS,X ,T a

[ m

∑
i=1

T a
i ·Si ≥ v | T a = ta

]
≤ P

S′∼Bernoulli( ec+ε

1+ec+ε )
m

[ m

∑
i=1

ta
i ·S′i ≥ v

]
≜ β

a(m,c,ε,v, ta)

Proof. Fix some ta ∈ Rm
+. We study the distribution of S one element i ∈ [m] at a

time:

P
[
Si = 1 | T a = ta,S<i = s<i,X≤i = x≤i

]
= P

[
T a = ta | Si = 1,S<i = s<i,X≤i = x≤i

]
P
[
Si = 1 | S<i = s<i,X≤i = x≤i

]
P
[
T a = ta | S<i = s<i,X≤i = x≤i

]
≤ 1

1+ e−ε
P
[

Si=0 | S<i=s<i,X≤i=x≤i

]
P
[

Si=1 | S<i=s<i,X≤i=x≤i

]
≤ 1

1+ e−εe−c =
ec+ε

1+ ec+ε
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The first equality uses Bayes’ rule. The first inequality uses the decomposition:

P
[
T a = ta | S<i = s<i,X≤i = x≤i

]
=

= P
[
T a = ta | Si = 1,S<i = s<i,X≤i = x≤i

]
·P

[
Si = 1 | S<i = s<i,X≤i = x≤i

]
+P

[
T a = ta | Si = 0,S<i = s<i,X≤i = x≤i

]
·P

[
Si = 0 | S<i = s<i,X≤i = x≤i

]
,

and the fact that A(s,x, f ) is ε-DP w.r.t. s and hence that:

P
[
T a = ta | Si = 0,S<i = s<i,X≤i = x≤i

]
P
[
T a = ta | Si = 1,S<i = s<i,X≤i = x≤i

] ≥ e−ε .

The second inequality uses that:

P
[
Si = 0 | S<i = s<i,X≤i = x≤i

]
P
[
Si = 1 | S<i = s<i,X≤i = x≤i

]
=

P
[
Xi = xi | Si = 0,S<i = s<i,X<i = x<i

]
P
[
Xi = xi | Si = 1,S<i = s<i,X<i = x<i

]
· P

[
Si = 0 | S<i = s<i,X<i = x<i

]
P
[
Si = 1 | S<i = s<i,X<i = x<i

]
=

P
[
Xi = xi | Si = 0,S<i = s<i,X<i = x<i

]
P
[
Xi = xi | Si = 1,S<i = s<i,X<i = x<i

] · 1/2
1/2

=
PG

[
Xi
]

PD

[
Xi
] ≥ e−c

As in Proposition 1, applying the law of total probability to introduce condition-

ing on X≤i yields:

P
[
Si = 1 | T a = ta,S<i = s<i

]
≤ ec+ε

1+ ec+ε
, (A.2)

and we can proceed by induction. Assume inductively that Wm−1 ≜ ∑
m−1
i=1 T a

i · Si

is stochastically dominated (see Definition 4.8 in [30]) by W ′
m−1 ≜ ∑

m−1
i=1 T a

i · S′i,

in which S′ ∼ Bernoulli( ec+ε

1+ec+ε )m−1. Setting W1 = W ′
1 = 0 makes it true for m =
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1. Then, conditioned on Wm−1 and using Eq. A.2, T a
m · Sm = T a

m ·1{Sm = 1} is

stochastically dominated by T a
m ·Bernoulli( ec+ε

1+ec+ε ). Applying Lemma 4.9 from [30]

shows that Wm is stochastically dominated by W ′
m, which proves the induction and

implies the proposition’s statement.
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