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Abstract

As the need for computing resources grows, providers are increasingly relying on

distributed systems to render their services. However, distributed systems are hard

to design and implement. As an aid for design and implementation, formal verifica-

tion has seen a growing interest in industry. For example, Amazon uses Temporal

Logic of Actions plus (TLA+) and PlusCal specification languages and tool chain

to formally verify manually created specifications of their web services [8].

Nevertheless, there is currently no tool to automatically establish a correspon-

dence between a PlusCal specification with a concrete implementation. Further-

more, PlusCal was not designed with modularity in mind, so a large PlusCal spec-

ification cannot be decomposed into smaller ones for ease of modification. This

thesis proposes an extension to PlusCal, named Modular PlusCal, as well as a

compiler, named PGo, which compiles Modular PlusCal and PlusCal specifications

into Go programs. Modular PlusCal introduces new constructs, such as archetypes

and mapping macros, to provide isolation and, as a result, modularity. By auto-

matically compiling PlusCal and Modular PlusCal specifications into distributed

system implementations, PGo reduces the burden on programmers trying to ensure

the correctness of their distributed systems.
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Lay Summary

Distributed software systems are notoriously hard to build correctly due to their

sheer scale and complexity. Several approaches have been proposed to ensure the

correctness of these systems, such as various forms of testing, monitoring, and for-

mal verification. In formal verification, the programmer typically has to build the

system twice, once as a formally verified specification and again as a real imple-

mentation.

This thesis proposes a compiler to convert a formally verified specification into

a real implementation, easing the burden on programmers.
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Chapter 1

Introduction

Distributed systems are hard to reason about due to the asynchronous interactions

among their constituent components. An obscure series of interactions among the

components may lead to subtle yet catastrophic bugs. For example, Amazon’s Ela-

sic Compute Cloud (EC2) hit a rare race condition which caused serious downtime

for the service and took down major sites on the Internet [1].

Formal verification is one approach to help programmers ensure correctness

of distributed systems. In formal verification, the programmer has to provide a

model and specification of the system alongside its implementation. A model of

the system is a tractable representation of the implementation. A specification

consists of some properties and invariants which formally establish what it means

for the model to be correct. The specification and model of the system are written in

a formal verification language, of which Temporal Logic of Actions plus (TLA+)1

is an example. According to TLA+ documentation by Lamport [5, 17], a TLA+

specification and model are together referred to as a TLA+ specification, while a

TLA+ model is an instance of the specification with all constants instantiated with

finite values. Thus, this thesis follows this convention.

Once a TLA+ specification of a system is available, the programmer can use the

Temporal Logic Checker (TLC), a model checker bundled in the TLA+ tool box,

to check for violations of important system properties. For TLA+ specifications

with very large state spaces, the programmer can run TLC on a group of virtual

1https://lamport.azurewebsites.net/tla/tla.html
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machines using cloud-based distributed TLC [4] to reduce model checking time.

Alternatively, the programmer can use the TLA+ Proof System (TLAPS) [3] to pro-

vide proofs of the system’s correctness.

Beside accepting TLA+ specifications as inputs, the TLA+ tool box also supports

specifications written in the algorithm language PlusCal2. PlusCal is designed as

a replacement for pseudocode so its syntax is closer to popular imperative lan-

guages than TLA+’s syntax. In addition, PlusCal also has constructs for specifying

nondeterminism and synchronization between asynchronous system components.

Specifications written in PlusCal are compiled to TLA+ so they enjoy the same sup-

port from the tool box. Thanks to these useful features, PlusCal has been adopted

by large software development companies like Amazon and Microsoft [1, 2].

PlusCal allows the programmer to structure the distributed system as a collec-

tion of cooperating processes. Within one process, the programmers are free to

structure the single-process computation however they choose. This is in contrast

to approaches such as Mace [14, 15], and P# [9], where the specification must be

structured as a state machine, complete with explicit states and state transitions.

We discuss more about these languages, and other approaches in Chapter 7.

Although PlusCal has many useful features, it suffers from the lack of compos-

ability: the programmer cannot reuse concepts defined in one PlusCal specification

in another PlusCal specification. This thesis proposes Modular PlusCal, an exten-

sion of PlusCal, to address this problem.

With this approach, the programmer essentially has to write the system twice:

once as a specification, and again as a real implementation. Beside the duplication

of effort, the real implementation may deviate from the model, violating correct-

ness properties which are checked of the specification.

To mitigate these shortcomings, this thesis also contributes PGo, a compiler

from Modular PlusCal, or PlusCal, specifications to distributed Go programs. By

automating the conversion, PGo removes the duplication of effort and reduces the

burden on programmers.

In summary, this thesis makes the following two contributions.

• Modular PlusCal is an extension of PlusCal with features for composing

2https://lamport.azurewebsites.net/tla/high-level-view.html
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specifications (Chapter 3).

• PGo is a compiler from a Modular PlusCal or PlusCal specification to a

distributed Go program (Chapter 4).
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Chapter 2

Background

This chapter is an overview of TLA+, PlusCal, and the TLA+ tool box.

2.1 TLA+

TLA+ is a formal specification language, designed for verification of concurrent

systems. A TLA+ specification is composed of expressions and operators with the

occasional constant/variable declarations and module extension. Figure 2.1 shows

a specification of Euler’s greatest common denominator algorithm in TLA+.

A TLA+ specification starts with the name of the module, surrounded by dashes

(line 1 of Figure 2.1). The TLA+ standard library includes some built-in modules,

of which Integers is one. Integers includes the definitions of the less-than (<) and

minus (-) operators. EXTENDS Integers (line 2 of Figure 2.1) pulls these definitions

into scope. CONSTANTS declares constants to be used in the specification, which have

to be specified when model checking. VARIABLES, as the name suggests, declares

variables to be used in the following expressions or declarations. Nullary operator

declaration (line 8, 11, and 20 of Figure 2.1) starts with the operator name, followed

by double equals (==), and ends with the body of the operator, which is a TLA+

expression. A TLA+ conjunction can be written either as an infix operator, e.g.

TRUE /\ TRUE, or as a prefix operator, as shown on lines 8 to 18 of Figure 2.1.

When written as prefix operators, they have to align at the same column in the text.

The same rules apply for disjunctions (\/).

4



1 ----------- MODULE GCD -----------
2 EXTENDS Integers
3
4 CONSTANTS N, M
5
6 VARIABLES n, m
7
8 Init == /\ n = N
9 /\ m = M

10
11 Next == \/ /\ n < m
12 /\ m’ = m - n
13 /\ n’ = n
14 \/ /\ m < n
15 /\ n’ = n - m
16 /\ m’ = m
17 \/ /\ n’ = n
18 /\ m’ = m
19
20 Spec == Init /\ [][Next]_<<n, m>>
21 ==================================

Figure 2.1: Euler’s greatest common denominator algorithm in TLA+

Init, Next, and Spec are default names for predicates that constitute a specifi-

cation in TLA+. The initial predicate, called Init in Figure 2.1, sets the variables

to their initial values. The next-state relation, called Next in Figure 2.1, relates the

current value of a variable with its next value, for all variables, by putting an equal-

ity constraint on the variable, e.g., n, and its primed version, n’. Finally, Spec is a

conjunction of the initial predicate Init and the next-state relation Next. The syntax

[][Next]_<<n, m>> says that each state transition is either described by Next or the

values of n and m are unchanged. Spec sets up the state space of the specfication,

which can be thought of as a (possibly infinite) directed graph of states, consisting

of variable-value pairs, reachable from the initial state.

For the detailed grammar of TLA+, see Lamport’s Specifying Systems book [16].

2.2 PlusCal algorithm language
The PlusCal algorithm language is a pseudocode-like language whose goal is to

lower the learning curve for using the TLA+ tool box. Figure 2.2 shows a PlusCal

specification for Euler’s greatest common denominator algorithm. As seen in Fig-

ure 2.2, PlusCal’s syntax resembles those of imperative programming languages.

5



1 ----- MODULE GCDPlusCal -----
2 EXTENDS Integers
3
4 CONSTANTS N, M
5
6 (*
7 --algorithm GCDPlusCal {
8 variables n = N, m = M;
9 {

10 l:
11 while (TRUE) {
12 if (n < m) {
13 m := m - n;
14 } else if (m < n) {
15 n := n - m;
16 }
17 }
18 }
19 }
20 *)
21 =============================

Figure 2.2: Euler’s greatest common denominator algorithm in PlusCal

A PlusCal specification is written in an algorithm block inside a TLA+ com-

ment, denoted using (* ... *). All PlusCal statements beside declarations must

be part of a label. In Figure 2.2, the specification consists of a single infinite while

loop inside the label l. Statements within one label are executed atomically, i.e.,

either they all succeed or the label is not executed at all.

PlusCal has support for familiar constructs such as if statements, while state-

ments, local binding via with blocks, as well as procedures and macros. Procedures

in PlusCal can take a number of arguments, can have their own local variables, and

can modify global variables, but have no return value. Macros in PlusCal have the

same textual expansion behavior as C pre-processing macros.

To use a PlusCal specification for model checking, the programmer must com-

pile it to TLA+ using the TLA+ tool box. Figure 2.3 shows the output of compiling

the PlusCal specification in Figure 2.2 to TLA+. Except for the slight syntactic

difference, the compiled output in Figure 2.3 is equivalent to the specification in

Figure 2.1.

For the detailed grammar of PlusCal, see Lamport’s manual1.

1https://lamport.azurewebsites.net/tla/c-manual.pdf
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1 VARIABLES n, m
2
3 vars == << n, m >>
4
5 Init == (* Global variables *)
6 /\ n = N
7 /\ m = M
8
9 Next == IF n < m

10 THEN /\ m’ = m - n
11 /\ n’ = n
12 ELSE /\ IF m < n
13 THEN /\ n’ = n - m
14 ELSE /\ TRUE
15 /\ n’ = n
16 /\ m’ = m
17
18 Spec == Init /\ [][Next]_vars

Figure 2.3: Compiled TLA+ output

7



Chapter 3

Modular PlusCal

This chapter describes Modular PlusCal, an extension of PlusCal, which provides

modularity and isolation between system specification and environment specifica-

tion.

3.1 Motivation
Consider a simple specification for a server and client in Figure 3.1. The specifica-

tion describes simple interactions between an add server and a client, over a TCP

connection. The server waits for the client to send two numbers over the network

connection and sends back the sum of those two numbers to the client. The client,

on the other hand, sends two numbers to the server, gets the result from the server,

and prints the result.

There are two problems with the specification. Firstly, there is code duplica-

tion. The code blocks labeled readA, readB, and readResult differ only in the vari-

able being assigned to, a, b, and result, respectively. Similarly, the code blocks

labeled writeResult, writeA, and writeB share a lot in common. Secondly, there

is no clear separation between system functionality specification and environment

specification. The main functionality of the system, namely adding numbers on the

server and printing results on the client, is mixed with the specification of the TCP

connection between the client and the server, which is part of the environment.

8



1 ----------------- MODULE AddServerClientPlusCal -----------------
2 EXTENDS Integers, Sequences, TLC
3
4 CONSTANTS A, B, BufferSize, ClientId, ServerId
5
6 (*
7 --algorithm AddServerClientPlusCal {
8 variables network = [i \in {ServerId, ClientId} |-> <<>>];
9

10 process (S = ServerId)
11 variables a, b;
12 {
13 ls:
14 while (TRUE) {
15 readA:
16 await Len(network[self]) > 0;
17 a := Head(network[self]);
18 network[ServerId] := Tail(network[self]);
19 readB:
20 await Len(network[self]) > 0;
21 b := Head(network[self]);
22 network[ServerId] := Tail(network[self]);
23 writeResult:
24 await Len(network[ClientId]) < BufferSize;
25 network[ClientId] := Append(network[ClientId], a + b);
26 }
27 }
28
29 process (C = ClientId)
30 variables result;
31 {
32 lc:
33 while (TRUE) {
34 writeA:
35 await Len(network[ServerId]) < BufferSize;
36 network[ServerId] := Append(network[ServerId], A);
37 writeB:
38 await Len(network[ServerId]) < BufferSize;
39 network[ServerId] := Append(network[ServerId], B);
40 readResult:
41 await Len(network[self]) > 0;
42 result := Head(network[self]);
43 network[self] := Tail(network[self]);
44 printResult:
45 print result;
46 }
47 }
48 }
49 *)
50 =================================================================

Figure 3.1: Add server and client specification in PlusCal

9



1 \* global variables
2 variables network = [i \in {ServerId, ClientId} |-> <<>>],
3 serverPkt, clientPkt;
4
5 procedure TCPRead(which)
6 {
7 lr:
8 await Len(network[which]) > 0;
9 if (which = ServerId) {

10 \* TCP read for server
11 serverPkt := Head(network[which]);
12 } else {
13 \* TCP read for client
14 clientPkt := Head(network[which]);
15 }
16 network[which] := Tail(network[which]);
17 }
18
19 procedure TCPWrite(which, pkt)
20 {
21 lw:
22 await Len(network[which]) < BufferSize;
23 network[which] := Append(network[which], pkt);
24 }

Figure 3.2: PlusCal procedures specifying a TCP connection

The two PlusCal syntactical constructs that are offered as solutions for reuse

are procedures and macros. However, they cannot effectively address the above

problems.

PlusCal procedures can modify global variables, so they can modify the network

global variable but cannot return the packet read from the network without in-

troducing a new global variable to store it (as shown in Figure 3.2). To use the

procedure TCPRead, the programmer has to introduce two new global variables,

namely serverPkt and clientPkt. Furthermore, the definition of TCPRead contains

the knowledge that there are only two processes interacting with each other. This is

not desirable because it reduces reusability of the specification as well as the com-

piled output of PGo. For example, this procedure cannot be used in a specification

where there are more than two kinds of processes interacting with each other.

PlusCal macros, on the other hand, do not require new global variables, but

have implicit behaviors, which are non-obvious (as shown in Figure 3.3). For

example, after the macro call TCPRead(ServerId, a), the value read from the TCP

connection is stored in a, but this fact is hidden in the TCPRead definition. Both the

10



1 macro TCPRead(which, pkt)
2 {
3 await Len(network[which]) > 0;
4 pkt := Head(network[which]);
5 network[which] := Tail(network[which]);
6 }
7
8 macro TCPWrite(which, pkt)
9 {

10 await Len(network[which]) < BufferSize;
11 network[which] := Append(network[which], pkt);
12 }

Figure 3.3: PlusCal macros specifying a TCP connection

programmer and the compiler have to tease this fact out from its definition, which

significantly hinders comprehension and compilation.

To cleanly address the problems of reuse and modularity, this thesis introduces

Modular PlusCal, which extends PlusCal by adding archetypes (Section 3.2), in-

stances (Section 3.4), and mapping macros (Section 3.3).

3.2 Archetypes
A PlusCal process is a unit of execution. Each process can define local variables,

and can make modifications to global variables.

A Modular PlusCal archetype is a blueprint for a process, or a group of pro-

cesses. Unlike processes, they can only access global variables which are passed

in as arguments. In addition, they can only interact with their arguments through a

well-defined interface. Archetypes are used for specifying system behaviors. The

restrictions imposed on archetypes provide the desired isolation between system

specification and environment specification. Figure 3.4 shows the grammar for

archetypes.

Besides the inability to access global variables, archetypes have the same se-

mantics as processes. They can declare their own local variables, which behave

identically to local variables in PlusCal processes. Labeled blocks in their bodies

are also executed atomically. They have the same labeling restrictions (see Sec-

tion 4.1.4) in their bodies.

Figure 3.5 shows the specification of the add server as an archetype in Modular
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〈archetype〉 |= archetype 〈identifier〉(〈parameter-list〉)〈local-variables〉〈body〉
〈parameter-list〉 |= ε | 〈parameter〉 | 〈parameter〉,〈parameter-list〉
〈parameter〉 |= 〈identifier〉 | ref 〈identifer〉

〈local-variables〉 |= ε | variables 〈declaration-list〉;
〈declaration-list〉 |= 〈variable-declaration〉 | 〈variable-declaration〉,〈declaration-list〉

〈body〉 |= {〈labeled-statement-list〉}

Figure 3.4: Grammar for archetypes

1 archetype AddServer(ref network)
2 variables a, b;
3 {
4 ls:
5 while (TRUE) {
6 readA:
7 a := network[self];
8 readB:
9 b := network[self];

10 writeResult:
11 network[ClientId] := a + b;
12 }
13 }

Figure 3.5: Specification for add server in Modular PlusCal

PlusCal. The ref keyword in ref network means that network may be modified in

the archetype body, i.e., it may be assigned to in the body. It may seem that a is

always assigned to the value of network[self], as shown on line 7; however, a is

actually assigned to whatever value is pulled out of the environment modeled by

the archetype argument network. In this case, a is a number read from a network

connection. Similarly, line 11 actually specifies that the sum a + b is sent to the

client via the network.

3.3 Mapping macros
Mapping macros complement of archetypes by specifying the environment. Map-

ping macros define both the interface, which consists of reading and writing, and

the model checking behaviors used to model the environment. A mapping macro

12



〈mapping-macro〉 |= mapping macro 〈identifier〉{read 〈macro-body〉 write 〈macro-body〉}
〈macro-body〉 |= {〈statement-list〉}

Figure 3.6: Grammar for mapping macros

has two parts, one for reading (captured in the read block), and the other for writ-

ing (captured in the write block). Just like the body of a PlusCal macro, the read

and write blocks of a mapping macro cannot contain any labels. In other words, the

statements in each block can only be a part of an atomic step in a specification. The

programmer must keep this in mind to write code that accurately models the envi-

ronment. Specifically, each block should not perform too much work. Figure 3.6

shows the grammar for mapping macros.

The read block of a mapping macro specifies how to pull a value out of the

environment. Inside a read block of a mapping macro, the programmer can use

the $variable special variable to refer to the global variable being used to store

state for modeling a part of the environment. The write block of a mapping macro

specifies how to incorporate some value into the global environment. Inside a

write block, in addition to the $variable special variable, the programmer also

have access to the $value special variable to refer to the value being incorporated

into the environment’s state. Finally, in both read and write blocks, the programmer

uses a yield statement to specify either what value is pulled out of the environment

(for a read operation) or to what value the environment modeling state is updated

(for a write operation).

Figure 3.7 shows how a TCP connection can be modeled with a mapping

macro. In this case, the global variable used to model a TCP connection should

be initialized as a TLA+ sequence. The read block specifies that a read operation

performed on a TCP connection blocks until a packet has arrived (using the Plus-

Cal await statement). A packet is then extracted from the connection and returned

to the calling code using the with statement and the yield statement, respectively.

The write block specifies that a write operation blocks until there is enough buffer

to hold the packet. The packet is then sent by Appending it to the connection.

13



1 mapping macro TCPConnection {
2 read {
3 await Len($variable) > 0;
4 with (msg = Head($variable)) {
5 $variable := Tail($variable);
6 yield msg;
7 }
8 }
9 write {

10 await Len($variable) < BufferSize;
11 yield Append($variable, $value);
12 }
13 }

Figure 3.7: Specification for a TCP connection in Modular PlusCal

〈instance〉 |= process (〈variable-declaration〉) == 〈archetype-instantiation〉
〈archetype-instantiation〉 |= instance 〈identifier〉(〈argument-list〉)〈mapping-clause-list〉

〈argument-list〉 |= ε | 〈argument〉 | 〈argument〉,〈argument-list〉
〈argument〉 |= 〈expression〉 | ref 〈identifier〉

〈mapping-clause-list〉 |= ε | 〈mapping-clause〉 | 〈mapping-clause〉〈mapping-clause-list〉
〈mapping-clause〉 |= mapping 〈mapped-variable〉 via 〈identifier〉
〈mapped-variable〉 |= @〈integer〉 | 〈identifier〉

Figure 3.8: Grammar for instances

3.4 Instances
Since the system specification is modeled using archetypes and the environment

specification is modeled using mapping macros, the programmer can develop them

independently, allowing for higher level of reuse. For verification purposes, the

system specification has to be composed with the environment specification. In-

stances are the compositional glue relating the two halves. Figure 3.8 shows the

grammar for instances.

An instance statement instantiates a process or a group of processes using the

specified archetype. Any ref parameter must be instantiated with a ref global

variable, indicating that the global variable may be modified in the body of the

archetype with an assignment, or an expression, indicating that the argument is

14



1 process (S = ServerId) == instance AddServer(ref conns)
2 mapping conns[_] via TCPConnection;
3
4 process (C = ClientId) == instance AddClient(ref conns)
5 mapping conns[_] via TCPConnection;

Figure 3.9: Examples of Modular PlusCal instances

local to the archetype. All non-ref parameters must not be instantiated with a

ref global variable. Each argument may also be mapped by a mapping macro,

indicating that any read and write operation to the argument must be expanded

with the corresponding read or write block of the mapping macro.

In Figure 3.9, process S is instantiated by the AddServer archetype, while pro-

cess C is instanticated by the AddClient archetype. Their network parameters are

instantiated with the global variable conns, which is also macro-mapped via the

TCPConnection mapping macro. The [_] notation following conns indicates that

read and write operations to elements of conns are expanded with the correspond-

ing read and write blocks of the TCPConnection mapping macro; and conns is said to

be function-mapped. A mapping clause without a [_] notation is called variable-

mapped; and read and write operations are expanded using the variable directly.

Figure 3.10 shows a specification of an add server and client in Modular Plus-

Cal which is equivalent to the PlusCal specification in Figure 3.1. Having written

the specification this way, the programmer can easily swap the TCPConnection map-

ping macro for a different UDPConnection mapping macro. Furthermore, TCPConnection

can be reused in other specifications to model the network.

15



1 -------------- MODULE AddServerClientModularPlusCal --------------
2 EXTENDS Integers, Sequences, TLC
3
4 CONSTANTS A, B, BufferSize, ClientId, ServerId
5
6 (*
7 --mpcal AddServerClientModularPlusCal {
8 variables conns = [i \in {ServerId, ClientId} |-> <<>>];
9

10 mapping macro TCPConnection {
11 read {
12 await Len($variable) > 0;
13 with (msg = Head($variable)) {
14 $variable := Tail($variable);
15 yield msg;
16 }
17 }
18 write {
19 await Len($variable) < BufferSize;
20 yield Append($variable, $value);
21 }
22 }
23
24 archetype AddServer(ref network)
25 variables a, b;
26 {
27 ls:
28 while (TRUE) {
29 readA:
30 a := network[self];
31 readB:
32 b := network[self];
33 writeResult:
34 network[ClientId] := a + b;
35 }
36 }
37
38 archetype AddClient(ref network)
39 variables result;
40 {
41 lc:
42 while (TRUE) {
43 writeA:
44 network[ServerId] := A;
45 writeB:
46 network[ServerId] := B;
47 readResult:
48 result := network[self];
49 printResult:
50 print result;
51 }
52 }
53
54 process (S = ServerId) == instance AddServer(ref conns)
55 mapping conns[_] via TCPConnection;
56
57 process (C = ClientId) == instance AddClient(ref conns)
58 mapping conns[_] via TCPConnection;
59 }
60 *)
61 ==================================================================

Figure 3.10: Add server and client in Modular PlusCal
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Chapter 4

Compilation with PGo

In this chapter, we explain the internals of PGo, primarily to document the current

state and design of the compiler.

There are three pipelines in PGo’s architecture, namely Modular PlusCal to

PlusCal (Figure 4.2), PlusCal to Go (Figure 4.13), and Modular PlusCal to Go.

This thesis describes the first two pipelines.

Since compilation from Modular PlusCal to PlusCal expands all accesses of

archetype parameters using mapping macros, the clear boundary between system

specification and environment specification is erased. Therefore, it is not appro-

priate to compile a Modular PlusCal to PlusCal, and then compiling the resulting

PlusCal to Go. Instead, PGo compiles Modular PlusCal specifications directly to

Go. However, the compilation from Modular PlusCal to Go is not described in this

thesis.

Figure 4.1 shows which stages are shared between the Modular PlusCal to Go

and PlusCal to Go pipelines, from parsing to type inference. In addition, config-

uration parsing and validation are also shared. Only atomicity inference and code

generation are distinct for each pipeline.
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Parsing
(Section 4.1.1)

Macro expansion
(Section 4.1.2)

Validation
(Section 4.1.4)

Scoping
(Section 4.1.5)

Post-scoping validation
(Section 4.1.6)

Type inference
(Section 4.2.2)

Modular PlusCal
atomicity inference

Modular PlusCal to Go
code generation

PlusCal
atomicity inference

(Section 4.2.3)

PlusCal to Go
code generation
(Section 4.2.4)

Figure 4.1: Sharing between Modular PlusCal to Go and PlusCal to Go
pipelines in PGo

PGo relies on the TLA+ tool box for specification verification. Since TLC only

accepts TLA+ specifications as input, a Modular PlusCal specification has to be

compiled to TLA+ for verification. PGo accomplishes this by compiling the Mod-

ular PlusCal specification to PlusCal, and then relies on the TLA+ tool box for

compilation from the resulting PlusCal to TLA+. This pipeline is described next.

18



Modular PlusCal specification

Parsing
(Section 4.1.1)

Macro expansion
(Section 4.1.2)

Desugaring
(Section 4.1.3)

Validation
(Section 4.1.4)

Scoping
(Section 4.1.5)

Post-scoping validation
(Section 4.1.6)

PlusCal code generation
(Section 4.1.7)

PlusCal specification

Figure 4.2: PGo compiler pipeline from Modular PlusCal to PlusCal

4.1 The Modular PlusCal to PlusCal pipeline

4.1.1 Parsing

PGo has a rich library for constructing and consuming grammars. It is developed

by necessity due to the complexity of the TLA+ and PlusCal grammars: oper-

ators have precedence ranges and PlusCal has C and P-syntaxes. Since PGo’s

Grammar objects are constructed in ordinary Java code, complicated constructs such
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〈expression〉 |= 〈factor〉 | 〈expression〉+〈factor〉 | 〈expression〉-〈factor〉
〈factor〉 |= 〈unit〉 | 〈factor〉*〈unit〉 | 〈factor〉/〈unit〉
〈unit〉 |= 〈number〉 | (〈expression〉)

Figure 4.3: Grammar for simple arithmetic expressions

as precedence ranges for TLA+ operators can be handled outside of the grammar

algorithmically in plain Java, greatly reducing grammar development effort.

Grammar construction

PGo’s parser facility provides an application programming interface (API) for piece-

meal construction of grammars. The API supports string matching, regular expres-

sion pattern matching, alternative choice, and mapping. To showcase how to write

down a grammar using this API, we will implement a simple arithmetic expression

grammar whose grammar is shown in Figure 4.3. Note that this grammar is used

only for illustration and is not part of the TLA+ grammar.

The arithmetic expression grammar in Figure 4.3 supports four operators, namely

addition, subtraction, multiplication, and division. Addition and subtraction have

the same precedence, which is lower than the precedence of multiplication and

division. Multiplication and division has the same precedence. The precedence

of operators is encoded into the grammar as the productions of 〈expression〉 and

〈factor〉, which makes multiplication and division bind more tightly than addition

and subtraction. All operators are left associative, which is encoded as left recur-

sion in the grammar.

Figure 4.4 shows the abstract syntax for the arithmetic expressions. The ab-

stract syntax consists of binary operations and numbers, both of which are sub-

classes of expressions. Since PGo’s parser also provides source location informa-

tion for parsed result, all abstract syntax classes must subclass SourceLocatable

(line 1).

Figure 4.5 shows how the 〈unit〉 production can be implemented using facil-

ities provided by PGo’s parsing utility. A unit is either a number or a parenthe-
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1 abstract class Expression extends SourceLocatable {}
2
3 class BinOp extends Expression {
4 enum Operator {
5 Add,
6 Sub,
7 Mul,
8 Div,
9 }

10 final Operator operator;
11 final Expression lhs;
12 final Expression rhs;
13 BinOp(Operator operator, Expression lhs, Expression rhs) {
14 this.operator = operator;
15 this.lhs = lhs;
16 this.rhs = rhs;
17 }
18 }
19
20 class Number extends Expression {
21 final int value;
22 Number(int value) {
23 this.value = value;
24 }
25 }

Figure 4.4: Abstract syntax for arithmetic expressions

1 static Grammar<Expression> number =
2 matchPattern(Pattern.compile("[1-9][0-9]*"))
3 .map(m -> new Number(Integer.parseInt(m.getValue().group())));
4
5 static ReferenceGrammar<Expression> expression = new ReferenceGrammar<>();
6
7 static Grammar<Expression> unit =
8 parseOneOf(
9 number,

10 emptySequence()
11 .drop(matchString("("))
12 .part(expression)
13 .drop(matchString(")"))
14 .map(seq -> seq.getValue().getFirst()));

Figure 4.5: Implementation for 〈unit〉
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sized expression, so the grammar for it is constructed with a choice grammar using

parseOneOf() (line 8). The grammar for numbers is implemented by a regular ex-

pression matcher with pattern [1-9][0-9]*, which says that a number is a series

of digits not starting with 0 (line 2). The matched string is then converted to a

Number object using the map() transformer on the grammar (line 3). In the case of

parenthesized expressions, the grammar must match a sequence of tokens, namely

the open parenthesis token ((), a series of tokens for expressions, and the close

parenthesis token ()). A sequence grammar starts with an empty sequence (line

10), and then is built upon using various sequence constructing methods such as

part() (line 12) and drop() (lines 10 and 12), each accepting a grammar. A drop

sequence grammar tells the parser to parse the grammar but drops the result. Any

failure while parsing a dropped constituent grammar still results in a parse failure

overall. Drop sequence grammars are useful in cases where tokens in the input text

determine the structure of the resulting abstract syntax tree, but not the nodes in it,

or cases where the token does not have a representation in the abstract syntax. The

result of a sequence grammar is a heterogeneous list, where each node has its own

type. Hence, a map() transformation is needed to extract the parsed expression (line

14). Finally, a reference grammar (line 5) acts as a pre-declaration, which allows

for self-referential (e.g., the definitions of 〈factor〉 and 〈expression〉) or mutually

recursive grammars (e.g., the definitions of 〈unit〉 and 〈expression〉).
Figure 4.6 shows how the 〈factor〉 and 〈expression〉 productions can be imple-

mented. Since 〈factor〉 is self-referential, it is declared as a reference grammar.

Since 〈expression〉 is both self-referential and mutually recursive (with 〈unit〉), it

is also declared as a reference grammar. Lines 24 to 26 and 47 to 49 in Figure 4.6

shows how each nodes in the resulting heterogeneous list can be accessed. The

nodes are in the reverse order of construction. A Located object is a simple stand-

in for cases where a temporary result of a constituent part of a grammar is needed.

In the case of 〈factor〉, the operator may be a multiplication or a division, rep-

resented as enum values, which cannot be a subclass of SourceLocatable (a Java

restriction). Hence, it is saved into a Located object.
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1 static ReferenceGrammar<Expression> factor = new ReferenceGrammar<>();
2
3 static {
4 factor.setReferencedGrammar(
5 parseOneOf(
6 unit,
7 emptySequence()
8 .part(factor)
9 .part(parseOneOf(

10 emptySequence()
11 .part(matchString("*"))
12 .map(seq ->
13 new Located<>(
14 seq.getLocation(),
15 BinOp.Operator.Mul)),
16 emptySequence()
17 .part(matchString("/"))
18 .map(seq ->
19 new Located<>(
20 seq.getLocation(),
21 BinOp.Operator.Div))))
22 .part(unit)
23 .map(seq -> new BinOp(
24 seq.getValue().getRest().getFirst().getValue(),
25 seq.getValue().getRest().getRest().getFirst(),
26 seq.getValue().getFirst()))));
27
28 expression.setReferencedGrammar(
29 parseOneOf(
30 factor,
31 emptySequence()
32 .part(expression)
33 .part(parseOneOf(
34 emptySequence()
35 .part(matchString("+"))
36 .map(seq ->
37 new Located<>(
38 seq.getLocation(),
39 BinOp.Operator.Add)),
40 emptySequence()
41 .part(matchString("-"))
42 .map(seq -> new Located<>(
43 seq.getLocation(),
44 BinOp.Operator.Sub))))
45 .part(factor)
46 .map(seq -> new BinOp(
47 seq.getValue().getRest().getFirst().getValue(),
48 seq.getValue().getRest().getRest().getFirst(),
49 seq.getValue().getFirst()))));
50 }

Figure 4.6: Implementation for 〈factor〉 and 〈expression〉

23



PGo’s parser

PGo’s parser is a recursive descent parser with backtracking and memoization. It

consumes Grammar objects defined by the programmer, together with a string input,

and produces all possible abstract syntax trees resulting from that grammar.

Since TLA+ has many constructs with the same prefix, e.g., a tuple <<e>>, and

a required action, <<e1>>_e2, memoization is heavily employed to keep parsing

time manageable. The parser relies on the programmer to annotate which grammar

should be memoized via a memoize() call, which creates a memoized grammar from

any grammar. The memoization key is the identity of the memoized grammar and

the state of the parser when it encounters that grammar. Upon the first encounter,

the parser proceeds normally with the inner grammar and the result is saved into

a memoization table. When there is a parse failure and the memoized grammar is

retried, the memoized result is used instead of reparsing.

Internal representation

PGo has separate abstract syntax classes for TLA+, PlusCal, and Modular PlusCal

constructs. Each abstract syntax node has its own unique identifier, which is used

as keys in constructed tables of information regarding that node. This means that

their classes need not be modified to add fields for new pieces of information about

the objects, which reduces churn in the code base. The class DefinitionRegistry

in the code base acts as a centralized database for all tables of information about

nodes in the abstract syntax tree.

The design of the abstract syntax classes follows the visitor pattern, which

allows addition of operations on the classes without modification to them, further

reducing churn.

4.1.2 Macro expansion

Macros in PlusCal and Modular PlusCal are named code fragments. They are

expanded structurally during compilation. As such, they do not suffer from pitfalls

of textual expansion, such operator precedence problems, which is demonstrated

next. A call such as Macro(c, 1 + 2), whose definition is shown in Figure 4.7,

is expanded correctly to c := (1 + 2) * 2 by PGo. This is in contrast to textual
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1 macro Macro(a, b) {
2 a := b * 2;
3 }

Figure 4.7: A simple macro

1 lb: while (f(a)) {
2 body
3 };
4 stmt

1 lb: if (f(a)) {
2 body
3 goto lb;
4 } else {
5 stmt
6 };

Figure 4.8: Simple desugaring

macro expansion, where the same call is expanded incorrectly to c := 1 + 2 * 2.

There are restrictions on macros such as macros must not be recursive or mu-

tually recursive, and their bodies must not contain any labels.

4.1.3 Desugaring

Since a PlusCal while loop must appear at the start of a labeled code block, a while

loop in Modular PlusCal are desugared into an if and a goto. This is necessary due

to the possibility that the condition of the while loop may contain an archetype pa-

rameter read, which may be expanded in the code generation stage (Section 4.1.7)

to multiple statements. Figure 4.8 shows how this translation is performed in the

simplest case. Note that desugaring is only performed in the Modular PlusCal to

PlusCal pipeline.

However, blindly inserting a goto may result in invalid code since control flow

may have terminated before the inserted goto. For example, the last statement of a

while loop may be a goto statement. Inserting a new goto after that goto results in

dead code, which is forbidden by the TLA+ tool box. Therefore, desugaring has to

insert goto strategically based on control flow.

4.1.4 Validation

The validation stage checks the input specification’s compliance with labeling rules.

Modular PlusCal inherits all labeling rules from PlusCal. These rules dictate where
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a label must, must not, and may be present. Below are some example labeling rules.

• The first statement in the body of a process, a procedure, or a uniprocess

algorithm must be labeled.

• A while statement must be labeled.

• A statement S in a statement sequence must be labeled if it is preceded in

that sequence by any of the following:

– A call statement, if S is not a return or a goto.

– A return statement.

– A goto statement.

– An if or either statement that contains a labeled statement, a goto, a

call, or a return anywhere within it.

• A macro body and a with body cannot contain any labeled statements.

• In any control path, a label must come between an assignment to a variable

x and any other statement that assigns a value to x. A local variable or pa-

rameter of a procedure P is set by a call P(...) or return statement in P.

The above rules are taken from section 3.7 of the PlusCal’s manual1.

4.1.5 Scoping

Modular PlusCal, and PlusCal have static scoping, i.e., identifiers must be declared

before use. TLA+, on the other hand, does not allow redefinition of an identifier, so

the problem of scoping becomes moot for the language.

The scoping stage builds a table matching uses of an identifier to its declara-

tion. It does so using one ChainMap per lexical scope. A ChainMap has mappings

from variable names to variable declarations, and a parent map. To find a variable

declaration, it first looks up the variable name in its own mappings. If the name is

not found, the ChainMap delegates the lookup to its parent map.

1https://lamport.azurewebsites.net/tla/c-manual.pdf
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In addition, the scoping stage also loads additional modules as instructed by

TLA+ EXTENDS and INSTANCE statements in the specification. An EXTENDS statement

pulls all definitions in a TLA+ module into scope. An INSTANCE statement pulls all

definitions in a TLA+ module into scope, and also replaces some constant defini-

tions with user-provided values.

Beside normal variables, which are declared before use, there are some special

variables which are implicitly declared. For example, each process and archetype

body has an implicit self variable, which refers to the process identifier of the

process or archetype, is immutable, and is in scope for the whole body. A pro-

cedure also has an implicit self variable which refers to the calling process or

archetype’s identifier; however, PGo does not support this at the moment but only

supports procedures which do not use self. Other special variables are $variable

and $value. The $variable special variable is available in both read and write

blocks of a mapping macro and it refers to the name of the variable being mapped

(see Section 4.1.7). The $value special variable is available only in the write block

of a mapping macro and it refers to the value being assigned to the mapped variable

(see Section 4.1.7).

4.1.6 Post-scoping validation

In addition to the labeling rules, Modular PlusCal also imposes some restrictions

which are checked in the post-scoping validation stage. Below are the restrictions

checked in this stage.

• Only ref parameters or local variables can be assigned to inside an archetype

body.

• Parameters which are function-mapped can only be used as functions (as

opposed to being used as variables).

• Parameters which are variable-mapped can only be used as variables (as op-

posed to being used as functions).

• A variable can only be mapped once in a Modular PlusCal instance state-

ment.
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• Parameters must be mapped consistently across different instances of the

same archetype, i.e., a parameter of an archetype cannot be function-mapped

in one instance but variable-mapped in another instance.

These restrictions ensure that the Modular PlusCal to Go code generation stage

(not described in this thesis) can generate meaningful code.

4.1.7 PlusCal code generation

A Modular PlusCal specification is compiled into a PlusCal specification by remov-

ing the mapping macros, the archetypes, and compiling instances into processes.

An instance is compiled into a process, or a group of processes, by expanding reads

and writes to archetype parameters with their corresponding mapping macro read

and write blocks. In other words, archetype definitions are inlined and mapping

macros are expanded for instances.

For example, consider the specification in Figure 4.9. The archetype A writes

0 to the network (line 29), modeled as conn, reads from the network into a local

variable r (line 30), and if r is positive (line 31), writes r + 1 into its database at

key "k" (line 32), and finally, prints out the value associated with the key "k" in its

database (line 34). It does all of the above in one atomic step labeled l. A single

process P (line 39), assigned an identifier of 0 (which is the value of self within its

body), is instantiated from archetype A, with a TCP connection (lines 39 and 40),

and a local database initialized to have the key "k" maps to 0 (lines 39 and 41).

Figure 4.10 shows the compiled PlusCal output for this specification with added

comments for clarity.

As seen in Figure 4.10, read and write expansions use temporary variables.

Any write to network is saved into a temporary variable (e.g., connWrite on line

11 and connWrite0 on line 16) because PlusCal only permits one modification per

variable in a label. Any read from network is also saved into a temporary variable

(e.g., connRead on line 17) to maintain a small code size. If there are multiple labels,

the temporary variables are reused in each label.

28



1 --mpcal Spec {
2 mapping macro TCPConnection {
3 read {
4 await Len($variable) > 0;
5 with (msg = Head($variable)) {
6 $variable := Tail($variable);
7 yield msg;
8 }
9 }

10 write {
11 await Len($variable) < BufferSize;
12 yield Append($variable, $value);
13 }
14 }
15
16 mapping macro DB {
17 read {
18 yield $variable;
19 }
20 write {
21 yield $value;
22 }
23 }
24
25 archetype A(ref conn, ref db)
26 variables r;
27 {
28 l:
29 conn := 0;
30 r := conn;
31 if (r > 0) {
32 db["k"] := r + 1;
33 };
34 print db["k"];
35 }
36
37 variables network = <<>>;
38
39 process (P = 0) == instance A(ref network, [k \in {"k"} |-> 0])
40 mapping network via TCPConnection
41 mapping @2[_] via DB;
42 }

Figure 4.9: A simple Modular PlusCal specification
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1 --algorithm Spec {
2 variables network = <<>>,
3 \* temporaries
4 connWrite, connRead, connWrite0, dbWrite, dbWrite0, dbRead;
5 process (P = 0)
6 variables dbLocal = [k \in {"k"} |-> 0], r;
7 {
8 l:
9 \* expanded write to conn

10 await (Len(network)) < (BufferSize);
11 connWrite := Append(network, 0);
12
13 \* expanded read from conn
14 await (Len(connWrite)) > (0);
15 with (msg0 = Head(connWrite)) {
16 connWrite0 := Tail(connWrite);
17 connRead := msg0;
18 };
19 r := connRead;
20
21 if (r > 0) {
22 \* expanded write to db
23 dbWrite := [dbLocal EXCEPT !["k"] = (r) + (1)];
24
25 \* join write
26 dbWrite0 := dbWrite;
27 } else {
28 \* join write
29 dbWrite0 := dbLocal;
30 };
31 \* expanded read from db["k"]
32 dbRead := dbWrite0["k"];
33
34 \* print uses temporary
35 print dbRead;
36
37 \* write-backs
38 network := connWrite0;
39 dbLocal := dbWrite0;
40 }
41 }

Figure 4.10: Compiled PlusCal output
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Write-backs

Modular PlusCal, just like PlusCal, allows the programmer to put multiple reads

and a single write to the same archetype parameter into a labeled atomic step. How-

ever, both read and write blocks of a mapping macro may modify the underlying

variable (e.g., TCPConnection mapping macro in Figure 4.9). Therefore, PGo must

generate temporary write variables to save intermediary modifications to the un-

derlying variable. The last temporary write variable is written to the underlying

variable at the end of the label.

Join writes

When control flow forks into multiple execution paths (e.g., if and either state-

ments), each path may write a different number of times to an underlying variable.

This is a problem because when the execution paths merge back after the statement,

there may not be a single temporary variable that can be used for further modifica-

tion. For example, in Figure 4.9, db is only modified when r is positive (line 32).

Therefore, join writes are inserted (lines 26 and 28 of Figure 4.10) so that there is a

single valid temporary variable to be used after the statement, regardless of which

execution path was taken.

Temporary variables as global variables

Temporary variables capture unnecessary intermediary states. The intermediary

states are distinct from each other due to differences in the values of the temporary

variables. This leads to an exponential increase in the number of states that TLC

has to check.

Originally, temporary variables are declared as local variables in compiled

PlusCal processes. This further exacerbates the problem of state explosion due

to how local variables in processes are compiled to TLA+. Local variables in Plus-

Cal processes are compiled as TLA+ global variables whose values are functions

mapping process identifiers to the local value of that variable in TLA+.

To illustrate the problem, consider two example PlusCal outputs of the Modular

PlusCal to PlusCal pipeline, shown in Figure 4.11. In Figure 4.11, temp serves as

a PGo generated temporary variable for var. The only difference between the two
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1 --algorithm Spec {
2 variables var = [
3 i \in {1, 2} |-> 0
4 ];
5
6 process (P \in {1, 2})
7 variables temp;
8 {
9 lb:

10 temp := [
11 var EXCEPT ![self] = self
12 ];
13 var := temp;
14 }
15 }

1 --algorithm Spec {
2 variables
3 temp,
4 var = [
5 i \in {1, 2} |-> 0
6 ];
7
8 process (P \in {1, 2}) {
9 lb:

10 temp := [
11 var EXCEPT ![self] = self
12 ];
13 var := temp;
14 }
15 }

Figure 4.11: Example local and global temporary variable outputs
Left: Local temporary variable PlusCal output.

Right: Global temporary variable PlusCal output.

specifications is whether temp is a local variable or a global variable.

Local variables in PlusCal processes are compiled as TLA+ global functions

mapping process identifiers to the local value of that variable in TLA+ due to the

possibility that the programmer may want to write properties and invariants involv-

ing local state of processes. Thus, lines 10 to 12 of the local temporary variable

output in Figure 4.11 is actually compiled to the following nested function substi-

tution 2 in TLA+.

temp’ = [temp EXCEPT ![self] = [var EXCEPT ![self] = self]]

In other words, temp is actually a nested function. Furthermore, process 1 can

only ever read from or write to temp[1] in the compiled TLA+. Similarly, process 2

can only read from and write to temp[2] in the compiled TLA+.

The state spaces for the two specifications in Figure 4.11 are shown in Fig-

ure 4.12. Below are the states of the local temporary variable specification. Note

that lb is an atomic block for both processes 1 and 2.

2A function substitution [func EXCEPT ![x] = y] results in a new function with the same
content as func, except that key x is mapped to value y in the new function.
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Initial state

Process 1
has performed lb

Process 1
had performed lb
before process 2
performed lb

Process 2
has performed lb

Process 2
had performed lb
before process 1
performed lb

Initial state

Process 1
has performed lb

Process 2
has performed lb

Both processes 1 and 2
have performed lb

Figure 4.12: State spaces of specifications in Figure 4.11
Left: State space for local temporary variable specification.

Right: State space for global temporary variable specification.

• Initial state

temp = [1 |-> defaultInitValue, 2 |-> defaultInitValue]

var = [1 |-> 0, 2 |-> 0]

• Process 1 has performed lb

temp = [1 |-> [1 |-> 1, 2 |-> 0], 2 |-> defaultInitValue]

var = [1 |-> 1, 2 |-> 0]

• Process 1 had performed lb before process 2 performed lb

temp = [1 |-> [1 |-> 1, 2 |-> 0], 2 |-> [1 |-> 1, 2 |-> 2]]

var = [1 |-> 1, 2 |-> 2]

• Process 2 has performed lb

temp = [1 |-> defaultInitValue, 2 |-> [1 |-> 0, 2 |-> 2]]

var = [1 |-> 0, 2 |-> 2]

• Process 2 had performed lb before process 1 performed lb

temp = [1 |-> [1 |-> 1, 2 |-> 2], 2 |-> [1 |-> 0, 2 |-> 2]]

var = [1 |-> 1, 2 |-> 2]

Contrast the state space of the global temporary variable specification and that

of the local temporary variable specification in Figure 4.12. The state space now

has only four states, which are listed below.
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• Initial state

temp = defaultInitValue

var = [1 |-> 0, 2 |-> 0]

• Process 1 has performed lb

temp = [1 |-> 1, 2 |-> 0]

var = [1 |-> 1, 2 |-> 0]

• Process 2 has performed lb

temp = [1 |-> 0, 2 |-> 2]

var = [1 |-> 0, 2 |-> 2]

• Process 2 had performed lb before process 1 performed lb

temp = [1 |-> 1, 2 |-> 2]

var = [1 |-> 1, 2 |-> 2]

As discussed above, promoting temporary variables to global variable reduces

state explosion.
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PlusCal specification

Parsing
(Section 4.1.1)

Configuration

Configuration parsing
(Section 4.2.1)

Configuration validation
(Section 4.2.1)

Macro expansion
(Section 4.1.2)

Validation
(Section 4.1.4)

Scoping
(Section 4.1.5)

Post-scoping validation
(Section 4.1.6)

Type inference
(Section 4.2.2)

Atomicity inference
(Section 4.2.3)

Go code generation
(Section 4.2.4)

Go program

Figure 4.13: PGo compiler pipeline from PlusCal to Go

4.2 The PlusCal to Go pipeline
The PlusCal to Go pipeline takes a PlusCal specification, as well as a configuration

file, as input and produces a Go program as output (see Figure 4.13).
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1 Usage: pgo [options] spec
2 --version=<boolean> - Version [default false]
3 -h --help=<boolean> - Print usage information [default false]
4 -q --logLvlQuiet=<boolean> - Reduce printing during execution [default false]
5 -v --logLvlVerbose=<boolean> - Print detailed information during execution
6 [default false]
7 -m --mpcalCompile=<boolean> - Compile a Modular PlusCal spec to vanilla PlusCal
8 [default false]
9 -c --configFilePath=<string> - path to the configuration file, if any

Figure 4.14: PGo’s accepted command line arguments

1 {
2 "build": {
3 "output_dir": "/path/to/output/dir",
4 "dest_file": "file.go",
5 "dest_package": "package_name"
6 },
7 "networking": {
8 "enabled": false,
9 "state": {

10 "strategy": "state-server",
11 "endpoints": [],
12 "peers": [],
13 "timeout": 3
14 }
15 },
16 "constants": {
17 "CONST": "\"val\""
18 }
19 }

Figure 4.15: Configuration file for PGo

4.2.1 Configuration parsing

The configuration parsing stage parses command line arguments and the configu-

ration file. Figure 4.14 shows the command line arguments accepted by PGo. If

the programmer turns on compilation from Modular PlusCal to PlusCal, the path

to the configuration file is not required. The configuration file is expected to be a

valid JSON object with attributes shown in Figure 4.15. We now overview each of

the configuration parameters, starting with build.

Build

The build object is required. The output_dir attribute is required and must be

an existing path. The programmer must provide either dest_file or dest_package
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attribute; if both are provided, dest_package takes precedence. The dest_file at-

tributes specifies the name of the output file. The dest_package attribute specifies

the name of the output Go package.

Networking

The networking object is optional. If it is not specified, PGo produces a multi-

threaded Go program as output. The optional enabled attribute specifies whether

networking is enabled. The state attribute specifies the configuration for the net-

worked state strategy. If the state object is present, enabled is overridden to be true.

The strategy attribute specifies which state strategy to use. PGo currently sup-

ports state-server and etcd, with state-server being the default. The endpoints

attribute specifies the etcd endpoints to connect to. The endpoints attribute is re-

quired if strategy is etcd. The peers attribute specifies the peer endpoints to con-

nect to. The optional timeout attribute specifies the network timeout in seconds,

which defaults to three seconds.

Constants

The constants object is optional. It contains key-value pairs whose key is the name

of the constant, encoded as a JSON string, and whose value is a TLA+ expression,

also encoded as a JSON string.

4.2.2 Type inference

Since Go, the target language, is a statically typed language, PGo introduces a type

system for effective compilation. The type inference stage is the last stage shared

between the Modular PlusCal to Go and the PlusCal to Go pipelines.

Types

PGo’s types are defined inductively, as shown in Figure 4.16. The~τ notation indi-

cates a sequence of types, e.g., Tuple[Bool,Tuple[Int]] is a valid type. The −−→x : τ

indicates a sequence of fields and types, e.g., Record[dst : String,src : String]

is a valid type.
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τ ::=Bool | Int | Real | String | Interface
| Set[τ] | NonEnumerableSet[τ] | Slice[τ]
| Tuple[~τ] | Map[τ1]τ2 | Record[−−→x : τ]

| Function(~τ)τ2 | Procedure(~τ)
| AR[read(τ1);write(τ2)] | ARC[τ1][read(τ2);write(τ3)]

Figure 4.16: PGo’s types

The type NonEnumerableSet[τ] is reserved for sets that are not finitely enu-

merable, such as built-in constructs like Nat and Integers, which represent the

sets of natural numbers and integers, respectively. An example record type is

Record[dst : String,data : String], which is inferred for the TLA+ expression

[dst |-> "1.1.1.1", data |-> "payload"]. PlusCal processes and procedures, as

well as Modular PlusCal archetypes and instances, have type Procedure(~τ).

The type AR[read(τ1);write(τ2)] is read as archetype resource with read type

τ1 and write type τ2. Similarly, the type ARC[τ1][read(τ2);write(τ3)] is read as

archetype resource collection with key type τ1, read type τ2, and write type τ3.

These two types are the types of archetype parameters.

Type constraints

A typing judgement has the form Γ ` t : T | C, which is read as “term t has type

T under assumptions Γ whenever constraints C are satisfied”. Below are some

example type rules in PGo’s type system.

n ∈ {FALSE,TRUE}
CT-Bool

Γ ` n : Bool | /0

n ∈ {. . . ,-1,0,1, . . .}
CT-Int

Γ ` n : Int | /0

x : T ∈ Γ CT-Var
Γ ` x : T | /0

n ∈ {. . . ,-0.1, . . . ,0, . . . ,0.1, . . .}
CT-Real

Γ ` n : Real | /0

n ∈ {"","a", . . .}
CT-String

Γ ` n : String | /0

38



Γ ` x : T1 |C1 Γ ` y : T2 |C2

boolOp ∈ {∧,∨,⇒,≡}
C =C1∪C2∪{T1 = Bool,T2 = Bool}

CT-BoolOp
Γ ` x boolOp y : Bool |C

Γ ` x : T1 |C1 Γ ` y : T2 |C2

setMemberOp ∈ {∈, /∈}
C =C1∪C2∪{T2 = Set[T1]}

CT-SetMemberOp
Γ ` x setMemberOp y : Bool |C

The typing rules are implemented in multiple classes in PGo’s code base. For

example, typing rules for built-in TLA+ operators are implemented in the TLABuiltins

class.

The most common type constraints in PGo’s type system are equality type con-

straints, as shown in the example typing rules. An equality type constraint states

that a type T1 must be structurally equal to another type T2. In other words, all con-

stituent types within T1, if there are any, must be structurally equal to constituent

types within T2, recursively.

In addition to type equality constraints, PGo also supports has-field constraints.

A has-field constraint states that a type T must be a Record and it must have a

field f with type T f . This type constraint is necessary since definition and usage of

records may span multiple processes or archetypes.

Type equality constraints and has-field constraints comprise basic type con-

straints. These basic type constraints are then wrapped in monomorphic type con-

straints or polymorphic type constraints. A monomorphic type constraint is just a

simple wrapper for a basic type constraint. A polymorphic type constraint wraps

multiple basic constraints, which are considered alternatives. Since a collection of

type constraints encodes the conjunction of them, a polymorphic type constraint

allows encoding of disjunctions of basic constraints.

Type inference algorithm

The type inference stage has two phases: type constraint collection, and type solv-

ing. After type constraints are collected, they are solved by the TypeSolver. The re-

sulting solution is a mapping between type variables (stand-ins for unknown types

during type constraint collection) to concrete types. If a type variable is not mapped
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to any concrete type, which happens when there are not enough constraints on

it, it is mapped to an Interface. PGo’s Interface type is translated to Go’s

interface{} type in code generation.

The TypeSolver works by going through the constraints one by one. If the

current constraint is a monomorphic constraint, the solver extracts out the basic

constraint. If the current constraint is a polymorphic constraint, the solver sets up

a backtracking point by taking a snapshot of its own state, and pushes the snapshot

onto a state stack. It then extracts the first basic constraint from the polymorphic

constraint, and proceeds to solve it. When there’s a need to backtrack, the solver

pops a snapshot from the state stack, reloads its state from the snapshot, and ex-

tracts the next basic constraint to be solved. If there’s no basic constraint left, it

returns an error via the issue context.

After extracting a basic type constraint, the TypeSolver proceeds to solve it. If

the extracted basic constraint is a has-field constraint, the solver looks up the record

in its record groups to constrain that record if it’s present; otherwise, it adds a new

entry for that record. If the extracted basic constraint is not a has-field constraint,

it must be a type equality constraint. The solver checks if the left-hand side or

the right-hand side of the equality constraint is a type variable. If so, it looks up

the type variable in its variable groups. If both are type variables, the two groups

to which they belong are merged, and the types to which the two groups map are

added as a type equality constraint to be solved. The left hand side and right hand

side are then substituted to gain further structural knowledge of their types. The

resulting types are checked to see if they are the same type and their constituent

types are added as constraints to be solved.

The above process repeats until there are no constraints left, at which point the

solver constructs and returns a substitution as the result. In other words, the solver

returns the first solution it can find.

Another point of note is that since TLA+ expressions are ambiguous (e.g.,

<<1, 2>> can be a tuple or a sequence initialized with two elements), PGo prefers

constraints which give the most amount of information. For example, the TLA+

function call a[b] is constrained with (a : Slice[T]∧ b : Int)∨ (a : Map[T1]T2∧ b :

T1)∨ (a : Function(T1)T2∧ b : T1). The order of basic constraints in the disjunc-

tion matters, since TypeSolver returns the first found solution. For example, if
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selecting a : Slice[T]∧ b : Int leads to a solution, TypeSolver does not consider

the other constraints.

4.2.3 Atomicity inference

The atomicity inference stage is the first stage where Modular PlusCal and PlusCal

compilation to Go diverge. This thesis describes only the PlusCal to Go pipeline.

PlusCal requires that a statement be part of a label. A block of statements in a

label is executed atomically, i.e., they all succeed or are not executed. Therefore,

PGo has to determine if a global variable needs synchronization to maintain these

semantics in the generated Go code.

Global variables that need synchronization are grouped into collections that are

called lock groups. The lock groups are computed by traversing labeled blocks in

procedures and processes, putting all global variables accessed within a labeled

block into the same group, and merging groups with a common global variable.

4.2.4 Go code generation

PlusCal has many language constructs that are translated to Go in non-trivial ways.

These constructs and their translations are described in this section, starting with

an overview of supported PlusCal and TLA+ constructs.

PlusCal support

PGo supports both the C and P-syntaxes of PlusCal. PlusCal’s P-syntax denotes

code blocks with keywords like begin and end, while its C-syntax denotes code

blocks with curly braces. Note that unused labels are removed from the Go output

and that fresh variable names and labels are generated to avoid name capture.

PlusCal feature PGo support

Line comment

\* line comment

Supported; removed from output
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PlusCal feature PGo support

Block comment

(* block comment *)

Supported; removed from output

Labeled statements

label:

stmt1;

stmt2;

\* ...

Compiled with a mutex or a dis-

tributed mutex around the statements

Assignment

x := exp;

Supported; compiled as expected

Multiple variable assignment

x := y || y := x + y;

Supported; compiled as multiple as-

signment in Go

While loop

while (condition) {

body;

}

Compiled as

for {

if !condition {

break

}

body

}
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PlusCal feature PGo support

If statement

if (condition) {

thenPart;

} else {

elsePart;

}

Supported; compiled as expected

Return statement

return;

Supported; compiled as expected

Skip statement

skip;

Supported; removed from output

Call statement

call proc(arg1, arg2);

Supported; compiled as expected

Macro call

macro1(arg1, arg2);

Supported; expanded during compi-

lation
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PlusCal feature PGo support

Either statement

either { stmt1; stmt2; }

or { stmt3; stmt4; }

or { stmt5; stmt6; }

\* ...

Compiled as

case0:

stmt1

stmt2

goto endEither

case1:

stmt3

stmt4

goto endEither

case2:

stmt5

stmt6

goto endEither

// ...

endEither:

Each case is tried deterministically

from top to bottom (i.e., case0 is

tried before case1, etc.). Case N is

tried only after case 0 to N-1 have

failed because await conditions in

those cases are not met.

With statement

with (x = exp1,

y \in exp2) {

body;

}

Supported; compiled as variable as-

signment with fresh names. In the

example code, y is assigned the first

element of exp2.

Print statement

print exp;

Compiled as

fmt.Printf("%v", exp)
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PlusCal feature PGo support

Assert statement

assert condition;

Compiled as

if !condition {

panic("condition");

}

Await statement

await condition;

Compiled as

awaitLabel:

if !condition {

goto awaitLabel

}

Goto statement

goto label;

Supported; compiled as expected

Single process algorithm

--algorithm Algo {

variables x = exp1,

y \in exp2;

{

body;

}

}

Supported; compiled as a single-

threaded single-process Go program
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PlusCal feature PGo support

Multiprocess algorithm

--algorithm Algo {

variables x = exp1,

y = exp2;

process (P \in exp3)

variables local = exp4;

{

body;

}

}

Supported; compiled with various

strategies configured by the user

Table 4.1: PGo support for PlusCal constructs
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TLA+ support

Below are the TLA+ constructs. Note that PGo makes liberal use of temporary

variables to compile complex TLA+ constructs.

TLA+ feature PGo support

Function call

x[exp1]

\* or

x[exp1, exp2, exp3]

\* or

x[<<exp1, exp2, exp3>>]

\* or

x[[field1 |-> e1,

field2 |-> e2]]

Supported; compiled code dependent

on the type of x (the function). For

example, when x is a Slice[τ], the

function call x[i] is compiled to a

simple slice indexing.

Binary operator call

x /\ y = z + 1

Supported; compiled as expected

Records

[field1 |-> exp1,

field2 |-> exp2]

Compiled as Go maps

map[string]interface{}{

"field1": exp1,

"field2": exp2,

}

Function set

[Nat -> Nat]

\* or

[Nat -> 1..3]

\* or

[1..3 -> 1..3]

Unsupported
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TLA+ feature PGo support

Function substitution

[f EXCEPT ![exp1] = exp2]

\* or

[f EXCEPT !.field = exp]

Unsupported

If expression

if condition

then thenExp

else elseExp

Compiled as

var result type;

if condition {

result = thenExp

} else {

result = elseExp

}

// result is used in place

// of the expression

// hereafter

Tuple (as slice)

<<exp1, exp2, exp3>>

Compiled as slice when all its con-

tents are of the same type

[]type{exp1, exp2, exp3}

Tuple (as struct)

<<exp1, exp2, exp3>>

Compiled as a struct when at least

one element is of a different type

from the others’ types.

struct {

e0 type

e1 type

e2 type

}{exp1, exp2, exp3}
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TLA+ feature PGo support

Case expression

CASE x -> y

[] z -> p

[] OTHER -> other

Compiled as

var result type;

if x {

result = y

goto matched

}

if z {

result = p

goto matched

}

result = other

matched:

// result is used in place

// of the expression

// hereafter

Existental

\E a, b, c : exp

\* or

\EE a, b, c : exp

Unsupportable; TLC throws an error

when given this expression

Universal

\A a, b, c : exp

\* or

\AA a, b, c : exp

Unsupportable; TLC throws an error

when given this expression

Let expression

LET op(a, b, c) == exp1

fn[d \in D] == exp2

e == exp3

IN exp

Unsupported
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TLA+ feature PGo support

Assumption

ASSUME exp

\* or

ASSUMPTION exp

\* or

AXIOM exp

Unsupported

Theorem

THEOREM exp

Unsupported

Maybe action

[exp1]_exp2

Unsupported

Required action

<<exp1>>_exp2

Unsupported

Operator

Op(arg1, arg2) = exp

Compiled as a Go function

Operator call

Op(exp1, exp2)

Supported; compiled as a function

call
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TLA+ feature PGo support

Quantified existential

\E a \in exp1,

b \in exp2 : exp3

Compiled as

exists := false

for _, a := range exp1 {

for _, b := range exp2 {

if exp3 {

exists = true

goto yes

}

}

}

yes:

// exists is used in place

// of the expression

// hereafter

Quantified universal

\A a \in exp1,

b \in exp2 : exp3

Compiled as

forAll := true

for _, a := range exp1 {

for _, b := range exp2 {

if !exp3 {

forAll = false

goto no

}

}

}

no:

// forAll is used in place

// of the expression

// hereafter

Set constructor

{exp1, exp2, exp3}

Compiled as sorted slice

[]type{exp1, exp2, exp3}
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TLA+ feature PGo support

Set comprehension

{exp : a \in exp1,

b \in exp2}

Compiled as

tmpSet := make([]type, 0)

for _, a := range exp1 {

for _, b := range exp2 {

tmpSet = append(tmpSet,

exp)

}

}

// more code to ensure

// elements in tmpSet

// are unique and sorted

// tmpSet is used in place

// of the expression

// hereafter

Set refinement

{a \in exp1 : exp}

Compiled as

tmpSet := make([]type, 0)

for _, v := range exp1 {

if exp {

tmpSet = append(tmpSet,

v)

}

}

// tmpSet is used in place

// of the expression

// hereafter

Table 4.2: PGo support for TLA+ constructs

Structure of a compiled Go program

A compiled Go program has the following structure: an init function, compiled

procedures, compiled user-defined operators, compiled processes (as Go func-

52



tions), and a main function.

The init function contains initialization code for constants. It also contains

initialization code for global variables, as well as client initialization code for the

global state backing store (etcd or state server), when compiling a multi-process

specification.

When compiling a single-process specification, the main function contains the

compiled output of the single process’s body. When compiling a multi-process

specification, it only contains a “process switch”, which is a switch statement se-

lecting the right process based on the command line argument passed to it at run-

time. When compiling a multi-process specification using the state server strategy,

there are two synchronization barriers before and after the process switch. These

synchronization barriers ensure states are initialized correctly and processes termi-

nate only when all other processes have finished their work.

Critical section tracking

Since PlusCal execution model requires that a statement must be part of exactly one

label, PGo employs mutual exclusions (mutexes) to satisfy this requirement. At the

start and end of a compiled labeled block, PGo inserts mutex lock and unlock code

respectively. However, statements with differing execution paths, e.g., if, while,

and either statements, pose a challenge to this simple compilation strategy, since

each execution path may execute different labels as well as a different number of

labels. Thus, PGo employs critical section tracking to handle this issue.

In critical section tracking, PGo keeps the current active label and lock group

as part of its state. When a statement with diverging execution paths is compiled,

PGo makes copies of the tracking state, and follows different paths with different

copies. Thus, compilation interacts with labeling rules (see Section 4.1.4) in non-

trivial ways. For example, Figure 4.17 shows a simple while loop whose condition

cond is in label cond_label, which is different from its body’s label body_label, as

well as the pseudocode for the output, where CS is short for critical section. Before

entering the loop, PGo inserts code to enter the critical section for cond_label (line

1). After testing the condition, PGo exits the critical section for cond_label (line 7),

and enters the critical section for cond_body (line 8) to execute the body of the loop
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1 cond_label: while (cond) {
2 body_label: body
3 };

1 enter CS for cond_label
2 for {
3 if !cond {
4 exit CS for cond_label
5 break
6 }
7 exit CS for cond_label
8 enter CS for body_label
9 body

10 exit CS for body_label
11 enter CS for cond_label
12 }

Figure 4.17: Example pseudocode output of while loop

(line 9). At the end of the loop, PGo exits the critical section for body_label (line

10), and enters the critical section for cond_label (line 11) so that the condition

cond can be safely tested again.
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Chapter 5

Evaluation

All tests in this chapter are preformed on an Intel Core i7-4720HQ CPU @ 2.60GHz

with 16GB of RAM running Fedora 29 and OpenJDK 1.8.0 201. The TLA+ tool-

box version is Version 1.5.7 of 18 July 2018.

5.1 How effective is the compiled PlusCal output for
model checking?

Since PGo relies on TLC to model check the Modular PlusCal specifications and

TLC only accepts TLA+ specifications as input, PGo has to compile Modular Plus-

Cal to TLA+. PGo does this by compiling Modular PlusCal to PlusCal, and then

relies on the TLA+ tool box to convert the resulting PlusCal to TLA+.

This experiment tries to determine if there is any degradation in model check-

ing performance and how much degradation is introduced by PGo’s approach to

compilation. In this experiment, three Modular PlusCal specifications, written by

the PGo development team, with varying degrees of complexity are used as input

to PGo.

The source Modular PlusCal specifications are formatted to maximize com-

prehension. All environment-modeling mapping macros are included in the spec-

ification. Each variable declaration is put on a new line with an accompanying

comment explaining what the variable is. Thus, the source specifications are quite

verbose.
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On the other hand, the compiled PlusCal specifications are only formatted

slightly with indentations by PGo. However, variable declarations are put on the

same line.

• Distributed queue. The distributed queue specification is the simplest of the

three specifications. The specification models a single-producer multiple-

consumer queue. The producer is modeled as an archetype with two pa-

rameters, namely the network connections and a task queue. The producer

continually listens for a work request from any client and then picks a task

from the queue to send to the requesting client. A client is modeled as an

archetype with two parameters, namely the network connections, and a task

processor. A client continually sends a work request to the producer, gets

back a task, and works on the task by invoking the task processor. The full

Modular PlusCal specification is 55 lines long. The compiled PlusCal output

has 59 lines of code.

• Load balancer The load balancer specification models a load balancing sys-

tem with multiple clients and multiple servers, multiplexed by a single load

balancer. The clients send requests to the load balancer, which forwards

them to the servers in a round-robin fashion. The specification models the

file system abstractly. The full Modular PlusCal specification is 87 lines

long. The compiled PlusCal output has 93 lines of code.

• Replicated key-value store The replicated key-value store specification is

the most complex of the three specifications. It models a replicated key-value

store where the replicas only talk to the clients and state modification is only

applied when the network message containing the command is stable. Mes-

sage stability detection is implemented via buffered messages with logical

time stamps. The full Modular PlusCal specification is 296 lines long. The

compiled PlusCal output has 338 lines of code.

Each Modular PlusCal specification is compiled to PlusCal using PGo into

two versions, one where the temporary variables are local to the processes, the

other where the temporary variables are global variables. Additionally, the author

manually creates another PlusCal version by removing all the temporary variables,
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i.e., this version is the optimal output an ideal compiler can generate. The metrics

collected for model checking are time (in seconds), diameter (the length of the

longest behavior found), states found (the total number of states TLC found), and

distinct states (the number of distinct states among the states found).

Parameters Version
Time

(seconds)
Diameter States Found Distinct States

1 consumer
buffer size of 1

Local 5 13 25 18
Global 5 13 25 18

Optimal 5 10 21 15

2 consumers
buffer size of 2

Local 5 48 8291 3858
Global 5 30 1583 758

Optimal 5 30 709 336

3 consumers
buffer size of 3

Local 109 125 40285707 12840589
Global 5 62 123723 45943

Optimal 5 59 25065 8635

4 consumers
buffer size of 4

Local timeout N/A N/A N/A
Global 23 106 11842873 3790768

Optimal 6 100 794705 214176

5 consumers
buffer size of 5

Local timeout N/A N/A N/A
Global timeout N/A N/A N/A

Optimal 30 153 24708973 5459069

6 consumers
buffer size of 6

Local timeout N/A N/A N/A
Global timeout N/A N/A N/A

Optimal timeout N/A N/A N/A

Table 5.1: Model checking results for distributed queue

Table 5.1 shows the model checking results for the distributed queue specifi-

cation. The specification has two parameters: number of consumers and buffer

size. With one consumer and a buffer size of one, the global temporary variable

version does not have any model checking performance advantage compared to

the local temporary variable version. Both versions degrade model checking per-

formance when compared to the optimal version. The model checking time in

seconds, however, shows that model checking for the three versions terminates in

the same amount of time (five seconds). This may indicate that a significant por-

tion of the time is spent in initializing TLC. With two consumers and a buffer
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size of two, the local temporary variable version starts to show further degradation

in model checking performance than the global temporary variable version in all

collected metrics except for running time. Although the state space of the global

temporary variable version has the same diameter as the optimal version, it con-

tains more than twice as many distinct states as the optimal version. This means

that the state spaces for the local and global temporary variable versions are going

to grow much faster than that of the optimal version. However, the model checking

time for the three versions are the same, and is also equal to the model checking

time when there is only one consumer with buffer size of one. This strengthens

the hypothesis that most of the five seconds is spent in initializing TLC. Increas-

ing the values of the parameters significantly increases the size of the state space.

However, the global temporary variable version shows a much slower growth than

the local temporary variable version. Nevertheless, the global temporary variable

version still shows much faster growth than the optimal version.

Overall, Table 5.1 shows that even such a simple specification as the distributed

queue specification quickly runs into the state explosion problem. It also shows that

declaring temporary variables as global variables is a huge state space reduction

when compared to declaring them as local variables. However, that strategy is still

not doing enough to keep the state space as small as the version where there are no

temporary variables.

Parameters Version
Time

(seconds)
Diameter States Found Distinct States

1 client
1 server

buffer size of 1

Local 5 19 85 48
Global 5 19 85 48

Optimal 5 19 85 48

2 clients
2 servers

buffer size of 2

Local 35 62 651053 221800
Global 10 53 121153 41832

Optimal 5 53 16261 5592

3 clients
3 servers

buffer size of 3

Local timeout N/A N/A N/A
Global timeout N/A N/A N/A

Optimal 15 101 5316875 1338572

3 clients
3 servers

buffer size of 3

Local timeout N/A N/A N/A
Global timeout N/A N/A N/A

Optimal timeout N/A N/A N/A

Table 5.2: Model checking results for load balancer
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Table 5.2 tells the same story as Table 5.1: global temporary variables are a

huge help but are nowhere near enough to keep state space down.

Unfortunately, the state space for the replicated key-value store is infinite, so

the programmer can only rely on bounded model checking which does not explore

the entire state space. Running TLC for bounded time or bounded number of states

does not show any difference among the three versions, but only shows the rate of

exploration of the state space in terms of number of explored states, which is about

10 million distinct states per minute for all three versions. In addition, TLC does

not show any other indication of progress, such as how much of the state space is

explored in terms of percentage of the overall state space. Thus, no metrics are

collected for the outputs of this specification.

5.2 How complex a specification can PGo compile?
This experiment tries to determine if PGo can compile various PlusCal specifica-

tions. In this experiment, six PlusCal specifications, which are a mix of pre-existing

and newly written specifications, are used as input to PGo. Table 5.3 shows the

sizes of the single-process specifications and their outputs. Table 5.4 shows the

sizes of the multi-process specifications and their outputs. Below are the descrip-

tions of the specifications.

• Euclid. The Euclid specification is a simple single-process PlusCal imple-

mentation of Euclid’s algorithm for finding the greatest common denomina-

tor of two numbers. It does so by continually subtracting the smaller number

from the larger number, and stopping only when the the larger number is 0

after subtraction. The result is printed to the screen. This specification is

written by a PGo team member.

• Queens. The queens specification is a single-process PlusCal implemen-

tation to solve the n-queens problem. The n-queens problem asks for all

placements of n queens on an n-by-n chessboard, such that no queen can

attack another. The PlusCal implementation is a brute-force solution that

tries to place the next queen such that it cannot attack any previously placed
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queens, keeping only successful placements along the way. This specifica-

tion is taken from the TLA+ examples repository.

• Counter. The counter specification has a number processes all trying to

increment a counter a number of times. This specification checks whether

global state management is implemented correctly, by checking if the final

value of the counter equals to the number of processes times the number of

iterations. This specification is written by a PGo team member.

• Round robin. The round robin specification is just the counter specification

with an added twist: each process is blocked waiting for its turn at the start

of each iteration. At the start of execution, all processes race to get the first

turn. This specification is written by a PGo team member.

• Distributed queue. The distributed queue specification models a single-

producer multiple-consumer queue. The queue is modeled as a sequence of

tasks. This specification is different from the one with the same name de-

scribed in Section 5.1. This specification is written by a PGo team member.

• Dijkstra’s mutex. The Dijkstra’s mutex specification is a PlusCal imple-

mentation of the first mutual exclusion algorithm by Dijkstra [11]. This

specification is taken from the TLA+ examples repository.

Specification
Size

(lines of code)
Output size

(lines of code)

Euclid 21 36

Queens 49 203

Table 5.3: Sizes of single-process specifications and their outputs
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Specification
Size

(lines of code)

Multi-threaded
output size

(lines of code)

Distributed system
output size

(lines of code)

Counter 27 55 88

Round robin 30 66 115

Distributed queue 43 70 117

Dijkstra’s mutex 41 173 340

Table 5.4: Sizes of multi-process specifications and their outputs

The results in Table 5.3 and Table 5.4 show that PGo can handle moderate-

size specifications with non-trivial TLA+ functionalities, such as set operations.

PGo successfully compiles the Dijkstra’s mutex specification which is a realistic

specification from the TLA+ examples repository. For examples of the Go outputs,

see Section 5.2.1 and Section 5.2.2.

Since this thesis does not describe PGo’s run-time system, and discussions

about the performance of the generated Go program is not meaningful without

discussing the run-time system, no metrics on the performance of the generated Go

programs are collected. Studying the performance of PGo’s compiled Go programs

are deferred to future work.

To give an intuition about the Go outputs, we provide walkthroughs of two

specifications in the next two subsections.

5.2.1 Walkthrough of the queens specification and its compiled
single-threaded implementation

Figure 5.1 shows the queens specification in PlusCal. Line 1 pulls arithmetic op-

erators on natural numbers from Naturals, sequence operators (such as Len, Seq

(sequence constructor), and Append) from Sequences, and printing operator and pro-

cedure (print in PlusCal and printS in TLA+) from TLC. The constant N denotes the

size of the board (line 4), which is assumed to be positive (line 5). The Attacks op-

erator (lines 7 to 10) checks if two queens on rows i and j can attack each other by

checking whether they are on the same column (line 8), on the same first diagonal

(line 9), or on the same second diagonal (line 10). The IsSolution operator (lines
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12 to 14) checks if a placement is a solution by making sure that all queens cannot

attack one another. The Solutions operator (line 16) contains all solutions for N

queens, which is constructed by filtering all NN placements using the IsSolution

operator. The IsSolution and Solutions operators are not used in the PlusCal spec-

ification but they are used in checking whether the PlusCal specification is correct.

The sols variable (line 21) contains all solutions found so far, which is ini-

tialized as an empty set. The todo variable contains the tasks to be done, which

is initialized as a set containing an empty placement (no queens are placed on the

board). Whenever there is work to be done (line 24), a placement queens is ex-

tracted from todo (line 26). The next row, where the new queen is placed, nxtQ, is

extracted on line 27. The cols variable (lines 28 and 29) is the set of all columns

where the next queen can be placed. The exts variable (line 30) is the set of new

placements, constructed by extending the placement on line 26 with the columns

on line 28. If the next row nxtQ is the last row to be filled (line 32), then todo is

updated by removing the placement queens, and the solution set sols is extended

with the new solutions, now in exts (line 33). Otherwise, the placement queens is

removed from todo and new placements, exts, are added to todo. When there are

no tasks left in todo, the set of solutions is printed (line 37).

There are some additional invariants to check during model checking. TypeInvariant

(lines 42 to 44) states that todo is a subset of the power set of the sequence 1 .. N

(line 43), all placements in todo must have length less than N (line 43), sols is also

a subset of the power set of the sequence 1 .. N (line 44), and all solutions in sols

must have length exactly N. Invariant (lines 46 to 49) states that must always be

a subset of Solutions (defined on line 16), and when there is no more work (todo

is empty), Solutions must be a subset of sols, which, together with the previous

condition, means that Solutions and sols must be equal.

The compiled single-threaded Go program has 203 lines of code. The configu-

ration for this specification only contains the output path and file name, as well as

the value for N, the problem size.

As show in Figure 5.2, it starts with the package name (line 1), imported pack-

ages (lines 3 to 6), declaration of N as a Go variable (line 8), and the init function,

which initializes N to 8, as specified in the configuration. Since only the Attacks

operator is used in the PlusCal specification, only that operator is compiled. Lines
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1 -------------------------- MODULE Queens -----------------------------
2 EXTENDS Naturals, Sequences, TLC
3
4 CONSTANT N \** number of queens and size of the board
5 ASSUME N \in Nat \ {0}
6
7 Attacks(queens,i,j) ==
8 \/ queens[i] = queens[j] \** same column
9 \/ queens[i] - queens[j] = i - j \** first diagonal

10 \/ queens[j] - queens[i] = i - j \** second diagonal
11
12 IsSolution(queens) ==
13 \A i \in 1 .. Len(queens)-1 : \A j \in i+1 .. Len(queens) :
14 ˜ Attacks(queens,i,j)
15
16 Solutions == { queens \in [1..N -> 1..N] : IsSolution(queens) }
17
18 (* --algorithm QueensPluscal
19 variables
20 todo = { << >> };
21 sols = {};
22
23 begin
24 nxtQ: while todo # {}
25 do
26 with queens \in todo,
27 nxtQ = Len(queens) + 1,
28 cols = { c \in 1..N : ˜ \E i \in 1 .. Len(queens) :
29 Attacks( Append(queens, c), i, nxtQ ) },
30 exts = { Append(queens,c) : c \in cols }
31 do
32 if (nxtQ = N)
33 then todo := todo \ {queens}; sols := sols \union exts;
34 else todo := (todo \ {queens}) \union exts;
35 end if;
36 end with;
37 end while;
38 print sols;
39 end algorithm
40 *)
41
42 TypeInvariant ==
43 /\ todo \in SUBSET Seq(1 .. N) /\ \A s \in todo : Len(s) < N
44 /\ sols \in SUBSET Seq(1 .. N) /\ \A s \in sols : Len(s) = N
45
46 Invariant ==
47 /\ sols \subseteq Solutions
48 /\ todo = {} => Solutions \subseteq sols
49 =============================================================================

Figure 5.1: Queens specification
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1 package main
2
3 import (
4 "fmt"
5 "sort"
6 )
7
8 var N int
9

10 func init() {
11 N = 11
12 }
13
14 func Attacks(queens []int, i int, j int) bool {
15 return queens[i-1] == queens[j-1] ||
16 queens[i-1]-queens[j-1] == i-j ||
17 queens[j-1]-queens[i-1] == i-j
18 }
19
20 func main() {
21 todo := [][]int{[]int{}}
22 sols := [][]int{}

Figure 5.2: Compiled queens specification - preamble

1 for {
2 if !(len(todo) != 0) {
3 break
4 }

Figure 5.3: Compiled queens specification - while condition

14 to 18 shows the compiled output of the Attacks operator, with the expression

split on multiple lines to fit on the page. The operator is compiled into a Go func-

tion with three parameters. PGo correctly infers the types of the parameters and

the return type of the operator, without aid from the programmer.

The rest of the specification is compiled into the main function in Go, starting

with the declaration and initialization of todo and sols. The variables todo and

sols are inferred to be sets of sequences of integers, and TLA+ sets are compiled

as sorted slices while sequences are compiled as slices, the two variables are of

type slices of slices of integers in Go. Since todo is initialized as a set containing

an empty sequence in PlusCal, it is initialized as a slice containing a single empty

slice (line 21). Since sols is initialized as an empty set, it is initialized as an empty

slice (line 22).

Figure 5.3 shows how the while condition on line 24 of Figure 5.1 is compiled.
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1 queens := todo[0]
2 nxtQ := len(queens) + 1
3 tmpSet := make([]int, 0)
4 tmpRange := make([]int, N-1+1)
5 for i := 1; i <= N; i++ {
6 tmpRange[i-1] = i
7 }
8 for _, c := range tmpRange {
9 exists := false

10 tmpRange0 := make([]int, len(queens)-1+1)
11 for i := 1; i <= len(queens); i++ {
12 tmpRange0[i-1] = i
13 }
14 for _, i := range tmpRange0 {
15 tmpSlice := make([]int, len(queens), len(queens)+1)
16 copy(tmpSlice, queens)
17 tmpSlice = append(tmpSlice, c)
18 if Attacks(tmpSlice, i, nxtQ) {
19 exists = true
20 break
21 }
22 }
23 if !exists {
24 tmpSet = append(tmpSet, c)
25 }
26 }
27 cols := tmpSet

Figure 5.4: Compiled queens specification - queens, nxtQ, and cols

Since this is a single-process output, there is no need to insert locking code. Note

that the check agains an empty collection is compiled as a length check against

zero.

Figure 5.4 shows how lines 26 to 29 of Figure 5.1 are compiled. Note that

the variable queens is assigned to the zeroth element of todo. Lines 4 to 7 show

how 1 .. N is compiled. Lines 8 to 27 show how a set refinement, which removes

elements for which the check returns false, is compiled, with the Attacks check on

line 29 of Figure 5.1 compiled on line 18. There is no need to sort the result, since

element removal maintains the sortedness property.

Figure 5.5 shows how line 30 of Figure 5.1, which is a set comprehension, is

compiled. It looks involved because it contains code for set element construction

(lines 2 to 7), sorting the constructed elements to establish sortedness (lines 8 to

19), and removal of duplicate elements to establish uniqueness (lines 20 to 40).

Since the condition for the if condition on line 32 of Figure 5.1 is a simple
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1 tmpSet0 := make([][]int, 0)
2 for _, c := range cols {
3 tmpSlice := make([]int, len(queens), len(queens)+1)
4 copy(tmpSlice, queens)
5 tmpSlice = append(tmpSlice, c)
6 tmpSet0 = append(tmpSet0, tmpSlice)
7 }
8 sort.Slice(tmpSet0, func(i int, j int) bool {
9 less := len(tmpSet0[i]) < len(tmpSet0[j])

10 if len(tmpSet0[i]) == len(tmpSet0[j]) {
11 for i0 := 0; i0 < len(tmpSet0[i]); i0++ {
12 less = tmpSet0[i][i0] < tmpSet0[j][i0]
13 if tmpSet0[i][i0] != tmpSet0[j][i0] {
14 break
15 }
16 }
17 }
18 return less
19 })
20 if len(tmpSet0) > 1 {
21 previousValue := tmpSet0[0]
22 currentIndex := 1
23 for _, v := range tmpSet0[1:] {
24 eq := len(previousValue) == len(v)
25 if eq {
26 for i0 := 0; i0 < len(previousValue); i0++ {
27 eq = previousValue[i0] == v[i0]
28 if !eq {
29 break
30 }
31 }
32 }
33 if !eq {
34 tmpSet0[currentIndex] = v
35 currentIndex++
36 }
37 previousValue = v
38 }
39 tmpSet0 = tmpSet0[:currentIndex]
40 }
41 exts := tmpSet0

Figure 5.5: Compiled queens specification - exts
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1 tmpSet1 := make([][]int, 0, len(todo))
2 for _, v := range todo {
3 eq := len(v) == len(queens)
4 if eq {
5 for i0 := 0; i0 < len(v); i0++ {
6 eq = v[i0] == queens[i0]
7 if !eq {
8 break
9 }

10 }
11 }
12 if !eq {
13 tmpSet1 = append(tmpSet1, v)
14 }
15 }
16 todo = tmpSet1

Figure 5.6: Compiled queens specification - update todo when solutions are
found

integer comparison, it is compiled simply as nxtQ == N. Figure 5.6 shows how the

update to todo on line 33 of Figure 5.1, which is a set difference, is compiled.

Figure 5.7 shows how the update to sols on line 33 of Figure 5.1, which is a

set union, is compiled. It looks involved because sortedness and uniqueness have

to be re-established (lines 4 to 15 and lines 16 to 36, respectively).

Since lines 34 of Figure 5.1 is just a combination of a set difference and a set

union, which are already shown in Figure 5.6 and Figure 5.7, its compiled output

will not be shown.

From the compiled output, the following observations can be made.

• Constants are compiled as Go variables. This is the case due to the possibility

of complex initialization, e.g., set refinement.

• PGo makes liberal use of temporary variables in its Go compiled output.

• PlusCal while loops are compiled as infinite loops with in-body checks. This

is the case also due to the possibility of complex loop condition.

• TLA+ sets are compiled as immutable sorted slices in Go.
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1 tmpSet2 := make([][]int, len(sols), len(sols)+len(exts))
2 copy(tmpSet2, sols)
3 tmpSet2 = append(tmpSet2, exts...)
4 sort.Slice(tmpSet2, func(i0 int, j0 int) bool {
5 less0 := len(tmpSet2[i0]) < len(tmpSet2[j0])
6 if len(tmpSet2[i0]) == len(tmpSet2[j0]) {
7 for i1 := 0; i1 < len(tmpSet2[i0]); i1++ {
8 less0 = tmpSet2[i0][i1] < tmpSet2[j0][i1]
9 if tmpSet2[i0][i1] != tmpSet2[j0][i1] {

10 break
11 }
12 }
13 }
14 return less0
15 })
16 if len(tmpSet2) > 1 {
17 previousValue := tmpSet2[0]
18 currentIndex := 1
19 for _, v := range tmpSet2[1:] {
20 eq := len(previousValue) == len(v)
21 if eq {
22 for i1 := 0; i1 < len(previousValue); i1++ {
23 eq = previousValue[i1] == v[i1]
24 if !eq {
25 break
26 }
27 }
28 }
29 if !eq {
30 tmpSet2[currentIndex] = v
31 currentIndex++
32 }
33 previousValue = v
34 }
35 tmpSet2 = tmpSet2[:currentIndex]
36 }
37 sols = tmpSet2

Figure 5.7: Compiled queens specification - update sols when solutions are
found

5.2.2 Walkthrough of round robin specification and its compiled
distributed sytem implementation

Figure 5.8 shows the round robin specification.

The constant procs (line 4) is the number of processes in the distributed sys-

tems. The constant iters (line 4) is the number of iterations each process performs.

The token (line 8) represents whose turn it is to increment the counter (line 9).

At the begining of each iteration, each process waits for its turn (line 15). It

then increments counter (line 16), passes the token to the next process (line 17),
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1 --------------------------- MODULE round_robin ---------------------------
2 EXTENDS Integers, TLC
3
4 CONSTANT procs, iters
5
6 (*
7 --algorithm round_robin {
8 variables counter = 0,
9 token = -1;

10
11 fair process (P \in 0..procs-1)
12 variables i = 0;
13 {
14 w: while (i < iters) {
15 waitToken: await token = -1 \/ token = self;
16 incCounter: counter := counter + 1;
17 token := (self + 1) % procs;
18 print counter;
19 nextIter: i := i + 1;
20 }
21 }
22 }
23 *)
24
25 TokenWithinBounds ==
26 token = -1 \/ token \in 0..procs-1
27
28 CounterConverges ==
29 (\A self \in ProcSet: pc[self] = "Done") => (counter = procs * iters)
30 =============================================================================

Figure 5.8: Round robin specification

and prints the value of counter. Each process performs the above steps iters times

(lines 14 and 19).

The TokenWithinBounds invariant (lines 25 and 26) checks the value of token is

never out of bounds. The CounterConverges invariant (lines 28 and 29) states that

when all processes are done, the value of counter must be equal to the number of

processes, procs, times the number of iterations, iters.

Figure 5.9 shows how line 15 of Figure 5.8 is compiled. Lines 2 to 8 obtain

the write locks on counter and token. These locks are saved into a handle named

refs (line 2). The local values of counter and token are updated on lines 9 and 10.

The PlusCal await statement is compiled as an if statement with a goto statement,

whose target is the current label (waitToken), so that the condition can be tested

again.

The globalState variable is a handle on the distributed state of the program.
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1 waitToken:
2 refs, err = globalState.Acquire(&distsys.BorrowSpec{
3 ReadNames: []string{},
4 WriteNames: []string{"counter", "token"},
5 })
6 if err != nil {
7 panic(err)
8 }
9 counter = refs.Get("counter").(int)

10 token = refs.Get("token").(int)
11 if !(token == -1 || token == self) {
12 err = globalState.Release(refs)
13 if err != nil {
14 panic(err)
15 }
16 goto waitToken
17 }
18 refs.Set("counter", counter)
19 refs.Set("token", token)
20 err = globalState.Release(refs)
21 if err != nil {
22 panic(err)
23 }

Figure 5.9: Compiled distributed system for round robin specification

Each piece of state is a protected global variable used in the compiled program.

Each process has ownership of a global variable once it has obtained a lock on that

variable. The ownership is moved among processes during execution. When a lock

on a variable is released, the ownership of that variable still stays with the process

until another process obtains the lock on that variable.

From Figure 5.9, the following observations can be made.

• PlusCal await statements are compiled into busy wait loops. This may hinder

performance if there are too many retries.

• PGo’s atomicity inference is imprecise. The counter variable is not used in

the waitToken label but it is still locked in the compiled output.
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Chapter 6

Discussion

6.1 Limitations
Modular PlusCal limits the interface of archetype parameters to only reading and

writing. This limits the kinds of systems that can be modeled using Modular Plus-

Cal. For example, a programmer may find it hard to model a file system that has

an interface with three functionalities: read from, write to, and seek within a file.

PGo makes liberal use of temporary variables when compiling from Modular

PlusCal to PlusCal. These temporary variables capture intermediate states, which

greatly increases the state space for TLC to explore. Currently, PGo’s PlusCal

outputs can be used during system development by setting parameter values to be

small. However, for production deployment, larger values for parameters are used

to provide higher assurance, which greatly increases model checking time. More

effort in eliminating these temporary variables must be invested to manage model

checking time.

PGo’s type system, while being an improvement over the previous iteration,

is still limited. The lack of support for more advanced typing paradigms, such

as recursive types, coupled with poor error reporting, makes for a frustrating user

experience.

PGo’s atomicity inference algorithm is prone to lumping all global variables

into one lock group, which effectively eliminates concurrency, turning the system

into a single-threaded program. A different approach to discovering finer grained
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lock groups would mitigate this problem.

6.2 Future work
In addition to being a verification tool, TLC may be used in PGo’s compilation

process as an inference tool. For example, prefetching may be framed as an in-

ference problem, where correlation among usages of variables may be encoded as

a synthetic variable whose value is checked by TLC. To achieve this, PGo must

be extended with a mechanism to manipulate generated TLA+ output, to invoke

TLC on its own, and to parse the output of TLC to obtain the value of the synthetic

variable.

Currently, PGo is unverified. Verifying PGo will remove it from the trusted

computing base, increasing the programmer’s confidence in the correctness of the

output implementation. One method to verify PGo is to formally model Modular

PlusCal, PlusCal, TLA+, and Go, using various dynamic semantics, such as small-

step operational semantics. With these semantics available, equivalence between

the source specification and the compiled output can be formally established.

More effort should be invested into producing quality Go code to exact more

performance at runtime. For example, currently, PGo outputs mostly immutable

data structures by making multiple copies of the data. Switching to in-place modi-

fication may provide performance enhancement to PGo-generated programs.

PGo only outputs to Go. However, due to factors such as library availability

and team consensus, it may not always be possible to incorporate Go tools into an

existing team’s workflow. Thus, it is desirable for PGo to output to other languages,

such as Rust or Java, to promote adoption. Since Go has a simple type system and

requires explicit error handling, Go programs may not be a suitable intermediate

representation (IR) for code generation to other languages. On the other hand,

lower-level IR, such as LLVM IR, may be too low level, which removes high level

details about PlusCal execution model. Instead, a new IR for PGo is recommended

for ease of multi-target code generation.
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Chapter 7

Related work

Domain-specific languages.
There are many languages that are tailored for writing distributed systems.

However, they do not provide facilities for checking the correctness of the dis-

tributed system implementation. For example, the Emerald programming lan-

guage [7] requires the programmer to structure the distributed system as distributed

objects. The smallest unit of execution in Emerald is an active object, which is

an object with an associated process. Emerald objects expose methods that pro-

vide functionalities for other objects. The Argus programming language [18] also

requires the programmer to structure the distributed system as a collection of dis-

tributed objects, called guardians. Guardians are periodically serialized to disk so

that they can be restored after crashes. In addition to guardians, Argus also in-

troduces actions, which are executed atomically as composable transactions. An

action or a group of composed actions are executed in its entirety (committed) or

have no visible effect on the whole system (failed). The Erlang programming lan-

guage [6] is a functional programming language based on the actor model. The

unit of execution in Erlang is called a process, which is a green thread in modern

parlance. Processes in Erlang communicate by passing messages. They are cat-

egorized into workers and monitors. Workers provide the functionalities required

from the system, while monitors are in charge of restarting the workers when one of

them fails. These languages provide the programmers with tools to structure their

distributed systems. In contrast to these languages and systems, PGo provides tools
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to check for correctness via the TLA+ tool box.

Correspondence using proof assistants.
There have been many attempts at bridging the gap between formally verified

specifications and system implementations. PGo differs from these approaches

by not requiring the user to write proofs for verification. Instead, PGo relies on

model checking, using TLC for verification. For example, Verdi [20] requires the

programmer to write the specification, the implementation, and the proof that the

implementation matches the specification in Coq [19]. The specification , and

the implementation are written against an ideal networking environment (e.g., no

packet drop, reordering, nor corruption). Verdi provides system transformers to

transform the system of specification, implementation and proof into one that can

handle faults. The transformed system is then verified by the Coq theorem prover.

The implementation is then extracted to an executable using Coq’s tools. Iron-

Fleet [13] proposes a methodology to structure the implementation of a distributed

system and its increasingly abstract specifications as layers to allow feasible veri-

fication of practical distributed system implementations. Both Verdi and IronFleet

place a big burden of writing the proofs on the programmer. This burden is not

trivial, since it has been shown in both projects that the proof effort is at least ten

times the implementation effort in terms of lines of code. Instead of requiring for-

mal proofs, PGo relies on model checking for verification. This erases the burden

of proof at the expense of verification time due to state-space explosion.

Correspondence using model checkers.
There are also other efforts of bridging the gap between formal specification

and system implementation using model checking. PGo differs from these projects

in that its input languages, namely PlusCal and Modular PlusCal, does not re-

quire the programmer to structure the system as a state machine. For example,

Mace [14, 15] is a source-to-source compiler from a highly structured domain-

specific language (DSL) to C++. It requires the programmer to write distributed

systems as state machines, complete with explicit states and transitions. This

makes the implementation amenable to model checking. P [10] provides a DSL

for asynchronous event-driven programs and a model checker to explore the state

spaces for verification. Its successor, P# [9], extends P for writing distributed sys-

tems, and provides a test environment for systematic exploration of the state space.
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Instead of requiring the system to be written as a state machine, PGo provides more

freedom in how the specification is structured.

Checking concrete implementations.
Instead of checking specifications, there have been approaches to directly check-

ing the implementation. PGo’s approach, on the other hand, provides efficient

verification and automatic translation from abstract model to concrete implemen-

tation. For example, Verisoft [12] aims to check concrete programs via stateless

search. It employs partial-order reduction techniques and bounds on the number of

states explored to keep checking time manageable. MODIST [21] extends this to

distributed systems. Work in this category has the benefit of being a drop-in solu-

tion for existing implementations. In contrast, PGo’s approach provides automated

verification and translation from abstract model to concrete implementation.
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Chapter 8

Conclusion

This thesis presents Modular PlusCal, an extension of PlusCal with the goal of

adding a clear distinction between system specification and environment specifi-

cation, and PGo, a compiler from Modular PlusCal and PlusCal specifications to

Go distributed system implementations. PGo reduces the burden of translating a

specification to an implementation, which increases programmer productivity.
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