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Billions of people rely on correct and efficient execution of large systems, such as the distributed

systems that power Google and Facebook. Yet these systems are complex and challenging to build

and understand. Logging of important events is known to be invaluable for debugging and diagnosing

problems in such systems. Unfortunately, many execution logs are inscrutable in their raw form. For

example, a production Google system may generate a billion-line log file in a single day.

This dissertation addresses the challenges that developers and operators face in debugging and

reasoning about large systems. Specifically, it presents runtime analysis techniques and corresponding

tools to help developers make sense of large systems by leveraging the extensive logs generated by

the systems.

This dissertation presents three log-analysis tools to infer concise and precise models from

execution logs of sequential and distributed systems. Three features distinguish these tools and make

them simple to use and applicable to a variety of systems and tasks. (1) These tools process the logs

most systems already produce and require developers only to specify a set of regular expressions for

parsing the logs. (2) These tools do not depend on source code or other implementation-level details

of the systems they model, and they do not constrain the semantics of the events in the log. Finally,

(3) these tools are designed to scale to large logs.





The first tool, Synoptic, infers a finite state machine model of a sequential system from a log of

system behavior. Synoptic has two unique features. First, the model it produces satisfies three kinds

of temporal invariants mined from the logs, improving accuracy over related approaches. Second,

Synoptic uses both refinement and coarsening to explore the space of models. This dual approach

improves model efficiency and precision, compared to an approach that uses just one of these options.

The second tool, Dynoptic, infers a communicating finite state machine (CFSM) model of a

networked system. This model represents each process independently as a finite state machine,

and the process machines are augmented with communication events that allow the processes to

coordinate over FIFO queues.

Finally, InvariMint generalizes the insights from Synoptic and Dynoptic into an approach for

declaratively specifying model inference algorithms. Existing model inference algorithms are difficult

to understand, extend, and compare. InvariMint simplifies each of these tasks.

The dissertation formally defines the model inference techniques underlying all three tools and

proves important properties of each of the approaches. Empirical experiments show that developers

find the inferred models useful for identifying bugs, confirming previously known bugs, and increasing

their confidence in their implementations. By making these tools publicly available, this dissertation

helps to bridge the gap between a systems development culture of logging for debugging with

advanced techniques from the formal methods and software engineering research communities.
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Chapter 1. Introduction 1

Chapter 1

Introduction

When a system behaves in an unexpected way or when a developer makes changes to code written

by someone else, the developer faces the challenging task of understanding the system’s behavior. A

common way of gaining insight into system behavior is to inspect execution logs. Logging system

behavior is one of the most ubiquitous, simple, and effective debugging tools. Developers instrument

key locations in the code to gain insight into the state of a process, the execution sequence, and the

presence or absence of certain events. Production systems at companies like Google are instrumented

to generate billions of log events each day, indicating that logging is recognized as an important

activity. The logs at Google are stored for weeks to help diagnose errant future behaviors [128].

Unfortunately, the collected logs are typically analyzed by hand or with ad hoc tools. This manual

inspection of logs is an arduous process as the size and complexity of logs often exceed a human’s

ability to navigate and make sense of the captured data.

This dissertation presents three tools that infer concise and accurate models of system behavior

from logs. The inferred models aim to help developers in three ways: (1) help find bugs, (2) increase

developers’ confidence in the absence of certain bugs, and (3) improve developers’ understanding of

their systems. Besides helping developers with system understanding, these model inference tools

can be used in numerous other contexts. For example, they can be used to detect execution anomalies

by comparing models of the system from day to day.

This chapter discusses why models are useful, how developers build and use models, and how

automated model inference can help with this process. This is followed by an overview of the

approaches to model inference presented in this dissertation by presenting specific challenges to

effective model inference and a brief summary of the corresponding solutions and contributions

detailed in the dissertation.



2 1.1. Software models

1.1 Software models

Models are abstractions that provide a point of reference from which one can consider a problem,

work on solutions, and gain a broader understanding of the artifact or process that a model describes.

In the natural sciences model generation and validation is the principle goal of the scientific enterprise.

The focus of this dissertation are models of computer systems, which capture something about how

a man-made system operates. As such, these software models are more similar to models used by

engineering disciplines, like civil engineering, than to models used by physicists.

Software models vary in the details that they capture. Often, information captured by a model

depends on the intended task. For example, one model may be well-suited to answer “How large

of a computer cluster should I purchase?” but ill-suited to answer “What is the consistency of

data maintained by the system.” In addition, models vary in their level of abstraction — a model

can describe the execution of the system at a very low level, or it can be more of an architectural

representation.

Software models have numerous uses. They can capture intent (e.g., specification), facilitate

reasoning about important or hidden aspects of a system, guide implementation efforts, and more.

Unfortunately, creating an accurate and useful software model has been a predominantly manual

process — creating a complete model of a system is often as challenging as building the system itself.

Because software modeling is difficult and expensive, modern software development practices

have emphasized techniques like rapid prototyping. These techniques depend on the fact that software

(unlike most other engineering projects, like bridges) is malleable and can be readily changed1. If

software is evolved, rather than modeled ahead of time and constructed to exact specifications, then

modeling can be partially or completely skipped. For example, with rapid prototyping a model of the

system would need to be updated to evolve along with the system. Maintaining consistency between

the model and the system requires extra effort. In this style of software engineering, the benefits of

software modeling are often eclipsed by its costs.
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Client State Diagram 
This diagram illustrates all the legal state changes that can occur in the client 

 

 

Client’s action upon receiving a packet 

Packet 
 
state 

RF WF IV WDS RDS 

Writer 
(RW) 

Set state to RO 
Send RDC back 

Set state to IN 
Send WDC back 

N/A N/A N/A 

ReadOnly 
(RO) 

N/A N/A Set state to IN 
Send IC back 

Set state to RW 
Send WC back 

N/A 

Invalid 
(IN) 

N/A *N/A N/A Set state to RW 
Send WC back 

Set state to 
RO 
Send RC back 

 
 
 
 
 
 
 
 
 

Figure 1.1: An example mental model that depicts client behavior drawn by an undergraduate student

for a systems course.

1.2 Informal modeling with mental models

While some recent software engineering practices de-emphasize formal modeling, they cannot change

the fact that developers often reason about systems abstractly. The absence of a coherent, agreed

to, and documented model of a system does not eliminate these requisite mental processes. Quite

the opposite — mental models must fill the modeling void to provide developers with a means of

abstract reasoning about their implementations.

Developers utilize their mental models in many ways. For example, some developers write down

a model in some informal manner to facilitate thinking, discussion, and sharing. Figure 1.1 shows an

example mental model drawn by an undergraduate student. This model describes a client’s behavior

in a system that they were working on for class.

A graphically represented model is more concrete than a mental image, but remains disassociated

from the implementation. The developer must manually make the link between the drawing and code

1The cost of software changes is an active field of research. Software may be malleable, but changing it incurs costs

that are often little understood[28].



4 1.2. Informal modeling with mental models

representations of a system’s state. A more important issue is that drawn models capture intent, or

what the developer expects the system to be; rather than the system’s actual implementation behavior.

Logging and mental models. A complementary approach to mental models is logging and log

inspection. Examining a runtime log that captures a system’s behavior is an effective and popular

means of gaining insight into what a system actually does. A log can be generated by instrumenting

a system (or by using existing instrumentation) and recording system activity as the system executes.

The captured log can then be inspected to find anomalies, verify correctness, debug performance, and

for other tasks. Many of these tasks require the developer to reason about low-level system behavior

recorded in the log and to match this behavior with their mental model of how the system is supposed

to behave.

Unfortunately, developers find it difficult to inspect and reason about logged information as

logs record low-level behaviors. For an example of this consider Figure 1.2, which lists two log

snippets based on a real log of security-related events from an OS X system. Each snippet represents

a sequence of login attempts that result in authorization. One of the two snippets contains a bug, but

it is difficult to tell which one.

One major goal of the techniques and tools described in this dissertation is to lower the mental

modeling effort that a developer must expend to make sense of a system. The tool described here

process logs of systems’ behaviors to help developers understand the system implementations.

A model of the implementation (as opposed to a low-level log of behavior) that closely matches

the user’s mental model can help the user utilize their mental model of the system more effectively.

The tools presented in this dissertation infer this kind of system model from logged behaviors and

present the inferred model to the user (i.e., the developer) for inspection. For example, a longer

log consisting of login attempts like the ones listed in Figure 1.2 can be processed to derive the

finite state machine model in Figure 1.3. This model captures the essential information necessary to

understand basic temporal relationships between the logged events and can be used for various tasks

by the developer, supporting their mental modeling activities. For example, the derived model makes

it easier to notice the aforementioned bug: a failed authentication attempt sometimes results in an

authorized login (Figure 1.2(b)). After addressing the bug, the developer can also gain confidence in

that the bug has been successfully fixed by inspecting the model generated from a log of a system
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loginwindow[35]: Login Window Started Security Agent
May 20 16:15:27 my-mac SecurityAgent[130]: Showing Login Window
May 20 16:29:19 my-mac SecurityAgent[130]: User info context values set for jenny
May 20 16:29:19 my-mac authorizationhost[129]: Failed to authenticate user <jenny> (tDirStatus: -14090).
May 20 16:29:22 my-mac SecurityAgent[130]: User info context values set for jenny
May 20 16:29:22 my-mac SecurityAgent[130]: Login Window Showing Progress
May 20 16:29:22 my-mac SecurityAgent[130]: Login Window done
May 20 16:29:22 my-mac com.apple.SecurityServer[23]: Succeeded authorizing right 
'system.login.console' by client '/System/Library/CoreServices/loginwindow.app' for authorization created 
by '/System/Library/CoreServices/loginwindow.app'

loginwindow[35]: Login Window Started Security Agent
May 22 07:24:18 my-mac SecurityAgent[130]: Showing Login Window
May 22 07:25:13 my-mac SecurityAgent[130]: User info context values set for ivan
May 22 07:25:13 my-mac authorizationhost[129]: Failed to authenticate user <ivan> (tDirStatus: -14090).
May 22 07:25:15 my-mac SecurityAgent[130]: Login Window Showing Progress
May 22 07:25:15 my-mac SecurityAgent[130]: Login Window done
May 22 07:25:16 my-mac com.apple.SecurityServer[23]: Succeeded authorizing right 
'system.login.console' by client '/System/Library/CoreServices/loginwindow.app' for authorization created 
by '/System/Library/CoreServices/loginwindow.app'

(b)

(a)

Figure 1.2: Two log snippets based on the /var/log/secure.log file found in OS X 10.6.8. Each

snippet represents a sequence of login attempts resulting in authorization. One of the snippets

contains a security bug, but it is difficult to tell which one. Synoptic, one of the tools described in

this dissertation, facilitates the task of understanding the contents of a log by generating a model that

describes it (Figure 1.3).

with the bug fix.

To provide the developer with an accurate and concise model of the system the tools in the

dissertation rely on a procedure called model inference, which is described next.

1.3 Model inference

Model inference is the process of automatically, or semi-automatically, generating a model of a

system. The most abstract model of a system, shown in Figure 1.4, is a process that takes an input,

computes on the input, and produces an output. The goal of model inference is to elucidate the

System box in Figure 1.4 by producing a model that is less abstract.

There are two general ways to infer a model of a system — statically and dynamically. Static

model inference relies on having a detailed specification of the system; for this, a pragmatic choice is

code and associated resources that make up the implementation. Dynamic model inference relies on
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observations of the implementation as it executes.

Dynamic model inference is unconstrained by many implementation details, such as the choice

of programming language. However, such techniques are constrained by the input set of observations

that can be made about the system. Static model inference, on the other hand, requires a deeper

integration with the specification of the implementation, but can more completely reason about a

broad space of system behaviors. In the remainder of this dissertation, “model inference” will refer

to dynamic model inference.

A model inference procedure typically requires two inputs:

1. System knowledge or observations of the system. This is the ground truth about the system

and is the principle factor underlying the quality of the inferred model. System knowledge

may take many forms, but the most common form is behavioral. Behavioral observations

can be gathered at runtime by recording system behavior as it occurs. The techniques in this

dissertation rely on these kinds of runtime observations for system knowledge.

2. Generalization assumptions capture assumptions about systems in general. Generalization

assumptions allow the inference process to generalize from some particular bit of knowledge

about a system to infer unobserved (or unknown) behavior of the system.

A model inference algorithm is robust if it produces better models with more knowledge about

the system, and requires few generalization assumptions. That is, a robust model inference algorithm

should asymptotically approach the true model as the input system knowledge grows to include all

aspects of the system. And, a robust model inference algorithm must be broadly applicable and

therefore make as few generalization assumptions as possible.

1.4 Contributions

This dissertation explores the possibility and benefits of automated model inference in the context of

logs generated by complex systems. More specifically, this work supports the following claim:

It is possible to mine execution logs generated by large systems with

minimal input from the user to generate models of system behavior that

are useful for improving developers’ understanding of their systems.
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login
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authorizedlogin
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Figure 1.3: A finite state machine model inferred by Synoptic from a log that includes the traces in

Figure 1.2.

OutputSystemInput

Figure 1.4: The most abstract model of a software system.

The primary contribution of this work are three tools — Synoptic, Dynoptic, and InvariMint —

along with both theoretical and empirical evaluations of these tools2.

Synoptic: inferring models of sequential systems. Synoptic infers a finite state machine model

of a sequential system from a log of system behavior. Synoptic differs from prior model-generation

tools by its versatility and by imposing few requirements on the developer. To use the tool, developers

do not need to specify their systems as part of the design, identify properties for the tool to verify, or

modify their code. Instead, Synoptic mines three kinds of temporal properties, or invariants, from

existing logs and uses these to generate a concise model satisfying the invariants. A developer only

needs to provide a set of regular expressions to parse events from the logs. Using this approach,

Synoptic (1) does not restrict developers to a particular log format and (2) allows developers to

specify the events to include in the model.

In our evaluation, Synoptic generated models on logs up to 900,000 events that represent over

2All tools are released as open source and available for download at http://synoptic.googlecode.com

http://synoptic.googlecode.com
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Figure 1.5: (a) Overview of Synoptic and Dynoptic. (b) InvariMint overview.

28,000 unique system executions. Most developers in our studies found the generated models helpful

in understanding their systems. Synoptic models increased developer confidence in the correctness

of their implementations, helped identify previously unknown bugs, and confirmed the existence of

known bugs. Chapter 2 presents Synoptic, which was previously described in [114, 22, 18].

Dynoptic: inferring models of networked systems. Dynoptic applies the core ideas in Synoptic

to infer models of networked, or distributed, systems. Dynoptic infers a communicating finite state

machine (CFSM) model from a partially ordered log generated by the system. This model represents

each process independently as a finite state machine. The process machines are augmented with

communication events that allow the processes to coordinate over FIFO queues.

Building on Synoptic, Dynoptic also uses temporal invariants to improve the CFSM model

accuracy, and also imposes minimal requirements on inputs from the developer.
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To evaluate Dynoptic we applied it to logs of three different systems — the stop-and-wait protocol,

opening/closing handshakes of TCP, and the replication strategy in the Voldemort [125] distributed

hash table. We also carried out a user study to evaluate the efficacy of CFSM models in finding

bugs. Our evaluation found that Dynoptic produces models that are accurate and useful in finding

implementation bugs. Chapter 3 presents Dynoptic, which was previously described in [21].

Figure 1.5(a) summarizes the approach underlying both Synoptic and Dynoptic. Both tools

maintain their unique representations for traces parsed from the input log (step 1 in Figure 1.5(a)).

Both tools then mine a set of properties (step 2 ), which are used by a counter-example guided

abstraction refinement [32] process in steps 4 and 5 to improve the model of logged observations.

The Synoptic- and Dynoptic-specific versions of Figure 1.5(a) are presented in Figure 2.3 and

Figure 3.6, respectively.

InvariMint: model inference through declarative specification. Existing model inference algo-

rithms are challenging to understand, extend, and compare. InvariMint simplifies each of these tasks

by generalizing the insights in Synoptic into an approach for declaratively specifying model inference

algorithms that infer finite state machine models of systems. InvariMint enables specification of

algorithms in terms of the types of properties they enforce in the inferred models.

To evaluate InvariMint, we applied it to two previously-published algorithms. First, we used

InvariMint to declaratively and exactly specify the well-known kTails [23] algorithm. Second, we

used InvariMint to approximate Synoptic [22]. Chapter 4 presents InvariMint, which was previously

described in [19, 20].

Figure 1.5(b), illustrates the InvariMint approach, which is centered around the property types

input. These types direct the mining step (step 2 in Figure 1.5(b)) to derive property instances, which

are then composed (step 3 ) into the final model. Figure 4.1 presents a more detailed InvariMint

overview.

The three chapters described above cover the design, implementation, and evaluation of Synoptic,

Dynoptic, and InvariMint. Chapter 5 places the work in this dissertation in the context of prior

academic work, and Chapter 6 concludes.
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Chapter 2

Synoptic: inferring models of sequential systems

Synoptic is a tool that helps developers by inferring a concise and accurate system model. Unlike

most related work, Synoptic does not require developer-written scenarios, specifications, negative

execution examples, or other complex user input. Synoptic processes the logs most systems already

produce and requires developers only to specify a set of regular expressions for parsing the logs.

Synoptic has two unique features. First, the model it produces satisfies three kinds of temporal

invariants mined from the logs, improving accuracy over related approaches. Second, Synoptic uses

refinement and coarsening to explore the space of models. This improves model efficiency and

precision, compared to using just one approach.

To see why Synoptic is useful consider Figure 2.1, which shows a web server log for a shopping

cart application. Using the two listed regular expressions, Synoptic parses the log into three traces,

one for each of the three user IP addresses accessing the server (Figure 2.2). Synoptic then mines

temporal invariants that hold in those traces and uses the invariants to infer a model of the system

(bottom of Figure 2.1). The model clearly illustrates a bug that would be difficult to find by examining

the log directly: applying an invalid coupon allows the user to reduce the price. Not only can Synoptic

help a developer find this bug, it can also increase the developer’s confidence that the bug has been

successfully removed. For example, the developer can run Synoptic on logs generated by a new

version of the system and compare the new model with the prior model.

We evaluated Synoptic both theoretically and experimentally. Section 2.3 formally proves that

Synoptic produces a model that satisfies all the true temporal invariants mined from the log and none

of the invariants that are not satisfied by the log. Further, we argue that Synoptic’s exploration of the

model space is efficient and produces concise models.

We detail Synoptic tool prototype in Section 2.4. In our experimental evaluation, Synoptic

generated models on logs up to 900,000 events that represent over 28,000 unique system executions.

Most developers in our studies found the generated models helpful in understanding their systems.
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Synoptic models increased developer confidence in the correctness of their implementations, helped

identify previously unknown bugs, and confirmed the existence of known bugs.

Additionally, to demonstrate Synoptic’s ability to produce useful representations in practice, we

evaluated it in two user experience studies (Section 2.5). We first report on a study with a developer

working on reverse traceroute [14], a distributed system that determines the likely reverse Internet

route between two hosts. Reverse traceroute has been in deployment for over 7 months, has handled

a total of 3.6 million requests to date, and has been recently internally deployed by a large, popular,

and ubiquitous Internet company. Second, we report on the experiences of 45 undergraduate students

who used Synoptic in a distributed systems course. The students applied Synoptic to logs generated

by their implementations of a distributed version of a cache coherence protocol [84].

Next, we motivate and explain how Synoptic works by describing BisimH, the central algorithm

that Synoptic uses.

2.1 Modeling sequential systems

Synoptic addresses the problem of finding a compact representation that summarizes a sequence of

events logged by a software system. The notion of “event” depends on the system — events may

be sent and received messages, local procedure invocations, debug output, or a combination of all

of these. Synoptic uses a relational model, which is equivalent to a finite state machine model with

anonymous states.

State-based model. Developers often structure node logic as a finite state machine (FSM) in

which nodes represent system states. Although the FSM model is widely used, it is overly complex

in our context because it forces an inference algorithm to reason about system state. Events that

appear in the log may indicate that the system is in a particular state, but we cannot assume that the

log contains explicit state information. Reasoning about states detracts from the ultimate purpose of

finding a model that captures sequences of logged events.

Relational model. The relational model (e.g., bottom of Figure 2.1) captures possibly multiple

relations between log events. For example, events may be related through time (the default relation in

Synoptic), physically (by co-occurring at the same node), or in other user-defined ways. We visualize

the relational model as a graph in which each vertex represents a set of event instances. A directed



12 2.1. Modeling sequential systems

  1 74.15.155.103 [06/Jan/2011:07:24:13] "GET HTTP/1.1 /check-out.php"
  2 13.15.232.201 [06/Jan/2011:07:24:19] "GET HTTP/1.1 /check-out.php"
  3 13.15.232.201 [06/Jan/2011:07:25:33] "GET HTTP/1.1 /invalid-coupon.php"
  4 74.15.155.103 [06/Jan/2011:07:27:05] "GET HTTP/1.1 /valid-coupon.php"
  5 74.15.155.199 [06/Jan/2011:07:28:43] "GET HTTP/1.1 /check-out.php"
  6 74.15.155.103 [06/Jan/2011:07:28:14] "GET HTTP/1.1 /reduce-price.php"
  7 74.15.155.199 [06/Jan/2011:07:29:02] "GET HTTP/1.1 /get-credit-card.php"
  8 13.15.232.201 [06/Jan/2011:07:30:22] "GET HTTP/1.1 /reduce-price.php"
  9 74.15.155.103 [06/Jan/2011:07:30:55] "GET HTTP/1.1 /check-out.php"
10 13.15.232.201 [06/Jan/2011:07:31:17] "GET HTTP/1.1 /check-out.php"
11 13.15.232.201 [06/Jan/2011:07:31:20] "GET HTTP/1.1 /get-credit-card.php"
12 74.15.155.103 [06/Jan/2011:07:31:44] "GET HTTP/1.1 /get-credit-card.php"

Line parsing:              (?<ip>) .+ /(?<TYPE>.+).php"
Execution mapping:    \k<ip>

+

Log:

Regular
Expressions:

check-out

check-out

get-credit-card

valid-
coupon

invalid-
coupon

reduce-
price

1/3

1/3

1/3

1

1

1

Generated Model:

1

7,11,12

9,10

1,2,5

4

3

6,8

Synoptic

Figure 2.1: (Top) A log with line numbers for an online shopping cart, and two complete regular

expressions for processing this log with Synoptic. (Bottom) The generated Synoptic model. In the

model, rectangular/diamond/oval nodes indicate initial/terminal/intermediate nodes. Edge labels

indicate transition probabilities. The subscript to the right of each node lists the log line numbers of

events that are associated with the node. This application contains a bug that is easily noticed in the

generated model: processing an invalid coupon incorrectly reduces the shopping cart’s total price.

edge between two vertices indicates that the associated event instances are related.

We have found the relational model to be the most appropriate for capturing sequences of events.

This model resembles a modal transition system, which is a natural fit for reasoning about temporal

invariants between events. And, unlike a state-based model, a relational model makes minimal
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Figure 2.2: Trace graph parsed from the log in Figure 2.1. Each execution corresponds to an IP

address that accessed the web application. The subscript to the right of each node lists the line

number of the log line from which the event instance was extracted.

assumptions about the underlying process that produced the logged events. We also successfully

experimented with mappings between the relational and state-based models, that make it possible to

automatically convert representations between the two model types.

2.2 Overview of approach

Figure 2.3 overviews how Synoptic works. At its core Synoptic uses a hybrid refinement and

coarsening algorithm called BisimH. The rest of this section explains the algorithm in detail by

walking through its pseudo-code listed in Figure 2.4, and by illustrating how Synoptic would process

the log in Figure 2.1.
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2.2.1 Log parsing

Synoptic constructs a system model from a set of observed system execution traces. It takes as input

a log file containing the execution traces, and a set of user-defined regular expressions. Synoptic

uses the regular expressions [3] to parse the log file and extract from some of the log lines an event

instance: a triplet containing: (1) a trace identifier, (2) a timestamp, and (3) an event type. Trace

identifiers are used to group together event instances from the same trace. Synoptic requires that the

event instances in a trace be totally ordered using their timestamps. Therefore, no two event instances

in a trace may have identical timestamps. An event type can be an arbitrary string, and is usually

defined by the developer as something that conveys important information about the system. For

example, Section 2.5 presents two Synoptic-generated models in which an event type represents (1)

an executed method’s name, and (2) the state of a node in a distributed system.

A trace can be considered to be a linear graph — each vertex is an event instance, and the edges

represent the total ordering. We term the union of such graphs a trace graph. The trace graph is built

from the log using the provided regular expressions (line 2 in Figure 2.4).

Recall the shopping cart application. Figure 2.1 shows the log and the two complete regular

expressions that Synoptic uses to parse the log into three traces, one per unique IP in the log; the

php script names denote the trace event types. Figure 2.2 shows the three traces parsed from the

log. For example, the trace corresponding to the IP 74.15.155.103 is h0, check-outi, h1, valid-

couponi, h2, reduce-pricei, h3, check-outi, h4, get-credit-cardi. Here, the integer timestamp is

derived implicitly from the order of lines in the log.

2.2.2 Mining invariants from the trace graph

To guide model generation, Synoptic mines three kinds of temporal invariants relating event types

from the trace graph (line 3 in Figure 2.4):

a! b : An event type a is always followed by an event type b.

a 6! b : An event type a is never followed by an event type b.

a b : An event type a always precedes an event type b.
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Figure 2.3: Synoptic process flow chart. This is an elaboration of the more abstract process

description in Figure 1.5(a)

The missing symmetrical invariant Never Precedes, defined as a Never Precedes b iff b can be

generated only when no a was yet generated, is equivalent to the Never Followed by invariant.

We term these relations “invariants” because they succinctly capture temporal event type re-

lationships that must hold true over all the input traces. The trace graph in Figure 2.2 yields 27

such invariants. Two examples are reduce-price 6! valid-coupon, and invalid-coupon! check-out.

Section 2.2.5 justifies our use of these particular invariant types, and Section 2.3.2 explains how these

invariants are mined. Next, we introduce Synoptic models.
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1 Input: log L, regular expressions RegExps
2 let traceGraph = extract(L, RegExps)
3 let I = mineInvariants(traceGraph)
4 let (V,E) = partition(traceGraph)
5 while (V,E) does not satisfy invariants I
6 // p: event ! boolean, p: partition that will be split
7 let (p, p) = selectSplit((V,E), I)
8 let p1 = {event 2 p | p(event)}
9 let p2 = {event 2 p | ¬p(event)}

10 V := (V �{p})[{p1,p2}
11 E := {(p3,p4,r) 2V ⇥V ⇥R | 9 event1 2 p3,9 event2 2 p4
12 : event1 revent2 2 traceGraph}
13 end while
14 (V,E) := kTail((V,E), 0, I)
15 Output: (V,E)

Figure 2.4: The BisimH algorithm. Section 2.2 describes the extract, mineInvariants,

partition, selectSplit, and kTail procedures.

2.2.3 Synoptic models and the initial model

The Synoptic model is a partition graph of the trace graph. Given a partitioning of the original

vertices, each vertex in the model is one partition. Directed edges in the model are formed through

existential abstraction. That is, a directed edge between two vertices indicates that there exists a pair

of event instances in the corresponding partitions that are connected by an edge in the trace graph. A

further constraint is that each partition contains event instances of only one particular event type. The

resulting relational model makes minimal assumptions about the underlying process that produced

the logged event instances.

An important property of Synoptic models is that each trace in the input log is accepted by a

model constructed from the corresponding event instances (in the sense that each trace maps to a

valid path in the model). However, a Synoptic model is also generative — it may accept traces that

were not present in the log.

The BisimH algorithm starts with an initial model (constructed using partition on line 4 of
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Figure 2.5: Initial model corresponding to the trace graph in Figure 2.2.

Figure 2.4). In this model, there is one partition per event type containing all the event instances of

that type. Figure 2.5 shows the initial model for the trace graph in Figure 2.2.

By construction, the initial Synoptic model captures two important kinds of temporal properties

for any two adjacent event instances in a trace in the log. First, if an event instance of type a is at

some point immediately followed by an event instance of type b in the log, then there must be an

edge from a to b. Second, if an event instance of type a is never immediately followed by an event

instance of type b in the log, then there is no edge from a to b.

The initial model is therefore the most compact or abstract model plausible, based on the logged

traces. The least compact (and most concrete) model is the trace graph, in which each partition

contains a single event instance. This model makes no generalizations and overfits to the input traces.

2.2.4 Refinement and coarsening

Coarsening and refinement are dual operations on a Synoptic model. Starting with the initial model,

Synoptic first performs model refinement, shown as an iterative process in lines 5–13 of Figure 2.4.

This algorithm is a modification of a partition refinement algorithm introduced by Elomaa [50].

Synoptic refines (i.e., splits) partitions until it reaches a model that satisfies all the mined invariants.

Next, Synoptic uses coarsening to merge those partitions that were needlessly refined due to an

imperfect splitting heuristic (line 14 in Figure 2.4). The coarsening step is constrained to not violate
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the mined invariants satisfied during refinement. Synoptic outputs the model when it is unable to

coarsen it any further.

Refinement

The refinement goal of BisimH is to pick a minimal sequence of splits, so that the resulting graph

is the coarsest graph that satisfies a set of invariants. This problem is NP-hard [32], so an efficient

algorithm might not yield the optimal result. For example, a split partition may need to be split again

to help eliminate another counterexample, even though a single split might suffice to help eliminate

both counterexamples. Figure 2.9 illustrates refinement suboptimality visually. More generally, here

are three reasons why refinement is suboptimal:

• Invariants are considered independently.

• Counter-examples for an invariant are considered one at a time.

• A counter-example is resolved by isolating the conflicting incoming and outgoing event

instances from one another, without considering other event instances in the same partition.

To counteract suboptimal refinements, BisimH uses coarsening, which is explained in Sec-

tion 2.2.4.

BisimH performs splits as long as there exists some mined invariant that is not satisfied. BisimH

uses an FSM-based model checker to check whether a model satisfies a mined invariant. It converts

each invariant into a small FSM that accepts traces satisfying the invariant. It then updates the FSMs

as it traverses the model graph. If the model does not satisfy an invariant, the model checker outputs

a counterexample path. For example, the invariant valid-coupon 6! invalid-coupon mined from the

log in Figure 2.1 is not true in the model in Figure 2.5 — Figure 2.6 shows a counterexample path.

Having identified a set of counterexamples that violate the mined invariants, BisimH follows

the counterexample guided abstraction refinement (CEGAR) approach [32] to determine a set

of candidate partitions, for each of which there exists a split that removes at least one of the

counterexamples. BisimH identifies these partitions heuristically by tracing each counterexample,

stepwise, in parallel, in the input traces and in the model. In the traces, only a prefix of the
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Figure 2.6: A path through the initial model in Figure 2.5 that violates the mined valid-coupon 6!

invalid-coupon invariant.

counterexample path will be present (otherwise the counterexample would not violate an invariant).

BisimH finds the longest such prefix, and the last partition of this prefix in the model becomes

a candidate for refinement — this partition allows a spurious transition in the model that allows

for the counterexample path to exist. For example, the longest such prefix for the counterexample

path in Figure 2.6 ends in the check-out partitions. This is because check-out stitches together two

traces from the log (two left-most traces in Figure 2.2) into a trace that violates the valid-coupon 6!

invalid-coupon invariant.

To refine a candidate partition (i.e., to eliminate the counterexample path), the event instances

in this partition are divided into two sets based on whether they can or cannot be reached from

the partition immediately preceding the candidate partition in the prefix. In line 7 of Figure 2.4,

selectSplit obtains a predicate p that distinguishes these two event instance sets, and lines 8 and 9

introduce two new partitions, p1 and p2, corresponding to these two sets. Figure 2.7 illustrates a

refinement of the initial model in Figure 2.5 to eliminate the counterexample in Figure 2.6. In this

case, the predicate p separates the event instances in the check-out partition into those that can or

cannot be reached from the reduce-price partition.

We experimented with two kinds of predicates. Synoptic uses the one described above: it

separates event instances in the candidate partition based on an incoming edge from a partition

that immediately precedes the candidate partition. We also tried a predicate that separates event
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instances in the candidate partition based on an outgoing edge representing the spurious transition —

it separates event instances in the candidate partition into sets based on whether they can or cannot

make the spurious transition. Though we did not show this formally, in practice, we found the

second strategy to be less optimal than the first. It is also possible to split the candidate partition

simultaneously on an incoming and on an outgoing edge. Though we have not tried this, we think

this may work best. In our future work, we intend to further study the splitting predicate’s impact on

the algorithm.

Typically, the refined model violates several invariants and candidate partitions must be ranked

to decide which one to split first. Synoptic employs a two-class ranking: it examines all counterex-

amples in an arbitrary order and performs the first split that validates an invariant (i.e., eliminates

the last counterexample for that invariant). If no such split is available (because more counterex-

amples exist for each invariant), BisimH picks a split nondeterministically. This ranking introduces

nondeterminism and BisimH might perform unnecessary splits.

Coarsening

BisimH may end up refining more than it needs to. When this happens, the model will contain

partitions that can be merged without violating the satisfied invariants. After refinement, BisimH

coarsens the model to merge such partitions (line 14 in Figure 2.4).

For coarsening, BisimH uses kTail-equivalence [23]. kTail is a coarsening algorithm that starts

with the most fine-grained model. It stops once there is no pair of k-equivalent partitions, i.e., no two

partitions that are roots of sub-graphs identical up to depth k. At each step, the algorithm merges

one pair of kTail-equivalent partitions, chosen nondeterministically. BisimH runs kTail with k = 0

(label equivalence) to produce the most concise models. It starts with the final refined graph, under

the extra constraint that all merges do not unsatisfy any invariants. The resulting merged model is

locally minimal: merging any two partitions will violate some invariant.

2.2.5 The impact of mined invariants on BisimH

BisimH uses the mined invariants to establish a well-defined termination criterion for refinement,

and also to guide refinement in its choice of partition to refine. This use of invariants is an important
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Figure 2.7: A refinement of the model in Figure 2.5 that eliminates the counterexample path in

Figure 2.6. The edge between the reduce-price partition and the check-out partition induces a split

of check-out: the check-out event instances reachable from reduce-price are split out. The two new

check-out partitions, with the contained check-out event instances, are shown in bold. This model is

equivalent to the final model shown at the bottom of Figure 2.1.

feature of BisimH. To see this, suppose the set of invariants is empty. In this case, refinement would

terminate with a model that is the quotient under label-equivalence, i.e., the initial model. This model

is often too compact to capture key properties of the log and is overly generative. On the other hand,

suppose that the invariant set includes all possible temporal log invariants expressible in LTL. Then

the algorithm will terminate when, for all partitions A, if an event instance in A has a successor event

instance in a partition B, then every event instance in A has a successor event instance in B in the

model. In this case, the final model is the quotient under bisimulation, i.e., a graph that satisfies the

same set of LTL formulae as the trace graph. In our experience, the bisimulation quotient is usually

too similar to the trace graph, and thus too fine-grained to be considered concise.

Our choice of the three invariant types (listed in Figure 2.8 along with their LTL formulas) is a

compromise between the above two extremes. In our experience, the models derived using this set of

invariants are accurate, yet sufficiently generative for the kinds of applications we are considering

(e.g., improving developer understanding of how the system operates). These invariant types are also

exactly the most frequently observed specification patterns formulated by Dwyer et al. [47], with

scope constrained to a trace (i.e., global scope). The translation is not one-to-one: a ! b is Dwyer’s
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Invariant LTL formula Type

x ! y (x Always Followed by y) ⇤(x ! ⌃y) liveness

y  x (y Always Precedes x) ⌃y! ¬y U x safety

x 6! y (x Never Followed by y) ⇤(x ! ⇤¬y) safety

Figure 2.8: Event invariants mined by Synoptic, with corresponding LTL formula and classification.

LTL properties must hold over the each trace in the input log and are specified using the operators:

always (⇤), eventually (⌃), and until (U). For example, the formula ⌃y! ¬y U x requires x to occur

before y. Without the premise ⌃y, x would be required to appear at least once, even if the trace does

not contain y.

Existence pattern when a is START (see Definition 2.2 below), and is otherwise Dwyer’s Response

pattern. Another example is 8b,a  b, which is Dwyer’s Universality pattern. In our experience,

these invariants were sufficient for capturing key temporal properties of the systems that produced

the logs we considered.

Users can write Java code to define custom Synoptic invariants. However, all of the users in

our case studies (Section 2.5) successfully used Synoptic without even knowing about its use of

invariants.

In the next section, we define log and model formalism and prove important positive results about

the BisimH algorithm.

2.3 Formal description

This section proves the correctness of our algorithm, and explains why it is efficient and is able to

infer concise models in practice. Sections 2.3.1 and 2.3.2 define the formalisms. Section 2.3.3 proves

that BisimH always halts and that the final model satisfies exactly the invariants mined from the input

log. Section 2.3.4 proves an important result for improving model search efficiency, and Section 2.3.5

deals with model size.
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2.3.1 Definitions

Two special event types — START and END — are added internally by Synoptic to keep track of

initial and terminal events in the traces.1

Definition 2.1 (Event Types). A set of event types is a finite set (alphabet) E ◆ {START , END}.

Definition 2.2 (Trace). Let E be a set of event types. Then for all n 2N�2, a finite trace is an ordered

sequence of event types l 2 En such that the first element of l is START and the last element is END.

The length of l is n�2.

Definition 2.3 (Log). A log L is a set of traces.

The set of event instances in a log is the collection of elements in the traces in that log. Each

trace element is a unique event instance, indexed by its trace and position within that trace.

Definition 2.4 (Event Instances). Let E be a set of event types. Let L be a log over E. Then an event

instance is a triplet he, l, ii such that e 2 E occurs in the log trace l 2 L at position i 2 N. Ê denotes

the set of all such event instances for L.

An event instance relation is a set of pairs of elements of Ê. For example, one representation

(using “0” to represent the event instance h0, l,1i, etc.) of the event instance relation “next” on the

log trace l = h0,1,2,3,4i is {h0,1i,h1,2i, h2,3i, h3,4i}. The examples in this chapter only use this

“next” relation, although all the results generalize to arbitrary relations.

Definition 2.5 (Event Instance Relation). Let Ê be a set of event instances. Then r ✓ Ê2 is an event

instance relation.

A partitioning of a finite set of event instances Ê is a finite set of disjoint, exhaustive subsets of Ê.

Each subset is called a partition and contains event instances of the same event type.

Definition 2.6 (Partitioning). Let Ê be a set of event instances. Then P ⇢ P (Ê) is a partitioning

of Ê if 8 distinct p,q 2 P, p\q = /0, and Ê =
S

p2P p, and 8p 2 P, all ê 2 p are of the same event

1When viewing a model, the user can optionally hide these nodes, and instead have Synoptic specially mark the

partitions containing any initial and terminal events as rectangles and rhombuses, respectively. The models pictured in this

chapter were all generated in this way.
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type. Each p 2 P is called a partition. We enforce the condition that for a valid partitioning, all

instances of the START event type are in a single partition and all instances of the END event type

are in a single partition. That is, for all ê1 2 p1, ê2 2 p2: ê1, ê2 instances of START ) p1 = p2 and

ê1, ê2 instances of END) p1 = p2.

A relational model is a partition graph. The largest (most nodes) relational model for a log L is

the trace graph: the set of disconnected subgraphs, one for each trace l 2 L, with a vertex for each

event instance and edges only between consecutive event instances in l. Other relational models can

be generated by merging vertices that represent event instances of the same event type (and removing

redundant edges).

Definition 2.7 (Relational Model). Let Ê be the set of event instances in a log. Let Rr be a family of

relations over Ê indexed by r. Then the relational model is a directed graph M = hMV ,MAi, such that

MV is a partitioning of Ê and a = hp1, p2,ri 2MA ✓MV ⇥MV ⇥Rr iff p1, p2 2MV and 9ê1, ê2 2 Ê

such that ê1 2 p1, ê2 2 p2, and hê1, ê2i 2 Rr.

Definition 2.8 (Complete Path). A path in a model is complete if it starts at the START partition and

ends at the END partition.

A relational model M accepts a trace if the event instances of the trace form a complete path in

M.

Definition 2.9 (Trace Acceptance). Let n 2 N and let l = hSTART , ê1, . . ., ên, ENDi be a trace

of length n. Then a relational model M accepts l iff 9P = hpSTART , p1, . . ., pn, pENDi such that

81 i n, êi 2 pi and P is a complete path in M.

Note that by construction a relational model M for a log L accepts all traces in L. To see

this, consider a trace l = hSTART , ê1, . . ., ên, ENDi 2 L. The “next” relation, corresponding to

Rnext , holds for all pairs of adjacent event instances, that is 81  i < n,hêi, êi+1i 2 Rnext as well as

hSTART, ê1i 2 Rnext and hên,ENDi 2 Rnext . This means that l maps to a complete path in M and

therefore M accepts l.

2.3.2 Invariants

We consider three invariants that relate pairs of event types:
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Definition 2.10 (Event Invariant). Let a and b be two event types. Then an event invariant is a

property that relates a and b in one of the following three ways:

a ! b : In a model, if some partition on a complete path contains an event instance of type a, then

at least one later partition along that path contains an event instance of type b.

a 6! b : In a model, if some partition on a complete path contains an event instance of type a, no

later partition along that path contains an event instance of type b.

a  b : In a model, if some partition on a complete path contains an event instance of type b, at

least one earlier partition along that path contains an event instance of type a.

Definition 2.11 (Invariant Satisfiability). Let M be a relational model, and let i be an event invariant.

M satisfies i iff 8 P, a complete path in M, i is true of P.

Each of the three event invariants may relate any pair of event types. Thus, for a set of event

types E there can be at most 3|E|2 invariants.

Synoptic mines the above invariants by collecting three kinds of counts across all the traces. Each

trace is traversed once in the forward and once in the reverse direction to count:

• 8a,Occurrences[a] : the number of event instances of type a,

• 8a,b Follows[a][b] : the number of event instances of type a that are followed by at least one

event instance of type b, and

• 8a,b Precedes[a][b] : the number of event instances of type b that are preceded by at least one

event instance of type a.

The invariants are then determined by using the following equivalences:

a! b , Follows[a][b] = Occurrences[a]

a 6! b , Follows[a][b] = 0

a b , Precedes[a][b] = Occurrences[b]
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2.3.3 BisimH termination

This section proves that BisimH terminates (Theorem 2.1) and that the final model satisfies all the

event invariants in the log (Theorem 2.2) and no others (Theorem 2.3).

Theorem 2.1 (BisimH Terminates). BisimH makes a finite number of iterations (no more than the

number of event instances).

Proof of Theorem 2.1. After every BisimH iteration, the model has more partitions than the model

before the iteration, as some partition is split into two new partitions. The maximal model has a

finite number of partitions (each event instance is in its own partition, except the START and END

instances) and satisfies all the mined invariants. Therefore, BisimH can make no more iterations than

there are event instances.

Theorem 2.2 (True Invariant Satisfiability). BisimH produces a final model that satisfies all the event

invariants that are true for a log.

Proof of Theorem 2.2. The termination condition for BisimH is that the final model satisfies all the

invariants mined from the log. The maximal model trivially satisfies all those invariants. Therefore,

BisimH either terminates with that model or a smaller model that also satisfies the invariants.

Theorem 2.3 (False Invariant Unsatisfiability). Let L be a log with event instances Ê and event types

E. Let M = hMV ,MAi be a relational model over Ê with a family of relations Rr. Let i be an event

invariant that is not true of L. Then M does not satisfy i.

Proof of Theorem 2.3. Since i is not true for L, there must be a trace l 2 L for which i is not true.

Since there exists a path in M corresponding to l, that path must start with START and end with END

and must not satisfy i. Therefore, M does not satisfy i.

2.3.4 Improving model search efficiency

The previous section proved that regardless of which partitions BisimH splits, the algorithm always

finds a model that satisfies exactly the log invariants. This is an important theoretical result, but a

splitting strategy must be efficient in practice since refinement is expensive — a log with dozens of

event types will generally satisfy hundreds of invariants of the types we are considering. Checking



Chapter 2. Synoptic: inferring models of sequential systems 27

these invariants is costly, especially when the model grows to a large size. In this section, we prove

that once BisimH satisfies an invariant, it never again violates it (Theorem 2.4). Therefore, invariants

that have been satisfied do not need to be re-checked in finer models. This reduces the number of

model checking runs BisimH needs to perform, making it more efficient.

Theorem 2.4 (Invariant Preservation). Let L be a log with event instances Ê and event types E. Let

M = hMV ,MAi be a relational model over Ê with a family of relations Rr. Construct a new relational

model M0 = hM0V ,M0Ai as follows:

1. Select one partition p 2MV , |p|� 2.

2. Split p into two nonempty partitions p0 and p00.

3. Let M0V = (MV \{p})[{p0, p00}.

4. Compute M0A using the family of relations Rr.

For all event invariants i:

[(M satisfies i) ^ (i is true for L)] ) M0 satisfies i.

It is an immediate corollary that M0 satisfies all invariants that M does and that are true in the log.

Proof sketch: The proof considers the differences between M and M0, and relies on the fact that these

differences are confined to the region around the refined partition p. Consider some path P0 in M0

that might violate invariant i. That path is made up of edges, each of which comes from some trace,

which means for each edge, there is a corresponding edge in M. Therefore, there is a corresponding

path P in M that goes through partitions of the same event types. Since the event types along both

paths are identical, then either both or none of the paths satisfy i. But since M satisfies i, so must M0.

Proof of Theorem 2.4. Without loss of generality, let ha,bi be the pair of event types that i relates.

We will now show that all paths in M0 must satisfy i.

Consider a complete path P0 in M0. For any two partitions connected by an edge in P0 there must

exist at least one pair of event instances, one in each partition, that is related by some relation in

some trace. For each edge in P0 choose such a pair of event instances to construct a sequence of

event instances s.
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Now consider the unique path P in M that corresponds to s. Every partition in P contains event

instances of the same type as the corresponding partition in P0 (in fact, P’s partition is a superset of

P0’s).

Assume P0 violates i. Consider three cases:

Case 1: i is a ! b. There must be some partition in P0 with an event instance of type a such that no

subsequent partition in P0 contains an event instance of type b. Therefore, no subsequent partition in

P contains an event instance of type b. But M satisfies i. Contradiction.

Case 2: i is a 6! b. There must be some partition in P0 with an event instance of type b that follows

a partition with an event instance of type a. Then P must also violate i. Contradiction.

Case 3: i is a  b. There must be some partition in P0 with an event instance of type b such that no

earlier partition in P0 contains an event instance of type a. Then no earlier partition in P contains an

event instance of type a. But M satisfies i. Contradiction.

2.3.5 Maintaining a small model size

Synoptic’s aim is to present to a developer the smallest model (fewest nodes) satisfying the mined

invariants. Large models are often too complex and no better than the raw log. In this section,

we explain how the CEGAR [32] approach leads BisimH towards concise models. We argue that

refinement always makes provable progress towards satisfying an invariant. Therefore BisimH rarely

performs splits that make the model larger than it needs to be.

As a reminder, the CEGAR approach (detailed in Section 2.2.4) works as follows. First, BisimH

generates a counterexample trace (e.g., Figure 2.6) that is accepted by the model and violates a mined

invariant (valid-coupon 6! invalid-coupon). BisimH then traces along the counterexample trace in

the model and in the input traces to find the longest prefix of partitions that exists as a sequence

of corresponding event type instances in at least one input trace. The last partition in this prefix is

refined (Figure 2.7). Two cases are possible:

Case 1: The refined model does not accept the counterexample trace. Consider the set of trace

equivalence classes: two traces are in the same class if the paths of the two traces in the model

are equivalent after removing all iterations through loops in the model. A split that eliminates one
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loop-free trace from an equivalence class, eliminates all traces in that class. Thus, eliminating a

counterexample always eliminates an entire class of counterexamples that violate the invariant. Since

there are a finite number of loop-free paths in a model, eliminating a class makes progress toward

satisfying the invariant.

Case 2: The refined model accepts the counterexample trace. Consider the prefix corresponding to

the counterexample trace in the refined model. This prefix is shorter than the previous prefix by at

least one partition (the partition that was refined). Because any prefix must be finite, the refinement

makes progress toward eliminating the counterexample trace from the model (towards Case 1).

2.3.6 BisimH as a model space exploration algorithm

The BisimH algorithm can be thought of as a strategy for exploring a large space of potential models.

Figure 2.9 represents this process visually. The figure demonstrates how BisimH uses the mined

invariants to take a specific path through the space of potential models that fit the observed log.

2.4 Tool implementation

We implemented and deployed Synoptic as a web service that is accessible through a browser, and

as a stand-alone desktop application Synoptic that can be downloaded and run on a user’s personal

computer. These two approaches provide different trade-offs, and we support both for greater

flexibility.

Web service. A web service (Figure 2.10) allows us to transparently update the code and to

improve the user’s experience without requiring users to download a new software version. Another

important benefit is that we can transparently parallelize many of the Synoptic algorithms on the

back-end, thus providing users with better performance than if Synoptic were to run on a single

machine. Users can also more easily share Synoptic output with others (e.g., by sharing a URL). We

also provide users with the option of downloading and running a Synoptic web service instance of

their own.

Desktop application. We also have a fully functioning and platform-independent desktop

version of Synoptic, which can be invoked from a command line and via a GUI. Figure 2.11 shows a

screenshot of the GUI with the model from Figure 2.1. One drawback of a web service is the latency
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Figure 2.9: A depiction of BisimH as a model-space exploration algorithm. BisimH has two phases:

refine (right to left) from the initial partitioning at E4 until a representation satisfying all the mined

invariants at B6; coarsen (left to right) towards the final, more compact, representation at C6, which

retains the satisfied invariants. This final model is presented to the user. The most compact valid

representation at C6 cannot be reached by refinement alone when starting at E4.
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Figure 2.10: Screenshot of the inputs page of the web service version of Synoptic.

associated with uploading large logs — the user may want a quick analysis of a log that is local.

Users with proprietary logs may also want to avoid a public web service. The Synoptic desktop

application is useful in both of these cases.

Next, we detail how a user interacts with Synoptic to interpret a log. We focus on the Synoptic

web service as it includes more features than the desktop version.

2.4.1 Model exploration

Synoptic presents users with interactive models. Users can tweak and explore them in pursuit of

goals ranging from a more complete understanding of their system to identifying the source of

unexpected behavior. A number of features are available to aid users in manipulating the models for

these purposes.
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Figure 2.11: Screenshot of the Synoptic desktop application showing the model from Figure 2.1.

Matching abstract and concrete information

The user can select a partition in the model and view the log lines that correspond to this partition

(e.g., check-out node in Figure 2.12). This is useful when the user wants to unpack the partition and

identify the set of events that were actually logged at this point. The user can use this information to

browse to a specific line in the log file that contains the interesting event. This operation is a kind of

drilling down, mapping abstract information in the model to concrete events in the log.

Synoptic models are generative — they may accept traces that are not present in the input log. A

user may want to know if a trace accepted by the model was observed in the log or not. For example,

to a user, a generated trace may resemble buggy behavior, and the user may want to know whether

the behavior actually occurred (if so, the system contains a bug). If a generated trace is invalid, it

indicates that the input log is incomplete. This may lead the user to expand the test suite to invalidate

an overfitted temporal invariant, which both improves the test suite and allows Synoptic to exclude

the invalid generated path from the model.

To help users distinguish these two kinds of traces, users may select multiple partitions and

consider the set of concrete traces that pass through the selected partitions. Synoptic either lists all the

observed traces that pass through these partitions or lets the user know that the selected sub-trace was

not observed. For example, the user may select the top-left check-out node and the invalid-coupon
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Figure 2.12: Screenshot of the Synoptic web service showing the model from Figure 2.1.

node in the model in Figure 2.13, and find out that there is indeed an observed trace that passes

through these nodes (the middle trace in Figure 2.2). This more advanced capability proved to be of

particular use to developers in practice. It helped them understand unexpected paths in the model by

exposing the associated concrete traces from the input log.

Invariant selection

Synoptic mines three types of temporal invariants (Section 2.2.2) to guide refinement. The choice

of invariants is important because they constrain the executions a derived model may generate. By

default, Synoptic uses all of the mined invariants. However, users may know that some invariants

are false because the logs may not sufficiently represent all possible system behaviors. If this is the

case, the user may mark some of the mined invariants as false so that Synoptic does not use them

to over-fit the model to the log. Figure 2.14 illustrates a Synoptic screen with which the users can

deselect some of the mined invariants.
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Figure 2.13: A screenshot that demonstrates path exploration functionality in a Synoptic web service

on the model from Figure 2.1.

2.5 Experience with Synoptic

We performed a short proof of concept study and two detailed case studies to evaluate Synoptic’s

ability to produce concise and useful models. Our proof of concept study involved Peterson’s leader

election algorithm [102] (Section 2.5.1).

Of the more detailed studies, first, we carried out a user study with a developer working on the

reverse traceroute system that determines the likely reverse route from an arbitrary destination on

the Internet to a source host [14] (Section 2.5.2). Synoptic analyzed the coordinator node logs that

contained debugging event instances generated by the system.

Second, we introduced Synoptic as a tool for use in an undergraduate distributed systems class

of 45 students (Section 2.5.3). The students were tasked with designing and implementing a cache

coherence protocol and had to (1) draw a finite state machine of their design, (2) run Synoptic on

their implementation, and (3) explain any observed differences.
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Figure 2.14: Screenshot that illustrates the invariants page in the Synoptic web service. Users may

use this page to inspect and deselect invariants to control how Synoptic derives the model. (Left) The

three tables list all of the mined invariants. Users may deselect invariants by clicking on them in the

table. (Right) A visualization of the mined invariants. The blue/red colors in both the tables and in

the diagram highlight those invariants that involve the (moused-over) valid-coupon event type.

The students used Synoptic during development and testing, while the reverse traceroute developer

used Synoptic on logs generated in production. We therefore believe that Synoptic can be helpful

during all stages of a typical software engineering process. Overall, we found that Synoptic was

useful for finding new bugs (Section 2.5.4), for increasing developer confidence (Section 2.5.5), and

for building understanding (Section 2.5.6).

2.5.1 Peterson leader election

The Peterson leader election algorithm [102] allows an asynchronous unidirectional ring network of

nodes to elect a leader. All nodes start as active and with a random unique node ID. In each round, at

least half of the active nodes become relays through exchange and comparison of node IDs. A relay

node forwards all messages it receives. When an active node receives its own messages via a ring of

relay nodes, it becomes the leader.

We implemented a simulator of the Peterson algorithm that logs all messages sent and received

by a node, as well as node state transition debug messages. This log includes a variety of message
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Figure 2.15: Synoptic’s output for a Peterson log with 3,308 events, generated by simulating 5 nodes.

The manually-added, labeled, dotted regions group nodes into the states a node may take on in the

algorithm.

interleavings as the simulator allows concurrent node execution. Messages are timestamped and

partially ordered using Lamport vector clocks [83]. Figure 2.15 shows Synoptic’s output for an

execution with 5 nodes that generated 3308 log events. This graph is useful in understanding node

behavior as nodes take on different states. For example, Synoptic correctly captures the fact that

a relay node cannot send before receiving while an active node may first send and then receive,

depending on the timing of incoming messages.

2.5.2 Reverse traceroute study

Reverse traceroute [14] is a distributed system that determines the likely reverse traceroute from an

arbitrary destination on the Internet to a source host. Reverse traceroute relies on a distributed set of

Internet vantage points hosted by PlanetLab [4], and uses a variety of methods to find each segment

of the reverse route, such as IP record route and timestamp options [1, 2], and relies on IP spoofing

from PlanetLab hosts.

Reverse traceroute has been in live deployment for over 7 months and since that time it has

had hundreds of distinct users and has handled a total of 3.6 million requests. Today, it gets tens

of thousands of requests per day. Recently, a large, popular, and ubiquitous Internet company has
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Figure 2.16: Synoptic model for a reverse traceroute input log of 900,000 event instances. Rectan-

gular nodes are start nodes, and diamond nodes are terminal nodes. Edge labels indicate transition

probability. For clarity certain edges and nodes are omitted. The (manually) bold, dashed lines

indicate a new bug that was discovered by the developer. The (manually) shaded terminal nodes

make up the set of methods exhibiting a bug known to the developer. Before viewing the Synoptic

graph, the developer thought the bug affected only two of these eight nodes.

deployed the system internally.

We carried out a user study with a developer working on the system to study a log of 900,000

event instances. To generate this log, the developer spent a total of 15 minutes to add a total of 16

lines of logging code to the system. We then wrote four regular expressions to process the log. The

log was divided into traces by measurement-based method names — a single trace corresponded to a

sequence of method calls made to determine the reverse route for a particular hsource, destinationi

pair.
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Synoptic took 11.5 minutes to generate the final graph from the input log on an Intel i7 (2.8 GHz)

OS X machine with 8GB of RAM. Because this graph contained many rare edges (i.e., edges with

low transition probabilities), we showed the developer both the full graph, as well as a graph that

omitted 62 edges with low transition probability. The second type of graph is shown in Figure 2.16.

We then performed a talk-aloud user study with the developer by showing him Synoptic-derived

graphs, explaining to him what they represent, and asking him to talk through his observations.

2.5.3 Distributed systems course assignment

In the University of Washington undergraduate distributed systems course2, groups of 2–4 students

designed and implemented a peer-to-peer Facebook-like social network. The project was divided into

multiple assignments, one of which was to implement the distributed version of a cache coherence

protocol [84] between a single master node and some number of replica clients. For this assignment,

the students were to (1) record their design as a FSM diagram, (2) implement their design, (3) apply

Synoptic to logs generated by their implementation, and (4) observe and explain any differences

between the Synoptic output and their initial FSM diagram.

For testing, the students used a simulated environment in which all nodes executed in a single

process, and communicated via a centralized simulator manager. The simulator provides the option

of reordering, losing, and duplicating messages, as well as randomly failing and restarting nodes.

The simulator logged common event types like message sent, received, and lost and file read

and written, and also allowed student node code to log user-defined event types. Although the

simulated system was distributed, the simulator produced totally ordered logs — event instances

were serialized through the central simulator manager. The students were also given a set of Synoptic

regular expressions for processing logs generated by the simulator.

All 18 groups completed the assignment. The following sections quote just a few of the student

reports on their experiences with Synoptic and showcase one of the Synoptic diagrams generated by

the students (Figure 2.17).

2http://www.cs.washington.edu/education/courses/cse490h/11wi

http://www.cs.washington.edu/education/courses/cse490h/11wi
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Figure 2.17: Two pairs of Synoptic models generated by a group of students in the distributed

systems class for a distributed cache coherence assignment. Each pair of models has a server model

and a client model. The Client1 and Server1 models correspond to a scenario in which the client

host starts, and then deletes the file if it exists. Alternatively the client creates the file, and then either

deletes it or reads from it. The Client2 and Server2 models correspond to the simpler scenario in

which the client reads a file that is not currently accessed by any other client.
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2.5.4 Finding bugs in code

Synoptic models capture event type orderings and co-occurrence frequencies among event types. The

absence of an edge could indicate that the log is incomplete. However, if the behavior is supposed

to occur at all times or with high frequency, an unexpected graph topology can be an indicator of a

latent bug.

Reverse traceroute study The reverse traceroute developer identified one new and important bug

using the Synoptic model within the first two minutes of seeing the model. All measurements made by

the system must eventually terminate in either the do_reach_callback or the do_fail_callback

methods. The developer thought that all traces reaching these methods terminated. The graph showed

otherwise — some of the traces continued past these callbacks. The model in Figure 2.16 illustrates

these buggy transitions with bold, dashed emphasis. The developer hypothesized that this bug is

caused by concurrency in the measurement code. The developer also observed that the tool offers a

light-weight means of verifying that some previously observed buggy behavior is not present after a

bug fix, and that it may help to rule out bug fixes that fail to eliminate buggy behavior.

Distributed systems course Of the 18 groups, 3 groups found bugs in their implementations with

Synoptic. Synoptic models effectively capture event type orderings and all three of the bugs had

to do with illegal message orderings. One group observed that a transition that was expected never

occurred — the node seemed to never execute the write command after processing it. They then fixed

the bug and used Synoptic to confirm that it did not appear in the traces:

“We did find a bug in the graph. If you follow the append path in the final graph you can see that it goes

from append!send!write. In the old graph the append!send, but dies instead of passing it onto write.”

A different group found a bug in which they mistakenly sent the wrong type of packet:

“We had few places where we sent the wrong type of packet in the code. For example, we sent RDC when

we had to send WDC. When looking at the Synoptic diagram, these kinds of mistakes were easy to find.”



Chapter 2. Synoptic: inferring models of sequential systems 41

2.5.5 Increasing developer confidence

Synoptic models can succinctly represent thousands of execution traces with a few nodes in a graph.

A single compact diagram that consolidates many executions gives developers confidence that they

will not overlook any behaviors present in the log. Moreover, developers often recognized expected

patterns and considered them to be important evidence that the system worked as expected.

Reverse traceroute study The reverse traceroute developer was often prompted by the model

to try to explain various patterns. Patterns that were simpler and more noticeable, like self-loops

on nodes, elicited more attention. For example, upon noticing a self-loop on one of the nodes the

developer mentioned that this indicated that a specific type of measurement was re-tried and that this

was correct behavior.

Distributed systems course Of the 18 groups in the class, 11 reported that Synoptic increased

their confidence in their implementations. In many cases the students recognized expected patterns.

Figure 2.17 illustrates two sets of diagrams generated by a group that felt that they acquired additional

confidence in their system by using Synoptic. The figure shows four models, with each pair

corresponding to a Client and Server processes in the system. The group decided to use a combination

of messages and states for their event types — e.g., create is a file create request message sent by

the client to the server, while e.g., readonly_state is the state of the client when it holds a shared

read lock on the file. To more easily follow the sequence of event types the students generated two

sets of models for two distinct scenarios (see Figure 2.17). By inspecting these models, the group

confirmed that the messages were exchanged in the appropriate order and that the nodes transitioned

between states correctly.

The following are some student quotes that indicate that Synoptic increased developers’ confi-

dence in their systems:

“[Synoptic] definitely let us know for sure that our code was functioning correctly.”

“Using Synoptic did not help us find any bugs with our code, but it did help us to clarify that our code is

doing what it should.”

“We can confidently say that Synoptic helped confirm the correct behavior of our program, and certainly
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made us feel better about our code.”

2.5.6 Building system understanding

Using the Synoptic model, the reverse traceroute developer was able to solidify his understanding

about the system. For example, he knew that the system had a bug in which a reverse traceroute

measurement terminates prematurely. Using the model, he was able to verify that this bug occurred —

methods terminating prematurely appeared as terminal nodes in the model. However, as it turned

out, the developer did not understand the full extent of this bug. He assumed that it affected only

two methods. By inspecting the model, he found out that other methods were impacted as well. The

model in Figure 2.16 illustrates the set of all the methods impacted by this known bug with a darker

shading. This experience solidified the developer’s understanding of where the bug manifested and

he felt better prepared to resolve it.

Overall we found that Synoptic was useful for finding new bugs, for increasing developer

confidence, and for building systems understanding.

2.5.7 Threats to validity

Our two user studies are limited in scope and have a number of inherent biases for which we were

unable to control. The reverse traceroute system has been developed by about five developers, all of

whom understand the entire system. Consequently, Synoptic models are straightforward for them

to interpret. Developers who are new to a project or are working on a larger project may find it

difficult to interpret Synoptic models, which may be larger and more complex. However, we believe

that Synoptic may also be used to gain insight into components of larger systems, and because most

sizable systems are developed in a modular fashion, there may still be value in using Synoptic in

large projects. Lastly, our study with the developer implicitly emphasized bug findings, which may

have primed the developer into thinking more about bugs. In a different context, he might have been

less successful in identifying bugs.

Because the students in the distributed systems course were required to use Synoptic as part

of the assignment, it is unknown whether they would have been motivated enough to learn about

and use the tool without a mandate. Students might have also been attempting to please us and
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thereby reported only positive experiences with the tool. Finally, students are not representative

of experienced developers and we do not know whether the bugs they found using Synoptic are

problems for expert developers.

2.6 Discussion

While working on Synoptic, we observed a number of its limitations. Here, we detail the most

important of these and connect some of them to our future work.

Applicability. Synoptic models capture ordering relationships between events observed in a log.

It does not handle algebraic and logical relationships that may also be useful in modeling software

(e.g., this.next 6= this.prev). Synoptic is therefore best suited for studying logs of systems whose

execution can be modeled as a sequence of elements, with the ordering, the presence, and absence of

elements encoding some useful semantics about the system. We have observed that Synoptic can

help with problems whose root causes can be deciphered using such semantic information. More

advanced issues, however, would require richer and more complex models than Synoptic currently

provides.

Invariants. Synoptic relies on three temporal invariants to determine when to terminate and

how to proceed during refinement. A rigorous evaluation of the limitations and advantages of these

invariant types is necessary. For example, we know that the invariants constrain Synoptic models in

ways that are sometimes undesirable. For instance, the 6! invariant constrains Synoptic models to be

less generative: e.g., if a 6! b is true, then the model is restricted from generating a path between a

and b, even though this behavior might be valid and can appear in an execution that is not present in

the input log. However, we do not know what kinds of systems or uses these invariants favor, and

whether we should expand this set, or make it smaller.

Synoptic invariants are temporal. They do not involve the data values that are often present in

logs. Extending Synoptic to mine and then preserve value-based invariants is a part of our future

work.

Filtering rare and common behavior. Sometimes Synoptic-generated models are large and

contain more information than is necessary. For example, a developer may be interested in a section

of the model when seeking to pinpoint a rarely-occurring behavior. To support this use-case, Synoptic
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allows the developer to filter out high/low probability edges from her view of the model. More

generally, the user may be interested in high/low probability traces admitted by the model. Synoptic

lets the user select a start and end node, and specify the maximum/minimum path probability to use

for hiding all paths between the two nodes that have a path probability outside of the desired range.

Comparing models. A common use-case for Synoptic models is to study how the models change

with different log inputs. Log inputs may differ because of additional executions in the log, a change

to the mined set of invariants, a modification to the codebase, or because of added or removed logging

statements.

Synoptic displays two models side by side and highlights their differences. These may be

topological (e.g., the node count is different), or statistical (e.g., the transition probability of certain

edges may have increased/decreased). By studying model differences, developers can check whether

system behavior is the same or different — either over different traces or different system settings.

Reliance on logs. To work well, Synoptic needs the input log to include as many different system

executions as possible. This is because Synoptic models are at most as detailed as the input logs.

If the user failed to log an important behavior, then this behavior will usually not be present in the

Synoptic-generated model. However, generating all possible system behaviors is notoriously difficult,

and may be infeasible, as illustrated by the following student quote:

“However, we had to run specific simulation cases in order to produce the log, so while Synoptic was very

useful, most of the debugging process involved trying commands in the simulator. We knew what cases

we were testing, so running them through the terminal was an easier way to test for the bug. But Synoptic

did confirm that we have the right message flows.”

Fault localization/advanced tool support. The feasibility of fault localization using Synoptic-

generated models depends on the density and quality of the logging statements. Reconstructing

execution paths based on logs is an active research area (e.g., SherLog [136]), and we hope to

leverage this existing work in developing more automated fault localization techniques. However,

fault localization fundamentally requires human insight. To this end, the existing Synoptic web

service can be extended with more advanced functionality. For example, we would like to allow users

to work with collections of models of varying abstraction, to deal with evolving log formats, and

ultimately make a better link between the inferred models and the underlying system code.
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2.7 Summary

Logging is a popular debugging methodology. Unfortunately, large logs are often complex and

difficult to analyze manually. This chapter presented the design and evaluation of a tool called

Synoptic, which builds a system model from the system’s execution logs. Unlike other tools,

Synoptic requires few inputs from the developer and can be applied to pre-existing logs.

The key to Synoptic’s algorithm is its use of three types of mined temporal invariants to guide

the model space exploration. Our formal evaluation showed that Synoptic’s algorithm always makes

progress and always finds a model that satisfies the mined invariants. Our case studies showed that

Synoptic graphs improved developer confidence in the correctness of their systems, and were useful

for finding existing, as well as previously unknown bugs.

Synoptic bridges the gap between systems developed by developers with little to no training in

formal methods, and a suite of methods developed by the formal methods community.
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Chapter 3

Dynoptic: inferring models of networked systems

Most model inference algorithms, including Synoptic, focus on inferring models of sequential

systems. This requires that the executions recorded in the log are totally ordered — for every pair

of events in an execution, one precedes the other. A total order has important advantages, such as

the ability of humans to directly inspect and understand the logged information and the applicability

of simple and powerful log analysis techniques, such as Synoptic. Further, many well-established

logging formats are totally ordered.

However, in domains where an execution may be concurrent, such as in distributed or networked

systems, events are partially ordered, and do not have a total order. As a result, most model inference

work cannot be applied to infer a model of a distributed or a networked system in which events at

different nodes may occur without any happens-before relationship [83].

Concurrency is increasingly used to improve performance in clusters and in multi-core architec-

tures. Even simple applications are becoming concurrent, with more functionality migrating into the

cloud and with widespread use of Ajax to mask latency. It is therefore important to develop model

inference techniques and tools to support developers who work on concurrent system.

This chapter describes a model inference technique and a corresponding tool, called Dynoptic,

which infers a communicating finite state machine (CFSM) [27] model of the processes that generated

the log. This model type is especially well suited to describing networked systems — systems in

which a number of processes communicate over channels. For example, Dynoptic can be used to

model distributed systems, protocols, execution of AJAX events in a web-browser, and other behavior

traces that record events at multiple communication processes.

Dynoptic models can support developers with a variety of tasks — developers can inspect, query,

and check Dynoptic’s models against their own mental model of the system. These uses are the

focus of this chapter. However, Dynoptic-generated models also support other use-cases, such as

model-based testing of networked systems, and detection of anomalous behavior as systems are
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Figure 3.1: Three partial orderings, represented as time-space diagrams, that are equally implied by

a serialized (totally ordered) log containing two events — a and b, in this order. This illustrates the

ambiguity of a totally ordered log in a distributed setting.

exposed to new workloads or environments.

To evaluate Dynoptic we applied it to logs of three different systems — the stop-and-wait protocol,

opening/closing handshakes of TCP, and the replication strategy in the Voldemort [125] distributed

hash table. Second, we performed a user study with a class of 39 undergraduates to evaluate the

efficacy of CFSM models in finding bugs. This evaluation indicates that Dynoptic produces models

that are accurate and useful in finding implementation bugs.

The next section introduces partial order in the context of networked systems, discusses how it

can be tracked, and discusses time-space diagrams. Section 3.2 introduces and motivates the CFSM

formalism. Section 3.3 overviews the Dynoptic approach. Then, Sections 3.4 – 3.11 formally define

the Dynoptic algorithm. Section 3.12 proves that Dynoptic returns models that are accurate, in the

sense that they satisfy the mined log properties we define. Section 3.13 presents an evaluation of the

Dynoptic tool on logs generated by three systems. Section 3.14 discusses issues raised by our work

on Dynoptic, and Section 3.15 provides a summary of this chapter.

3.1 Partial order in networked systems

A partially ordered log captures concurrency information explicitly, making it more useful than

a totally ordered log for studying concurrent systems. For example, consider Figure 3.1, which

illustrates this extra information with a simple system of two communicating processes. Process 1

generates an a event, and process 2 generates a b event. If these two events are serialized into a totally
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ordered log in the order a and then b, then then it is unclear whether a preceded b or just happened to

be logged before b. Even if a and b appear in different orders in multiple traces, it is still possible

that they can never occur concurrently. Figure 3.1 shows the three possible partial orderings. Unlike

a totally ordered log, a partially ordered log of these two events will make concurrency explicit:

the partially ordered log will indicate whether a and b have some order, in which case they are not

concurrent, or if there is no ordering between the two events and the two events are concurrent. A

partially ordered log will be able to distinguish between the three scenarios in Figure 3.1.

Next we explain time-space diagrams — a common technique for visualizing a partial order.

Then, we describe how a partial order can be tracked in a distributed setting1.

3.1.1 Visualizing a partial order as a time-space diagram

A time-space diagram is a representation of a single distributed execution and can be used to

understand a single trace in a partially ordered log. In a time-space diagram there is one timeline

for each host in the system (with time proceeding visually down). Local events for a host are

plotted along the host’s timeline, and communication events (i.e., message sends and receives) are

represented as arrows that connect the timelines of the communicating hosts at points of time when

they communicated.

Figure 3.2(a) is a log of traces with vector times and events from a system with three hosts. In

this system two clients concurrently buy tickets from a ticket server that has just one ticket available.

The log captures several scenarios in which the clients and the server interact: different orders of

checking for ticket availability, attempts to buy a ticket, and so on. This log is partially ordered

because the clients issue requests independently.

Figure 3.2(b) shows five time-space diagrams2 representing the five partially ordered traces in

Figure 3.2(a). In each time-space diagrams the two left-most timelines (grey vertical lines) depict the

events executed at the clients — client 0 and client 1; the third timeline shows events executed by the

ticket server. An arrow between two host timelines in a time-space diagram denotes communication

1This explanation corresponds to a system that uses message passing. Vector timestamps can also be used for ordering

event instances in a system that uses other mechanisms for inter-host communication, such as shared memory.

2For compactness, the diagrams in Figure 3.2(b) bundle message receipt, message processing, and message send

events into one event.
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[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[1,1,2] server: there is a ticket available for 505P
[2,0,1] client 0: buy ticket
[2,1,3] server: sold
[1,2,2] client 1: buy ticket
[2,2,4] server: tickets sold out

[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[0,1,1] server: there is a ticket available for 505P
[1,1,2] server: there is a ticket available for 505P
[0,2,1] client 1: buy ticket
[1,2,3] server: sold
[2,1,2] client 0: buy ticket
[2,2,4] server: tickets sold out

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,1,2] server: there is a ticket available for 505P
[1,2,2] client 1: buy ticket
[1,2,3] server: sold
[2,0,1] client 0: buy ticket
[2,2,4] server: tickets sold out

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,1,2] server: there is a ticket available for 505P

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[2,0,1] client 0: buy ticket
[2,0,2] server: sold
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[2,1,3] server: tickets sold out
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Figure 3.2: (a) Five system traces (S1-S5), each comprised of log lines and corresponding vector

clock timestamps for a web application that sells airplane tickets. In the traces, two clients access a

single server. (b) A visualization of the five system traces as time-space diagrams. Time flows down,

and events at each host are shown in a single column.

— the event at the start of an arrow is a send message event, and the event that an arrow points to is a

receive message event.

Informally, the vertical space between events represents time. More formally, the time-space

visualization captures the ordering of events in a distributed setting. Two events in the system are

ordered if there is a path (along all the edges in the diagram — both grey and black) from one event

to the second, that never goes upward. For example, in system trace S2 in Figure 3.2, the send of buy

at client 1 happens before the sold at the server. Two events are considered to execute concurrently

if there is no such path between the two events. For example, in all of the executions in Figure 3.2(b)

the buy event at client 0 and the buy event at client 1 are always concurrent, while the events sold

and sold-out at the server are always ordered.
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As another example, in system trace S1 a search event instance at client 0 has a timestamp of

[1,0,0], which immediately precedes the first available event instance at the server, timestamped

with [1,0,1]. The time-space diagram encodes this precedence information as a directed edge between

the two event instances. However, in S1 the same search event instance at client 0 is not ordered

with the search event instance at client 1, which has a timestamp of [0,1,0]. Correspondingly, there

is no path in the time-space diagram between these two event instances.

Time-space diagrams are frequently drawn by developers to understand a distributed execution.

We therefore compare the efficacy of CFSM models inferred by Dynoptic against time-space diagrams.

Section 3.13.5 reports on user study that evaluates the two representations.

3.1.2 Tracking partial order with vector time

Vector time [52, 96] is logical clock mechanism for tracking event ordering in a concurrent system.

For this, each logged event in a trace is associated with a vector timestamp. These timestamps can

then be used to reconstruct the partial ordering of events.

Formally, in a distributed system of h hosts, each host maintains an array of clocks C = [c0, c1,

. . ., ch�1], in which a clock value c j records the local host’s knowledge of (equivalently, dependence

on) the local logical time at host j. We denote a timestamp’s C clock value for host j as C[ j].

When generating an event, the host increments its own clock in the array. When sending a

message to another host, the sender shares its clocks array with the receiver, who updates its local

clocks array to the most recent clock values (and increments its local clock, as message receipt is an

event). More formally:

1. All hosts start with an initial vector clock value of [0, . . ., 0].

2. When a host i generates an event instance, it increments its own clock value (at index i) by 1,

i.e., Ci[i]++.

3. When host h communicates with host h0, h shares its current clock Ch with h0, and h0 updates

its local clock Ch0 so that 8i, Ch0 [i] = max(Ch[i],Ch0 [i]). h0 also updates its local clock value as

in (2), since message receipt is considered an event.
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(a) (b)

Figure 3.3: A mental model drawn by an undergraduate student for a systems course. The model

depicts a client-server system with (a) the client process sub-model, and (b) the server process

sub-model. The process models are represented as distinct finite state machine that process remotely

generated events.

Note that in the above procedure we assume that the hosts know the number of participants (hosts)

in the system, and that the set of participants does not change over time.

Using the above procedure, each event instance in the system is associated with a vector timestamp

— the value of C immediately after the event instance occurred. Vector timestamps can be partially

ordered with the relation �, where C � C0 if and only if each entry of C is less than or equal to

the corresponding entry of C0, and at least one entry is strictly less. More formally: C � C0 iff

8i,C[i]C0[i] and 9 j,C[ j] < C0[ j]. This ordering is partial because some timestamp pairs cannot be

ordered (e.g., [1,2] and [2,1]).

3.2 Networked systems as communicating finite state machines

Dynoptic uses the CFSM formalism for models because a CFSM is similar to the widely known and

easily understood FSM formalism. CFSMs are well-established in the formal methods community,

and we believe that a CFSM is intuitive and simpler for developers to comprehend than an alternative
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model type (e.g., a Petri net). For example, a single process FSM in a CFSM can be inspected and

understood without needing to understand the activity of other processes in the system.

The CFSM model is a natural fit for developers of networked systems because such systems are

typically modular, and one of the most useful modularity boundaries is the process abstraction. For

example, when we asked students in a distributed systems course to draw their mental model of a

distributed system, many students drew a model that resembles a CFSM (e.g., Figure 3.3). Such mod-

els had two key features: one distinct finite state machine per process, and each process consuming

events generated by remote processes. These features happen to be the defining characteristics of a

CFSM. Further, prior work on fault-tolerance services, with its emphasis on per-process FSMs [113],

also supports our CFSM model choice.

A communicating finite state machine (CFSM) is a model that depicts a fixed set of processes.

Processes communicate with one another by sending and receiving messages on uni-directional

channels. Each process in a CFSM is represented as a finite state machine. For example, Figure 3.4

shows a CFSM with two processes — process A and process B. These two processes are connected

with channels c and d.

In a process finite state machine, circles represent states (e.g., process A has two states — a0

and a1). And, arrows depict transitions on events between states. The process machines execute

discretely and asynchronously by taking transitions from one state to the next, starting from an initial

state and terminating in the terminal state. The initial state is indicated by a floating arrow that points

to it (e.g., a0 is the initial state at process A). The terminal state is indicated by two concentric circles

(e.g., b0 is the terminal state at process B).

Processes in a CFSM have two kinds of communication events that allow them to exchange

messages. The send of a message m on channel c is expressed as c!m (the exclamation mark indicates

a send). While the receive of a message m on channel c is indicated by c?m (the question mark

indicates a receive).

For example, in the CFSM above, process A can send a message m to process B with the event

c!m. This would transition process A from state a0 to state a1. Process B can receive m on channel

c by transitioning from b0 to b1 (event c?m). Next, process A must stay in a1, waiting for an ack

message from process B. Process B can reply with an ack on channel d – d!ack, which would

transition it from b1 to b0. Finally, process A can receive the ack and transition back to a0.
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 c!m

d?ack

a0 a1  c?m

d!ack

b0 b1

Process A Process B

c

d

Figure 3.4: A simple CFSM model with two processes — A and B, and two channels — c and d.

The above sequence is a valid execution of the system because it starts with all processes in initial

states, terminates with all processes in terminal states, and has legal intermediate transitions. This

execution can be represented more compactly as the sequence [c!m,c?m,d!ack,d?ack]. On the other

hand, the execution [c?m,d!ack,d?ack] is not a valid execution (process B cannot receive message m

since process A never sent it).

In the standard CFSM formalism, processes communicate with one another via message passing

over reliable FIFO channels. However, unreliable channels can be simulated by replacing each

unreliable channel with a lossy “middlebox” FSM that non-deterministically chooses between

forwarding and losing a message.

3.3 Overview of approach

Dynoptic’s input is a log, and its output is a CFSM model that describes the distributed system that

generated the log. An input log consists execution traces of the system. Each execution trace is a set

of events, and each event has an attached vector timestamp [52, 96].

Figure 3.5(a) shows an example input log generated by two processes executing the stop-and-wait

(SAW) protocol. In the protocol, a sender process communicates a sequence of messages to a receiver

process over an unreliable channel. The receiver must acknowledge an outstanding message before

the sender moves on to the next message. If a message is delayed or lost, the sender re-transmits the

message after a timeout.

In the system that produced the log in Figure 3.5(a) the sender transmits messages to the receiver



54 3.3. Overview of approach

 

send(m)
M!m-0
A?a-0
send(m)
M!m-1
A?a-1
send(m)
M!m-0
A?a-0
send(m)
M!m-1
A?a-1

1,0
2,0
3,3
4,3
5,3
6,6
7,6
8,6
9,9

10,9
11,9

12,12

2,1
2,2
2,3
5,4
5,5
5,6
8,7
8,8
8,9

11,10
11,11
11,12

M?m-0
recv(m)
A!a-0
M?m-1
recv(m)
A!a-1
M?m-0
recv(m)
A!a-0
M?m-1
recv(m)
A!a-1

s0 s1send(m) s2M!m-0

timeout

A?a-1

s3

A?a-0

s4 send(m)s5 M!m-1

A?a-1

A?a-0

timeout

(b.1) Sending process

(b.2) Receiving process

r0 r1M?m-0 r2recv(m) M?m-0

r3r4 M?m-1r5 recv(m)

A!a-1

M?m-1

M?m-1 M?m-0 A!a-0

A?a-1

A M

(a) Input log

Sender log
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Figure 3.5: Example Dynoptic inputs and outputs. (a) Example input log with a single vector-

timestamped trace of two processes running the stop-and-wait protocol (SAW). (b) The CFSM model

of SAW derived by Dynoptic, with (b.1) the sender process model and (b.2) the receiver process

model. These models were inferred by Dynoptic for this system on a more complete log (not shown).

using channel M, and the receiver replies with acknowledgments through channel A. Notation Q!x

means enqueue message x at head of channel Q, and event Q?x means dequeue message x from the

head of channel Q. The event send(m) is a down-call to send m at the sender, and recv(m) is an
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up-call at the receiver indicating that m was received. The timeout event at the sender triggers a

message re-transmission after some internal timeout threshold is reached. The “alternating bit” is

associated with each message and is appended to a message’s channel representation as -0 or -1.

For example, the first (and every odd) message sent by the sender is represented as m-0 and the

corresponding response is represented as a-0.

Figure 3.5(b) shows Dynoptic’s output — a communicating finite state machine [27] (CFSM)

model — for a more complete log of this protocol (not shown). The model in Figure 3.5(b) handles

message loss, but the lossy middlebox is not shown in the diagram.

Dynoptic transforms its input through a series of representations and analyses to produce its

output (see Figure 3.6). First, Dynoptic converts the input log into a set of execution DAGs. Those

are combined into a single concrete FSM, which is abstracted into a more concise abstract FSM.

Dynoptic iteratively refines (enlarges) the concise, general abstract FSM until it satisfies a set of

temporal invariants that Dynoptic mined from the execution DAGs. The final abstract FSM is

converted to the output CFSM. We now give more details about each of these steps. The following

sections will then formally describe the Dynoptic process.

Dynoptic first parses the input log into a set of execution DAGs (step 1 in Figure 3.6). Each

DAG captures the partial ordering of events in one of the executions in the log. Figure 3.10(a)

illustrates three DAGs parsed from a log (not shown) of an example system with two processes

(Section 3.8 describes the example system).

Dynoptic uses the collection of all of the parsed DAGs to mine temporal invariants that are true

across all executions in the log (step 2 ). For example, for the DAGs in Figure 3.10(a), one invariant

Dynoptic mines is: event b at process p1 is never followed by event x at process p2. As another

example, one mined stop-and-wait protocol invariants is M?m-0 is always followed by A?a-0.

Dynoptic next uses the execution DAGs to construct a single concrete FSM (step 3 ). This FSM

represents the observed, or concrete, executions of the whole system. Each state in the concrete FSM

is a tuple of all the individual process states and all the channel contents. A channel’s content is

computed from the sequence of observed message sends and receives in the trace. Process states,

however, must be inferred, and are assumed to be uniquely determined by the process’s history.

In other words, for a specific sequence of events at a process, Dynoptic creates a single unique

anonymous process state. Figure 3.10(b) illustrates the process states that Dynoptic creates based on
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the DAGs in Figure 3.10(a). These local process states are then combined with observed channel

contents to generate the concrete FSM (Figure 3.10(c)).

The concrete FSM describes all of the observed executions in the log: it accepts all serializations

of events across all the execution DAGs. For example, the concrete FSM in Figure 3.10(c) accepts

the sequence [a,c, !m,?m,y], which is exactly trace 1 from Figure 3.10(a). However, the concrete

FSM also generalizes based on state equivalence across traces. For example, the concrete FSM in

Figure 3.10(c) accepts the sequence [a,c, !m,?m,x], which is not an observed trace.

The concrete FSM is first used to filter, or validate, the mined invariants (step 4 ). This step is

necessary because of incompleteness of the input traces (see Section 3.8).

Second, the concrete FSM is used to construct an abstract FSM (step 5 ). The concrete FSM

models the system, but generalizes in a very limited way. Moreover, the concrete FSM is not concise:

it is a DAG whose longest path is as long as the longest execution. Because the concrete FSM is

neither concise nor sufficiently abstract, Dynoptic generates a more concise abstract FSM model,

using a process we call state abstraction.

A state in the abstract FSM corresponds to multiple states in the concrete FSM. Dynoptic derives

the abstract FSM from the concrete FSM by merging concrete states into abstract states, with

transitions between abstract states derived from the transitions between the underlying concrete

states. The resulting FSM is concise (because there are far fewer states than in the concrete FSM) and

accepts all of the sequences accepted by the concrete FSM. But, the partition graph also generalizes

and accepts sequences of events that were not observed. In fact, the initial abstract FSM model

that Dynoptic builds is often too abstract. Next, Dynoptic uses the mined invariants to refine the

abstract FSM into a model that limits abstraction in a way that is consistent with patterns observed in

the executions (i.e., by satisfying the mined invariants). Figure 3.7 overviews, at a high-level, this

refinement process, which we briefly describe next.

Dynoptic achieves refinement via a counter-example-based abstraction refinement loop [32].

Dynoptic uses the McScM model checker [71] to check the CFSM model corresponding to the

abstract FSM against each of the mined invariants (steps 6 and 7 ). If the abstract FSM model does

not satisfy an invariant, the model checker returns a counter-example path in the model. Dynoptic

uses this path to refine, or split, a set of partitions in the abstract FSM to create a larger model that

invalidates the counter-example (step 8 ). The new model is less abstract (not as general) and does
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Figure 3.6: Dynoptic process flow chart. This is an elaboration of the more abstract process

description in Figure 1.5(a).

not contain the counter-example path. Eventually, after potentially several refinements, the model

will satisfy the invariant.

Once all of the invariants are satisfied, Dynoptic generates the output CFSM, which corresponds

to the final abstract FSM. The output model can be used directly by an end-user, or fed into other

automated tools (e.g., for test-generation).
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Figure 3.7: A summary of the Dynoptic refinement process. Dynoptic starts with an initial abstract

FSM, A0, which is gradually refined to a final abstract FSM, Afinal, which satisfies all of the invariants.

3.4 Formalizing a log of events

The next couple of sections formalize Dynoptic’s model inference process (overviewed in Section 3.3

and Figure 3.6). This formalism enabled us to formally prove important properties of our approach

(Section 3.12). A reader who wishes to get an intuitive understanding of the approach can skim these

sections.

We start by defining a log of events and describing the inputs to Dynoptic (Section 3.5). Then, we

describe the invariants that Dynoptic mines, and how it mines them (Section 3.6). Then, we specify

how Dynoptic converts a log into a concrete FSM (Section 3.7), and uses this FSM to validate the

mined invariants (Section 3.8). Next, we explain how Dynoptic abstracts the concrete FSM into the

initial abstract FSM (AFSM) (Section 3.9). Finally, we describe how Dynoptic model-checks an

AFSM (Section 3.10); and then refines the AFSM to satisfy the valid invariants and converts the

AFSM into a CFSM (Section 3.11).

We begin by describing the notation used in the rest of the chapter. Given an n-tuple t, let |t| = n,

and let t[i],0 < i n refer to the ith component of t; for i > n, let t[i] = e. Given two tuples t1 and t2,

|t2| |t1|, we say t2 ✓ t1 (t2 is a sub-tuple of t1) if and only if we can generate t2 by deleting some

number of components from t1. Let t 0 = t[i c] represent the n-tuple that is identical to t except
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possibly in the ith component, which equals c. That is, t 0[i] = c and 8 j 6= i, t 0[ j] = t[ j]. We write

t 00 = t · t 0 to denote concatenation of two tuples: t 00 has length |t|+ |t 0|, and 8i 2 [1, |t|], t 00[i] = t[i] and

8i 2 [|t|+1, |t 0|], t 00[i] = t 0[i� |t|]. We call t a prefix of t 00 iff 9t 0 such that t 00 = t · t 0. Finally, let the

projection function p map a tuple t and a set S to a tuple t 0 that is the maximum length sub-tuple of t

with elements from S. That is, t 0 = p(t,S) is the largest tuple such that t 0 ✓ t and 8i, t 0[i] 2 S.

A log is a set of system traces, each of which represents one system execution. Each system trace

consists of a set of process traces (one process’ view of the execution) of instances of events and a

partial ordering over those instances. The event instances can be classified into types and some types

(send and receive) are associated with channels between processes. We now formally define these

concepts.

We assume a distributed system that is composed of h processes, indexed from 1 to h, and there is

a fixed set of channels, each of which is used to connect one sender process to one receiver process.

Definition 3.1 (Channel). A channel ci j is identified by a pair of process indices (i, j), where i 6= j

and i, j 2 [1,h]. Indices i and j denote the channel’s sender and receiver process, respectively.

For each channel ci j, a (possibly empty) finite set of messages Mi j are the only messages that can

be sent and received on ci j.

The execution of each process generates a sequence of event instances, each of which has an

event type from a finite alphabet of process event types. These event types can be local, or message

send or receive events. Each of the send and receive events is associated with a channel (we use ! to

label send events and ? to label receive events).

Definition 3.2 (Channel send and receive event types). For a channel ci j, the channel send (Si j) and

receive (Ri j) event types are the finite sets (alphabets) Si j = {ci j!m | m 2Mi j} and Ri j = {ci j?m | m 2

Mi j}.

Definition 3.3 (Process event types). For a process i, the process event types set Ei is a finite

set (alphabet) of event types that can be generated by process i. Ei is composed of all send and

receive events that the process can generate, as well as a set of process local (Li) event types:

Ei = ([8 jSi j)[ ([8 jR ji)[Li.

Definition 3.4 (Event instance). For a process i with the process event types Ei, an event instance

is a triple he, i,ki, where k � 1 is an integer that indicates the order (position) of the event instance,
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among all event instances generated by process i. (In other words, no two event instances will share

the same k.) When the value of k is not important, we denote this triplet as êi.

A process trace is the set of all event instances generated by a process. We assume that each event

instance is given a unique position in a consecutive order, from 1 to length of the trace.

Definition 3.5 (Process trace). For the process i, a process trace is a set Ti of event instances, such

that 8k 2 [1, |Ti|], 9he, i,ki 2 Ti, and he, j,ki 2 Ti =) j = i.

A system trace corresponds to a single execution of the system. It consists of the union of a set

of process traces (one per process), and a strict partial ordering over event instances in the process

traces. The partial ordering captures the happens before relation [83] and must totally order event

instances in each process trace according to their positions.

In addition, a system trace must satisfy three basic communication consistency constraints: (1)

every sent message is received, (2) only sent messages are received, and (3) sent messages on the

same channel must be received in FIFO order. These constraints are trace assumptions3 and removing

them is part of our future work (see Section 3.14). We express these three constraints with a bijection

between message send and message receive instances for a pair of processes.

Definition 3.6 (System trace). A system trace is the pair hT,�i, where T = [Ti, and � is a strict

partial order such that 8êi = he, i,k1i 2 T , f̂i = h f , i,k2i 2 T , êi � f̂i () k1 < k2.

For all i, j let Ŝi j = {ŝ | ŝ 2 T and s 2 Si j} and R̂i j = {r̂ | r̂ 2 T and r 2 Ri j}. A system trace

must have a corresponding bijection f that satisfies the three communication consistency constraints

mentioned above. More formally, 8i, j,9 a bijection f : Ŝi j! R̂i j, such that:

1. f (ŝ) = r̂ =) ŝ� r̂

2. 8ŝ1, ŝ2 2 Ŝi j, ŝ1 � ŝ2 =) f (ŝ1)� f (ŝ2).

A log is a set of system traces.

3The validity of the no message drops and no reorderings assumptions depends on the underlying transport protocol.

TCP satisfies both assumptions, but for UDP, these assumptions are invalid. Generally, TCP is used for complex protocols

that Dynoptic targets.
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3.5 Log parsing

To use Dynoptic, the user must provide three inputs: (1) a log, (2) a set of regular expressions, and

(3) a set of channel definitions.

1. Log. The input log was formalized in the previous section. Figure 3.5(a) lists an example log.

2. Regular expresisons. The user must supply a set of user-defined regular expressions for

log parsing. These expressions determine the subset of lines that are parsed, what part of a

line corresponds to a vector timestamp, and which local, send, or receive event instance the

line represents. For example, the log in Figure 3.5(a) requires a single regular expression —

(?<VTIME>)(?<PID>)(?<TYPE>.+). In this expressions the VTIME keyword indicates that

the first field should be treated as a vector timestamp, while the TYPE keyword indicates that

the last field should be considered an event type4.

3. Channel definitions. The user must define all of the channels referenced in the log. For

example, the event instance M!m-0 in the log in Figure 3.5(a) uses the M channel. This is

a channel from process 0 to process 1. Another channel used in the same log is channel

A (for acknowledgement messages), which is a channel from process 1 to process 0. For

the log in Figure 3.5(a) the input channel definitions are specified with the following string:

M:0->1;A:1->0.

Given the three inputs described above, Dynoptic first parses each system trace in the log into an

execution DAG (step 1 in Figure 3.6). Each such DAG captures the partial order of events in the

corresponding system trace. Figure 3.10(a) shows three example execution DAGs. Next, Dynoptic

mines a set of temporal invariants from these execution DAGs.

3.6 Invariant mining

Dynoptic mines a set of temporal invariants that relate events in the log (step 2 in Figure 3.6). These

invariants, defined next, are true for all of the execution DAGs and are central to Dynoptic — for the

4Message send/receive events, like M!m-0 and M?m-0, are automatically parsed into channel name (M), action type

(send or receive), and message type (m-0).



62 3.6. Invariant mining

invariants to be accurate, the log must have executions representative of all possible executions of the

modeled system. Note that the current version of Dynoptic considers just the top three of the five

invariants defined below (!, 6!, and ).

A key property of Dynoptic models is that it guarantees that the final inferred CFSM model

satisfies all of the mined invariants that are valid (Theorem 3.2 in Section 3.12). Section 3.8 explains

which invariants are considered valid.

Definition 3.7 (Event invariant). Let L be a log, and let ai and b j be two event types whose corre-

sponding event instances, âi and b̂ j, appear at least once in some system trace in L. Then, an event

invariant is a property that relates ai and b j in one of the following three ways.

ai! b j : An event instance of type a at host i is always followed by an event instance of type b at

host j. Formally:

8hT,�i 2 L,8âi 2 T,9b̂i 2 T, âi � b̂ j.

ai 6! b j : An event instance of type a at host i is never followed by an event instance of type b at

host j. Formally:

8hT,�i 2 L,8âi 2 T, 6 9b̂ j 2 T, âi � b̂ j.

ai b j : An event instance of type a at host i always precedes an event instance of type b at host j.

Formally:

8hT,�i 2 L,8b̂ j 2 T,9âi 2 T, âi � b̂ j.

ai k b j : An event instance of type a at host i is always concurrent with an event instance of type b

at host j. Formally: 8hT,�i 2 L,8âi, b̂ j 2 T,(âi 6� b̂ j ^ b̂ j 6� âi).

ai , b j : An event instance of type a at host i is never concurrent with an event instance of type b

at host j. Formally: 8hT,�i 2 L,8âi, b̂ j 2 T,(âi � b̂ j _ b̂ j � âi).

We term invariants that relate host event types on the same host (i.e., i = j) as local, and those

that relate host event types on different hosts (i 6= j) as distributed. Local invariants can be evaluated

independently of event instances on other hosts, solely by using the total ordering of event instances
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on the host. In contrast, distributed invariants capture dependency between event types on different

hosts — their evaluation requires the use of the partial ordering.

Synoptic and previous work on specification patterns [47] only consider local invariants as they

study specification patterns of sequential systems. For each of the five invariants above, the event

instances may occur on different hosts or on the same host. For example, one invariant of the

stop-and-wait protocol model in Figure 3.5 is M?m-0! A?a-0.

As with Synoptic, the!, 6!, and invariants capture particular kinds of ordering dependency.

The k and , invariants, however, are more general. The k invariant captures the lack of ordering, and

, captures the presence of some ordering. An example of a k invariant is “searchc0 k searchc1” for the

log in Figure 3.2(a), which means that ticket search requests from the two clients are never ordered.

The k and , invariants are also commutative — e.g., ai k b j iff b j k ai.

We now explain how these five invariants types are mined.

3.6.1 Mining invariants

The task of mining invariants involves taking a log (e.g., Figure 3.2(a)) as input, and outputting the

set of invariants that are true of the log.

To simplify our discussion of invariant mining algorithms, we use the directed acyclic graph

(DAG) representation of a system trace. The time-space diagrams in Figure 3.2(b) illustrate the basic

idea of the DAG representation (except that in these diagrams, edges between events generated at the

same host are implicit). Formally, a system trace hT,�i can be represented as a DAG with nodes

corresponding to event instances in T , and an edge from ê to f̂ iff ê is a direct predecessor of f̂ (i.e.,

iff ê� f̂ and 6 9 ĝ, ê� ĝ� f̂ ).

Transitive-closure-based algorithm

One invariant-mining algorithm computes the forward and reverse transitive closures of each trace

DAG in L and then determines which invariants are valid from those transitive closures as follows:

• ai! b j iff in each forward DAG transitive closure, every âi node (instance of event type ai)

has an edge to a b̂ j node.
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• ai 6! b j iff in each forward DAG transitive closure, every âi node has no edge to a b̂ j node.

• ai b j iff in each reverse DAG transitive closure, every b̂ j node has an edge to a âi node.

• ai k b j iff there are no edges between âi and b̂ j nodes in either the forward or the reverse DAG

transitive closures, and the two kinds of nodes both occur in some DAG.

• ai , b j iff there are edges between all âi nodes and all b̂ j nodes in either the forward or the

reverse DAG transitive closures whenever both nodes occur in the DAG.

This algorithm performs poorly on sparse DAGs, for which transitive closure construction is

expensive. Next, we describe two algorithms that do not explicitly generate the transitive closures,

but instead mine invariants implicitly by collecting event type co-occurrence counts.

Co-occurrence counting algorithm v1

The idea behind the co-occurrence counting algorithm is to avoid explicit construction of the trace

DAGs’ transitive closures. Instead, the algorithm walks through the trace DAGs and counts specific

values, such as the number of times an event instance of type ai is followed by an event instance

of type b j. After counting, the algorithm uses a set of rules (derived from the invariant definitions

above) to infer the true invariants:

• ai! b j iff the number of âi occurrences is equal to the number of times that âi was followed

by b̂ j.

• ai 6! b j iff the number of times that âi was followed by b̂ j was 0.

• ai b j iff the number of b̂ j occurrences is equal to the number of times b̂ j was preceded by

âi.

• ai k b j iff âi and b̂ j co-occurred at least once in a system trace (otherwise calling the two event

types concurrent does not make sense); and the number of times that âi followed b̂ j and the

number of times b̂ j followed âi was 0 (the events were never ordered).
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1 Input: event log L, as a set of event instance DAGs
2
3 for dag 2 L {
4 let dagOcc[] // Maintains DAG event counts per event type
5 // Traverse the DAG in the forward direction:
6 foreach node 2 dag, in topological order:
7 let node.predecessors = [p2node.parentsp.predecessors
8 let b j = node.type
9 dagOcc[b j]++

10 let seenTypes = {}
11 for nodeP 2 node.predecessors:
12 let ai = nodeP.type
13 PrecPairs[ai][b j]++
14 if ai /2 seenTypes:
15 CoOcc[ai][b j] = true
16 Prec[ai][b j]++
17 seenTypes = seenTypes[{ai}
18
19 // Traverse the DAG in the reverse direction:
20 foreach node 2 dag, in reverse topological order:
21 let node.successors = [c2node.children c.successors
22 let ai = node.type
23 let seenTypes = {}
24 for nodeS 2 node.successors:
25 let b j = nodeS.type
26 FollowsPairs[ai][b j]++
27 if b j /2 seenTypes:
28 Follows[ai][b j]++
29 seenTypes = seenTypes[{b j}
30
31 // Accumulate this DAG’s event instance counts:
32 for ai 2 dagOcc.keys:
33 Occ[ai]+ = dagOcc[ai]
34 for b j 2 dagOcc.keys:
35 TraceCountProductsSum[ai][b j]+=
36 (dagOcc[ai]⇤dagOcc[b j])
37 }
38
39 // Use the counts to derive the invariants:
40 let invariants = []
41 for ai,b j 2 eventTypes :
42 if Follows[ai][b j] = Occ[ai]:
43 invariants.append(ai! b j)
44 if Follows[ai][b j] = 0:
45 invariants.append(ai 6! b j)
46 if Prec[ai][b j] = Occ[b j]:
47 invariants.append(ai b j)
48 if CoOcc[ai][b j]^Follows[ai][b j] = 0^Follows[b j][a] = 0:
49 invariants.append(ai k b j)
50 if CoOcc[ai][b j]^TraceCountProductsSum[ai][b j] =
51 PrecPairs[ai][b j]+FollowsPairs[b j][ai]:
52 invariants.append(ai , b j)
53
54 Output: invariants

Figure 3.8: The co-occurrence counting algorithm v1 described in Section 3.6.1.



66 3.6. Invariant mining

3 for dag 2 L {
4 // Traverse the DAG in the forward direction:
5 foreach node 2 dag, in topological order:
6 let node.typePred = [p2node.parentsp.typePred
7 let b j = node.type
8 Occ[b j]++
9 for ai 2 node.typePred:

10 CoOcc[ai][b j] = true
11 Prec[ai][b j]++
12
13 // Traverse the DAG in the reverse direction:
14 foreach node 2 dag, in reverse topological order:
15 let node.typeSucc = [c2node.children c.typeSucc
16 let ai = node.type
17 for b j 2 node.typeSucc:
18 Follows[ai][b j]++
19 }

Figure 3.9: A different for loop body for the pseudocode in lines 3–29 of Figure 3.8, which generates

a simpler and more efficient algorithm (co-occurrence counting algorithm v2) for computing all the

invariants except ,. As well, the new algorithm would omit lines 50–52 in Figure 3.8.

• ai , b j iff âi and b̂ j co-occurred at least once in a system trace; and in every trace each âi

instance is followed or preceded by every b̂ j instance. That is, in a trace the number of âi

followed by b̂ j pairs plus the number of âi preceded by b̂ j pairs must equal the count of âi in

the trace times the count of b̂ j in the trace.

The pseudocode in Figure 3.8 outlines this procedure. The algorithm starts by building a set of

data structures to hold various occurrence counts:

• Occ[ai] : the count of âi across all traces.

• CoOcc[ai][b j] : whether or not âi and b̂ j co-appeared in a trace.

• Prec[ai][b j] : the count of b̂ j instances that were preceded by at least one âi.
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• Follows[ai][b j] : the count of âi instances that were followed by at least one b̂ j.

• FollowsPairs[ai][b j] : the count of all (âi, b̂ j) pairs for which âi was followed by b̂ j.

• PrecPairs[ai][b j] : the count of all (âi, b̂ j) pairs for which âi precedes b̂ j.

• TraceCountProductsSum[ai][b j] : the sum across all traces of the product of the number of âi

in a trace and the number of b̂ j in a trace.

To collect these counts, the trace DAG is first traversed in the forward and then in the reverse

directions. Both traversals are in topological order (e.g., on the forward traversal a node is visited

after all of its parents). The topological order guarantees that all the nodes that precede (respectively

follow) the node’s parents (respectively children) are aggregated correctly. Once the DAG is traversed

in both directions, the algorithm infers invariants from the data structures. Each if statement on lines

42–52 of the pseudocode corresponds to an informal description given above.

Because the algorithm traverses each edge once, its base traversal time for a single trace DAG

is Q(|E|), where E is the set of edges in the DAG. On traversing an edge, the algorithm needs to

merge two sets whose sizes are at most |V |, where V is the set of nodes in the DAG. Therefore, in

processing a single trace DAG, the algorithm has a running time of Q(|E||V |). Because it does not

need to explicitly maintain a transitive closure, this algorithm performs especially well on sparse

trace DAGs.

Co-occurrence counting algorithm v2 (without ,)

In both of the previous algorithms, the cost of computing the , invariant is significantly higher than

that of computing each of the other invariant types. This is because evaluating the invariant ai , b j

requires an algorithm to consider every pair of instances (âi, b̂ j). This overhead prompted us to

consider an algorithm that mines all of the invariants except the , invariant.

Figure 3.9 lists a different for loop body for the pseudocode in lines 3–29 of Figure 3.8. The result-

ing algorithm — co-occurrence counting algorithm v2 — is significantly faster (see Section 3.13.1).

The reason for this is that instead of maintaining the set of all event instances that precede (respec-

tively follow) a node, the algorithm maintains only the set of event types that precede (respectively
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follow) a node. Because of this, the per-edge cost drops from Q(|V |) to Q(|ETypes|) where ETypes

is the set of event types in the trace DAG. Therefore, this algorithm’s running time is Q(|E||ETypes|).

As mentioned at the beginning of this section, Dynoptic uses three of the five invariants that are

currently mined: !, 6!, and . In the rest of this chapter we mean exactly these three invariants

types when we talk about invariants.

3.7 Deriving a concrete FSM

In a system trace hT,�i, the ordering � is partial. Dynoptic derives this partial ordering from the

vector timestamps associated with each event instance. Any linear extension of events in T that

respects � is a totally ordered interleaving of the process traces. That is, a linear extension is one

possible order in which the events could have taken place to generate the system trace.

Definition 3.8 (Linear extension). For a system trace S = hT,�i, a linear extension < of � is a total

order over T such that 8âi, b̂ j 2 T, âi � b̂ j =) âi < b̂ j.

Again, a linear extension is one possible serialization of a partially ordered execution. We will

now introduce formalisms that will enable us to define a concrete FSM (Definition 3.13) whose

language includes all linear extensions of all system traces in a log: [S=hT,�i2LL(S), where L(S) is

the set of all linear extensions of �. Before we can define a concrete FSM, however, we first need to

introduce the notion of a system state, which consists of a global process state and a global channel

state.

To simplify definitions we first introduce Êi — the set of all process i event instances in a log,

and Li — the set of process i traces in a log L. More formally, let Êi = {êi | 9hT,�i 2 L, such that

êi 2 T}, and let Li = {p(T, Êi) | 9hT,�i 2 L}. Note that Li is the set of all process traces, Ti, that

appear in the log. Also, because 8Ti 2 Li, Ti is totally ordered (Definition 3.6), we will treat Ti as a

tuple. That is, Ti[ j] = he, i, ji, for some e.

We let Qi be a finite set of local process states for a process i. Each process begins execution in

an initial state, qi
0, and after executing a sequence s of process i event instances, the process enters

state qs. More formally, Qi = {qi
0}[{qs | 9Ti 2 Li, s is a prefix of Ti}.

We call qs a terminal state for process i if and only if s 2 Li. That is, qs corresponds to a sequence

of process i event instances, s, that are all of the process i event instances in some trace. The state qi
0
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is a terminal state for process i if and only if there is a trace with no process i event instances (i.e.,

e 2 Li).

Now, we define global process state and global channel state that together make up the system

state. We use Q to denote the set of all global process states. As there are h process, global process

states are h-tuples, Q = Q1⇥ · · ·⇥Qh.

Definition 3.9 (Global process state). A global process state q 2 Q is a h-tuple that represents the

state of all processes in the system, with q[i] 2 Qi denoting the local process state of process i.

To describe a system’s state, we must also include the contents of channels, which contain all

sent messages that have not yet been received. We first define the state of a single channel and then

use this definition to define the global channel state of the system.

Definition 3.10 (Channel state). For a channel ci j the channel state of ci j is a tuple of variable-length,

wi j, whose entries are messages that can be sent/received along ci j. That is, wi j 2 (Mi j)⇤.

Definition 3.11 (Global channel state). A global channel state w is a tuple whose entries are channel

states. More formally, w = w1,2 · · ·wi j · · ·wh�1,h where wi j 2 (Mi j)⇤. We write w[i j] to denote the tuple

wi j in w, and reuse e (the empty string) to also stand for a global channel state with all channels empty.

Further, we let M be the set of all possible global channel states, M = (M1,2)⇤ ⇥ · · ·⇥ (Mh�1,h)⇤.

Finally, we represent the system state as a pair of global process state and global channel state,

hq,wi 2 Q⇥M.

Now that we have a notion of state, we need to specify how a sequence of event instances impacts

the state of the system. For this, we define a process transition function, di, which maps a state at

process i and a process i event instance to a new state. This function is defined on sub-sequences of

the totally ordered process i traces (Definition 3.5).

Definition 3.12 (Process transition function). Let i be a process index, and L be a log. The process

transition function for a process i is di : Qi⇥ Êi! Qi, such that

• di(qi
0, ê) = qê () 9Ti 2 Li, ê = Ti[1]

• di(qs, ê) = qs·ê () 9Ti 2 Li,(s · ê) is a prefix of Ti.
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As an example that illustrates di, assume that states are the natural numbers: Qi = N, and event

types are totally ordered: 9g,g : Ei!N. Then, we can define di(q, ê) as a number that is formed by

concatenating q and g(e).

Notice that di has two distinguishing properties:

1. 8ê, f̂ , ê 6= f̂ =) di(q, ê) 6= di(q, f̂ )

2. di(q, ê) = di(q0, ê) () q = q0

These properties encode an assumption that we make about process state: we consider two local

process states to be different if they were generated by two distinct sequences of events. We discuss

the implications of this choice in Section 3.8.

Given a log L we now define a concrete FSM for L, FL. Dynoptic derives this FSM in step 3 in

Figure 3.6. A key property of FL is that it accepts all linear extensions of all traces in L, as well as all

possible traces that are stitchings of different concrete traces that share identical concrete states.

Definition 3.13 (Concrete FSM). Given a log L, a concrete FSM FL for L is a tuple hS,SI, Ê,D,ST i

whose states (S) are system states. The FSM has one initial system state (|SI| = 1) and the transition

function D is defined as a composition of the individual process transition functions, except that D

also handles communication events. Finally, the terminal states (ST ) are states with empty channels,

and with each process in a terminal state that was derived by executing all of the event instances for

that process in some system trace in L. More formally,

• S = Q⇥M

• SI = {h[q1
0, . . . ,q

h
0],ei}

• Ê = {ê | 9hT,�i 2 L, ê 2 T}

• D : Q⇥M⇥ Ê! Q⇥M,

D(hq,wi, êi) = hq0,w0i, where:

⌅ q0 = q[i di(q[i], êi)].
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⌅ w0 =

8
>>>>>>>>><

>>>>>>>>>:

w[i j (w[i j] ·m)] ei = ci j!m

w[ ji tail] ei = c ji?m

w[ ji] = m · tail

w otherwise

• ST = {ht,ei | 8i, t[i] terminal}

3.8 Validating the mined invariants

Although the invariants Dynoptic mines (described in Section 3.6) are valid for the input traces, it

might not be possible to construct a model that satisfies the invariants and accepts all of the input

traces. As an example consider the set of traces in Figure 3.10(a) for a system of two processes, p1

and p2, with a single channel from p1 to p2. These traces satisfy the invariant b1 6! x2. However,

from these traces we can also observe that after p2 executes the ?m event it has no way to decide

between the x and y events; from the point of view of p2, both are legal and equally valid, and it is

impossible to model p2 in a way that satisfies the b1 6! x2 invariant.

This situation arises due to incompleteness of the traces. This can be caused by insufficient

executions (b1! x2 is possible but was not observed) or insufficient information in the trace (the m

events that precede x2 differ from those that precede y2, in a way that is not recorded in the trace). In

either case, the b1 6! x2 invariant is an undesirable false positive.

Dynoptic overcomes this problem by detecting and omitting invariants of the above form, a

process we term invariant validation (step 4 in Figure 3.6). Figure 3.10(b) shows the traces from

Figure 3.10(a) with intermediate anonymous states (note that the state of p2 after executing ?m is

identical across all three traces). These anonymous local process states, along with concrete channel

contents, are used to derive the concrete FSM (Figure 3.11) corresponding to the above execution

DAGs. This concrete FSM is checked for paths that violate the mined invariants, and these invariants

are reported to the user and omitted from the set of Dynoptic steps that follow. The output of this

process is a set of valid invariants. Figure 3.12 details the ValidateInvariants procedure.

It is worth noting that invariant validation is necessary because of how Dynoptic generates

anonymous local process states: the local process state is completely determined by the set of
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(a) Execution DAGs

(b) Traces with anonymous states

Figure 3.10: (a) Execution DAGs parsed from an input log with three traces, each one containing

events from two processes: p1 and p2. Communication events omit the channel name as all messages

flow from p1 to p2. Note that the execution DAGs satisfy the invariants c1! y2 and b1 6! x2. (b)

The traces from (a) with added per-process anonymous states. Note the reuse of states s0, s1, t0, t1,

and t2.

executed local events (the assumption mentioned in Section 3.7). If a process state was determined

not by just the local process events, but by the global history of events at all processes in the system

then we would not need to perform invariant validation (all invariants would be satisfied in the
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Figure 3.11: The concrete FSM for the execution DAGs in Figure 3.10(a). The unshaded box in the

middle highlights a stitching that satisfy all of the mined invariants. The two shaded boxes highlight

stitchings that invalidate both the c1! y2 and the b1 6! x2 invariants. During invariant validation,

Dynoptic model-checks the concrete FSM to determine which of the mined invariants are valid. In

this example, both c1 6! y2 and b1 6! x2 are invalid.

concrete FSM). However, an advantage of our design choice is that it mitigates the much more

difficult problem of state explosion, as states would be differentiated to a very fine degree.

One concrete method by which an invalid invariant can be made valid is by refining the existing

event types in the log based on remote events. For example, in the traces in Figure 3.12(a), if message

m was differentiated into mac, ma, and mb then all of the mined invariants would be valid.
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1 function ValidateInvariants(FL, Invs):
2 let Invs0 = Invs
3 foreach complete path p in FL:
4 foreach inv 2 Invs:
5 if (p violates inv):
6 Invs0 = Invs0 \{inv}
7 return Invs0

Figure 3.12: ValidateInvariants model-checks the mined invariants Invs in the concrete FSM

FL and returns a subset of invariants, Invs0 ✓ Invs, that are valid for FL.

3.9 Abstracting a concrete FSM

The concrete FSM FL accepts all possible serialized sequences of event instances across all executions

in a log L. We let P represent a partitioning of states in FL, (i.e., a partitioning of Q⇥M). Dynoptic’s

aim can now be defined as deriving an abstract FSM (AFSM) AL(P) whose states are partitions in P

and which accepts sequences of events — rather than event instances. That is, transitions between

states (partitions) in AL(P) are generated through existential abstraction — there is a transition from

P1 2 P to P2 2 P on event e iff there are concrete states s1 and s2 such that s1 2 P1,s2 2 P2, and there

is a transition from s1 to s2 on some event instance ê, corresponding to e.

Note that AL(P) will trivially accept the serialized event instance sequences. But, we also want

the abstract FSM to generalize, or accept unobserved sequences of events that satisfy the valid

invariants.

Now, we formally define AL(P).

Definition 3.14 (Abstract FSM (AFSM)). For a log L let FL = hS,SI, Ê,D,ST i be the concrete FSM

for L, and Let P be a partitioning of S. That is, S = [P2PP, and 8s 2 S,9!P 2 P,s 2 P. Then, an

abstraction of FL, or an abstract FSM of L is an FSM AL(P) = hP,PI,E,D0,PT i, where

• PI = {P 2 P | SI \P 6= /0}

• E = {e | ê 2 Ê}
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• D0(P,e) = P0 () 9q 2 P,q0 2 P0, ê 2 Ê,D(q, ê) = q0

• PT = {P 2 P | ST \P 6= /0}

An important feature of an AFSM is that it generalizes observed system states. A partition

contains a finite number of observed system states, but through loops with transitions that modify

channel state, an AFSM can generate arbitrarily long channel contents, leading to an arbitrarily

large number of system states. We may not have observed these system states, but an AFSM model

generalizes to predict that they are feasible.

Dynoptic uses a top-k partitioning strategy for generating an initial AFSM for a concrete FSM

(step 5 in Figure 3.6). This partitioning assigns two system states to the same partition if and only if

the top-k message sequences in the channel states of the two states are identical. For example, if the

system has two channels, c12 and c21, and there are three concrete states: s1,s2,s3, and s1.channels =

{c12 : [],c21 : [m]}, s2.channels = {c12 : [],c21 : [m,m]}, s3.channels = {c12 : [l],c21 : [m]} then the

top-1 contents of s1 and s2 are {c12 : [],c21 : [m]} (the second m in s2.c21 is not included), while the

top-1 contents of s3 are {c12 : [l],c21 : [m]}. Therefore, in a top-1 partitioning strategy, s1 and s2

would map to the same partition, while s3 would map to a different partition.

Definition 3.15 (Top-k partitioning). Let S be a set of system states. Pk is a top-k partitioning of S if

8P 2 Pk, hq,wi,hq0,w0i 2 P () 8ci j,8g,1 < g k,w[i j][g] = w0[i j][g].

A CFSM is a set of per-process FSMs that communicate over FIFO channels.

Definition 3.16 (Communicating FSM (CFSM)). A CFSM of h processes is a tuple of process FSMs

hFiihi=1, where Fi = hQi, Ii,Ei,Di,Tii is a process i FSM.

An AFSM is an abstraction of concrete FSM. Dynoptic’s goal is to construct a communicating

FSM (CFSM). The AFSM can be thought of as a cross product of the per-process FSM, and the

CFSM can therefore be reconstructed from the AFSM. Figure 3.13 details the AFSMtoCFSM procedure

for converting an AFSM into a CFSM (step 6 in Figure 3.6).

3.10 Model-checking an AFSM

Dynoptic uses the McScM [71] model checker to check if an invariant holds in the CFSM that

corresponds to an AFSM (step 7 in Figure 3.6). Since McScM reasons about state (un-)reachability,
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1 function AFSMtoCFSM(AFSM A):
2 A = hP,PI,E,D,PT i
3 foreach i 2 [1, . . . ,h]:
4 // Ai is A with non pid i events replaced with e.
5 let Ai = (P,PI,Ei,Di,PT ), where

Ei = {ei 2 E}, and
Di(q,e) = q0 () D(q,e j) = q0, i 6= j
Di(q,ei) = q0 () D(q,ei) = q0

6 let Fi = eliminate-e (Ai)
7 CFSM CA = hFiihi=1
8 return CA

Figure 3.13: AFSMtoCFSM translates an AFSM A into a CFSM CA ; eliminate-e performs standard

e transition elimination [74].

q1 q2 q3a b

b̂
â

Figure 3.14: An example of an AFSM path, [a,b], that can be eliminated by refining the abstract

state q2, separating the two concrete states that generate the abstract path.

Dynoptic encodes a temporal invariant in terms of states that can only be reached if the sequence of

executed events violates the invariant. We now describe this encoding and the overall CFSM model

checking procedure.

Model checking an event invariant (Section 3.6) in a CFSM (Section 3.9) is a three step process.

First, the CFSM must be augmented with synthetic “tracking” transitions that record when an event

type mentioned by the invariant is executed by the model checker. Second, the negation of the

invariant must be encoded as a set of “bad states” of the CFSM. If the model checker finds an

execution that can reach one of these states, it will emit the corresponding path. The third, and final,
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Figure 3.15: Transforming an edge in a CFSM to track ai.

step is to rewrite this path into a valid counter-example in the GFSM model. We now describe each

of these steps in more detail.

3.10.1 Preparing a CFSM for model checking

Consider an event invariant Inv, such that Inv = aiT b j, with T 2 {!, 6!, }. And, let C be a CFSM

in which we want to check if Inv holds.

We modify C to produce a new CFSM model, C 0, which will be used as input to the McScM

model checker. We transform C into C 0 in two ways — we convert local events into send events on a

synthetic channel, and we add synthetic “tracking events” to track the execution of ai and b j event

types.

Handling local events. The McScM model checker does not model local events (it only supports

message send and receive events). We cannot omit local events from C 0, as we need to be able

to unambiguously map an McScM counter-example path in C 0 to a path in C . We therefore add

a synthetic “local events” channel, clocal, and allow all processes to send messages on clocal. This

channel is write-only — processes never receive on clocal. Finally, each process local event type,

ei, in C is translated into the event type clocal!ei in C 0. That is, we replace transitions of the form

Di(q,ei) = q0 with Di(q,clocal!ei) = q0.

Tracking events necessary for checking Inv. Given a CFSM and a set of “bad states”, the

McScM model checker checks if there is an execution of the input CFSM that causes it to reach one

of the bad states. A bad state is a kind of a system state (introduced in Section 3.7); it consists of a

global process state and a global channel state. In McScM, the global channel state is expressed with
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regular expressions over channel contents.5

To check Inv with McScM, we therefore need to generate a set of system states of C 0, each of

which encodes a violation of Inv. To generate this encoding for Inv = aiT b j, we need to track when

ai or b j occur. We do this with “tracking events”, which track the occurrence of ai and b j as send

events to a synthetic Inv-specific channel, cInv. This channel is used exclusively for checking Inv. As

with the synthetic local events channel, all processes can send on cInv, and no process ever receives

from this channel. Figure 3.15 illustrates this tracking. More formally, if Di is the process i FSM

transition function in C , then we track ai and b j event types as follows:

• Replace transitions of the form Di(q,ai) = q0 with:

– Di(q,cInv!apre
i ) = q00

– Di(q00,ai) = q000

– Di(q000,cInv!apost
i ) = q0

Where, q00,q000 are synthetic states with just the transitions above, and cInv!apre
i and cInv!apost

i

are synthetic event types that maintain a record of when ai occurs as messages in cInv.

• Similarly, to keep track of b j, replace D j(p,b j) = p0 with:

– D j(p,cInv!bpre
j ) = p00

– D j(p00,b j) = p000

– D j(p000,cInv!bpost
j ) = p0

Note that both of the transformations retain the event that is being tracked (ai or b j). This is

necessary as we want C 0 to have identical behavior to C .

To see why we need to augment both ai and b j with a pre and a post event, consider other

strategies, with less overhead (fewer synthetic events). For example, assume that Inv = ai! b j and

we repaced transitions of the form Di(q,ai) = q0 with Di(q,cInv!apre
i ) = q00 and Di(q00,ai) = q0; and

we replaced transitions of the form D j(p,b j) = p0 with D j(p,cInv!bpre
j ) = p00 and D j(p00,b j) = p0.

5Therefore, an McScM bad state is, in fact, a set of system states, as defined in Section 3.7.
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Then, consider the following contents of cInv: [apre
i ,bpre

j ]. These two tracking events imply one of

three executions:

1. cInv!apre
i ! ai! cInv!bpre

j ! b j Inv true

2. cInv!apre
i ! cInv!bpre

j ! ai! b j Inv true

3. cInv!apre
i ! cInv!bpre

j ! b j! ai Inv false

The above example indicates that the simpler strategy results in ambiguity — given the contents

of channel cInv we cannot tell if Inv satisfies the execution that produced the tracing events in cInv.

Likewise, we can show that other strategies that do not include all of the four pre and post events

lead to ambiguity.

3.10.2 Expressing invariants as McScM bad states

To model check Inv in C 0 we need to construct bad states for Inv. Each such state needs to specify the

states of all of the processes in the system and describe the contents of all channels in C 0 as regular

expressions. First, we overview the McScM regular expression syntax for denoting channel contents:

• a .b concatenation of a and b

• aˆ⇤ zero or more a

• aˆ+ one or more a

• a |b either a or b

• ( ) grouping

• empty channel

Using the above syntax, we now define some basic patterns that we will reuse in specifying bad

states.
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• ANY = (cInv!apre
i |cInv!apost

i |cInv!bpre
i |cInv!bpost

i )ˆ⇤

Accepts an arbitrary sequence of tracking events.

• A = (cInv!apre
i |cInv!apost

i )

Implicitly accepts an ai via the corresponding tracking events.

• B = (cInv!bpre
i |cInv!bpost

i )

Implicitly accepts a b j via the corresponding tracking events.

Now, let Acc be the set of all accepting global process states. That is, Acc = {a|a[i] accept state for process i}.

We will now form bad states based on the kinds of invariant we are checking. Note that we only

specify the contents of cInv channel; the contents of all other channels are: (1) all system channels

(non-invariant and non-local-event channels) are specified as being empty – “ ”, and (2) the local

events channel is specified as containing an arbitrary sequence of local events6.

Now, we can specify the set of bad states B for each invariant type:

• T =! B = {ha,ANY .Aˆ+i|a 2 Acc}

• T =6! B = {ha,ANY .A .ANY .B .ANYi|a 2 Acc}

• T = B = {ha,Bˆ+ .ANYi|a 2 Acc}

3.10.3 Post-processing the counter-example path

The invariant counter-example path returned by McScM for C 0 must be post-processed to derive a

valid counter-example for C . The path is transformed in two ways, that counter the transformations

described in 3.10.1: (1) remove all tracking events, and (2) replace events that are send events to the

local channel, clocal, to be local events in C .

6This is (e1| . . . |en)ˆ⇤, where ei is a local event in C .
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3.11 Refining an AFSM to satisfy invariants

Model-checking an invariant (previous section) can produce one of three results:

(1) McScM fails to terminate (CFSM state reachability is an undecidable problem [27]). Dynoptic

stops (times out) McScM executions that exceed a user-defined threshold (defaulted to 5 minutes).

Dynoptic then attempts to check a different invariant first before coming back to the invariant that

timed out 7. If checking each of the remaining invariants times out, Dynoptic gives up.

(2) The invariant holds in the model. Dynoptic either moves on to the next invariant, or terminates

and outputs the model if all invariants have been satisfied.

(3) The invariant does not hold and McScM finds and reports a counter-example CFSM execution. A

CFSM execution is a sequence of events that abides by CFSM semantics (e.g., a process can only

receive a message if that message is at the top of the channel), and the events sequence leads the

system into state in which each of the processes is in a terminal state, and all channels are empty. A

counter-example CFSM execution is a sequence of events that violates the invariant. In this case,

Dynoptic uses counter-example guided abstraction refinement (CEGAR) approach [32] to refine the

AFSM to eliminate the counter-example. The rest of this section details this refinement.

Dynoptic uses partition refinement to eliminate a counter-example for an invariant — once all

invariant counter-examples have been eliminated, the model satisfies the invariant. Figure 3.14

illustrates how the concrete states from the log may generate a counter-example trace in the AFSM.

The McScM invariant counter-example is a CFSM execution, but refinement must occur in the AFSM.

So, Dynoptic maps the McScM-generated CFSM counter-example into an AFSM counter-example.

Figure 3.16 describes this translation.

Definition 3.17 (Invariant counter-example). Let L be a log, let Inv be a valid invariant for L, and let

A be an AFSM for L. Then, a CFSM counter-example to Inv in CFSM CA (derived with AFSMtoCFSM

in Figure 3.13) is a sequence of events p that does not satisfy Inv and is an execution of CA . The

AFSM counter-example corresponding to p is the sequence of sets, S, where each set contains paths

in A . The sequence S is derived using S = TranslatePath(p,CA) (Figure 3.16).

7After refining the model to satisfy an invariant, a previously difficult-to-check invariant may become trivial to

model-check
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1 function TranslatePath(p,CA):
2 // p is a complete events path in CFSM CA
3 let AFSM A = hP,PI,E,D,PT i
4 foreach i 2 [1, . . . ,h]:
5 let Si = {s | s an events path in A from P1 to Pk,

p(s,Ei) = p(p,Ei),P1 2 PI,
9hq,wi 2 Pk,q[i] terminal,and

8 j,w[ ji] = e}
6 return [S1, . . . ,Sh]

Figure 3.16: TranslatePath translates an events path p in a CFSM CA into S, a sequence of sets

of paths in A . Each set in S maps to one event in p.

Note that the AFSM counter-example is a sequence of sets of AFSM paths, one for each process

in the system. This is because the process-specific events subsequence of a CFSM execution may be

generated by multiple paths in the AFSM (due to the CFSM construction based on e-transitions in

Figure 3.13).

Once the AFSM counter-example is generated, Dynoptic uses partition refinement (Refine

in Figure 3.17) to eliminate the CFSM counter-example by transforming the AFSM into a more

concrete (or less abstract) AFSM. Refinement corresponds to step 8 in Figure 3.6. For each AFSM

path, Refine identifies the set of partitions that stitch concrete observations, as in partition q2 in

Figure 3.14. It then refines all partitions in a set that is smallest across all processes and returns the

refined AFSM.

A refined AFSM is more concrete because the states of the refined AFSM contain fewer system

states observed in the log, and therefore the AFSM is closer to the concrete FSM.

Definition 3.18 (AFSM Refinement). An AFSM AL(P0) is a refinement of AFSM AL(P) if 8P0 2

P0,9P 2 P,P0 ✓ P.

The complete Dynoptic algorithm is listed in Figure 3.18. Next, we prove a few key properties of

the Dynoptic process.
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1 function Refine(A ,S,L):
2 // S is derived via TranslatePath
3 let AFSM A = (P,PI,E,D,PT )
4 let Stitchmin = /0
5 foreach i 2 [1, . . . ,h]:
6 foreach s 2 S[i]:
7 let Ps = state sequence for s in A
8 // Derive stitching states, e.g., q2 in Fig. 3.14
9 let Stitchs = {p | p a stitching state in Ps}

10 if Stitchs = /0:
11 next i
12 // Partitions set shared by paths that generate s
13 Stitchi = \s2S[i]Stitchs

14 // Stitchmin is the min size set over all Stitchi
15 if Stitchmin = /0 or |Stitchi| < |Stitchmin|:
16 Stitchmin = Stitchi
17 let P0 = P with all partitions in Stitchmin refined
18 // Derive P0I ,D0, and P0T from P0 as in Def. 3.14.
19 let AFSM A 0 = hP0,P0I ,E,D0,P0T i
20 return A 0

Figure 3.17: Refine removes an invariant counter-example from an AFSM by refining the set of

process paths in S that require the fewest refinements.

3.12 Formal evaluation

We begin with an observation: the concrete FSM satisfies all valid invariants. This is true by

construction in ValidateInvariants in Figure 3.12.

Observation 3.1 (Concrete FSM satisfies valid invariants). Let L be a log, and let Invs be the set of

invariants that are valid in FL. Then, 8Inv 2 Invs, t 2 Lang(FL), t satisfies Inv.

A key property of the Refine procedure in Figure 3.17 is that it eliminates the counter-example

path from the CFSM corresponding to the current AFSM. We prove this next.

Theorem 3.1 (Refinement eliminates counter-examples). Let p be a CFSM counter-example path

for Inv in CA and let S = TranslatePath(p,CA ), and let A 0 = Refine(A ,S,L). Then, p is not
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1 function Dynoptic(Log L,k):
2 let Invs = ValidateInvariants(MineInvariants(L))
3 let FL = Concrete FSM for L
4 let A = AFSM for FL with partitioning Pk
5 let CA = AFSMtoCFSM(A)
6 foreach Inv 2 Invs:
7 while (CA violates Inv): // Call to model checker.
8 let p = counter-example path for Inv in CA
9 let S = TranslatePath(p,CA)

10 A = Refine(A ,S,L)
11 CA = AFSMtoCFSM(A)
12 return CA

Figure 3.18: The complete Dynoptic algorithm.

a counter-example to Inv in CA 0 . That is, p is not a valid execution of CA 0 .

Proof of Theorem 3.1. We prove this by contradiction. Assume that p is a sequence of events that is

a valid execution of CA 0 and that p violates Inv. Let Stitchmin = Stitchi for some i in the execution of

Refine(A ,S,L) procedure in Fig. 3.17. Also, let CA 0 = hFiihi=1.

For p to be a valid execution in CA 0 , the sub-sequence of process i events pi, pi = p(p,Ei), must

be a valid execution in Fi. The Procedure AFSMtoCFSM in Fig. 3.13 constructs Fi to accept pi iff

there is a complete path s in A 0, such that pi = p(s,Ei). However, any such s must also be in Stitchi.

Therefore, after refining Stitchi, s can no longer be a valid path in A 0. Contradiction.

Now, we prove that the Dynoptic procedure in Figure 3.18 returns a CFSM model that satisfies

all of the valid invariants.

Theorem 3.2 (True invariant satisfiability). For a given log L, Dynoptic produces a CFSM model

that satisfies all of the event invariants that are valid in FL.

Proof of Theorem 3.2. For a log L with a total of n event instances, Dynoptic can refine the initial

abstract FSM for L, AL(Pk), at most n times. This is because after n refinements, each partition in
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the abstract FSM would map to exactly one concrete state, and a singleton partition cannot be refined

further.

Let A be the abstract FSM after n refinements of AL(Pk). Because A maps each event instance

to a unique partition, it is indistinguishable from the concrete FSM it abstracts, FL. Therefore,

Lang(A) = Lang(FL). By Observation 3.1, FL satisfies all valid invariants, therefore so does A .

Since Dynoptic does not terminate until all the valid invariants are satisfied in the abstract FSM,

it either returns A after n refinements, or it returns a smaller (and more abstract) A 0. In both cases,

the returned AFSM satisfies all of the valid invariants.

3.13 Experimental evaluation

The Dynoptic prototype is implemented in Java and uses the McScM model checker as a black box.

We leverage graphviz [63] for model visualization.

In this section we first present an evaluation of Dynoptic’s invariant mining algorithms detailed

in Section 3.6. Then, we present results from applying Dynoptic to different networked systems. We

evaluated Dynoptic on logs produced by a simulator of the stop-and-wait protocol and by two real

systems — the TCP stack of OS X; and Voldemort [125], an open source project that implements a

distributed hash table [46] and is used in data centers at companies like LinkedIn. Finally, we present

results from a user study in which a group of undergraduate students evaluated the efficacy of CFSM

models in finding bugs.

3.13.1 Invariant mining performance

We compare the performance of the transitive-closure-based algorithm with the performance of the

two co-occurrence counting algorithms. We evaluate the algorithms on synthetic partially ordered logs

that we generated using a discrete-time simulator that simulates a set of concurrent communicating

hosts. The evaluation’s focus is on mining scalability since system size and log size are a major

concern for practical log analysis. We first describe the simulator, and then present and discuss the

results.
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Figure 3.19: Invariant mining time for the transitive closure and the co-occurrence counting algo-

rithms on logs generated by the simulator described in Section 3.13.1. In each of the figures, a

single log feature is varied: (a) number of hosts, (b) execution length, (c) number of executions, and

(d) number of event types. The other log features were held constant in the same figure, and were

identical across figures: 30 hosts, 50 host event types per host (= 1,500 total since event types at

different hosts are considered different), 1,000 events per execution, and 50 executions.

Log-generating system simulator

The simulator is parameterized by the number of hosts, number of events types, number of events per

execution, and the number of executions. For each event, the simmulator chooses the host that will

execute the event and the event’s type, both with uniform probability. The simulator also decides
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s1 s2SC!syn-ack s3CS?ack s4SC!ackCS?syn

(a) TCP server

(b) TCP client

s0

SC!fin

s5s6 SC!ack

s9

CS?ack

CS?fins10 SC!ack

s7 CS?fin

s11 CS?ack

s8 SC!ack

s12 SC!fin

CS?ack

c1 c2SC?syn-ack c3CS!ack c4SC?ackCS!sync0

c5c6 CS!ack

c10

SC?fin

CS!finc11 SC?ack

c7 SC?ack

c12 CS!ack

c9 CS!fin

c13 SC?fin

CS!ack

c8SC?ack

SC CS

Figure 3.20: The inferred (a) TCP server, and (b) TCP client state machines. The server communi-

cates with the client over the SC channel, and the client communicates with the server over the CS

channel. Shaded states represent the connection-established states.

to either associate the event with sending a message to some other random node (with probability

0.3); or, if the node has messages in its queue, to associate the event with receiving a message

(with probability 0.4); or to make the event local to the selected host (remaining probability). Any
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outstanding messages in the receive queues are flushed when the simulation ends.

The simulator maintains vector clocks, following the procedure from Section 3.1.2. The simulator

outputs a log of multiple executions, or system traces, composed of events; each event has a vector

timestamp.

Study methodology and results

We implemented the three invariant-inferring algorithms in Java and ran experiments on an Intel i7

(2.8 GHz) OS X 10.6.7 machine with 8GB RAM. Our implementation used the Floyd-Warshall [54]

algorithm to compute the transitive closure. As part of our future work, we plan to implement a more

efficient transitive closure algorithm special to DAGs (e.g., [62]).

Our evaluation goal was to measure how the two versions of the co-occurrence counting algorithm

scale, as compared to the transitive-closure-based algorithm, in four dimensions: (1) with the length

of the system trace, (2) with the number of traces in the log, (3) with the number of hosts, and (4)

with the number of event types. For each of the dimensions, we first used the simulator to generate a

set of logs, varying that dimension and keeping the others constant. The constant values were: 30

hosts, 50 host event types per host (= 1,500 total since event types at different hosts are considered

different), 1,000 events per execution, and 50 executions. We ran each algorithm 5 times and report

the median value.

Figure 3.19 plots the results of our simulations. Figure 3.19(a) illustrates the algorithms’ scalabil-

ity with respect to the length of the system trace and Figure 3.19(b) with respect to the length of the

log (i.e., the number of traces). In both cases, the transitive-closure-based algorithm outperformed

the co-occurrence counting algorithm v1. The co-occurrence counting algorithm v2 (without ,)

performed best.

Figure 3.19(c) illustrates the algorithms’ scalability with respect to the number of hosts and

Figure 3.19(d) with respect to the number of event types. In both cases, the transitive-closure-

based algorithm underperformed the co-occurrence counting v1. Again, the co-occurrence counting

algorithm v2 performed best.



Chapter 3. Dynoptic: inferring models of networked systems 89

3.13.2 Stop-and-wait protocol

We considered traces from a simulator of the stop-and-wait protocol described in Section 3.3. We

derived a diverse set of traces by varying message delays to produce different message interleavings.

Dynoptic mined a total of 66 valid invariants, and Figure 3.5 shows the Dynoptic-derived model. This

experiment was a sanity check to verify that Dynoptic performed as expected on this well-understood

protocol, when faced with delays and concurrency-induced non-determinism in interleavings. The

model Dynoptic derived is identical to the true model of the stop-and-wait protocol.

3.13.3 TCP

The TCP protocol uses a three-way opening handshake to establish a bi-directional communication

channel between two end-points. It tears down and cleans up the connection using a four-way closing

handshake. The TCP state machine is complicated by the fact that packet delays and packet losses

cause the end-points to timeout and re-transmit certain packets, which may in turn induce new

messages. Our initial goal was to model common-case TCP behavior, so we did not explore these

protocol corner cases.

We used netcat and dummynet [110] to generate and control TCP packet flow. We captured

packets using tcpdump and then annotated the log to include vector timestamps. The resulting traces

were fed into Dynoptic, which was used to model just the opening and closing TCP handshakes.

For the captured TCP log, Dynoptic identified 149 valid invariants, some of which are not true of

the complete protocol (e.g., because the input traces did not contain certain packet retransmissions).

The Dynoptic-derived CFSM model is shown in Figure 3.20. The shaded states s4 and c4 represent

the server and client connection-established states, which is attained when the two end-points

have successfully set up the bi-directional channel. Transitions up to these two states model the

opening handshake, while transitions after these states model the closing handshake. The closing

handshake is split into a server-initiated tear-down sequence (middle row of states) and a client-

initiated tear-down (bottom-most row of states).

The derived model is accurate except for the self-loop on state s4 in Figure 3.20(a). This loop

appears because s4 merges the connection-established state with the state after the server has

initiated the closing handshake. This loop appears to contradict the SC!fin 6! SC!fin invariant,
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which is mined by Dynoptic for the input traces and is valid. However, the model checker only

considers counter-examples that terminate. Note that if the loop in the model is traversed twice then

the client will not be able to consume both server fin packet copies and will enter an unspecified

reception error state and therefore not terminate. Such unspecified reception states are typically

undesirable, as they can be confusing. The McScM model checker can be used to detect these states

and further refinement will eliminate them. Implementing this elimination remains as part of future

work.

Figure 3.20 also illustrates a key feature of Dynoptic— the user decides (by specifying a set of

line-matching regular expressions) what information in the log is relevant to the modeling task. Thus,

for each use of Dynoptic, the user decides on the trade-off between comprehensibility of the model

(e.g., model size) and the amount of information lost/retained by the modeling process. For example,

the TCP model in Figure 3.20 is simple to understand, but it omits TCP sequence numbers, data

packet, and other details that were present in the input log.

3.13.4 Voldemort distributed hash table

Voldemort implements a distributed hash table with a client API that has two main methods: put(k,v)

— associate the value v with the key k, and get(k) — retrieve the current value associated with

the key k. Voldemort is a distributed system as it provides scalability by partitioning the key space

across multiple machines and achieves fault tolerance by replicating keys and values across multiple

machines.

The Voldemort project has an extensive test suite, which we leverage to generate a log of

replication messages in a system with one client and two replicas. We logged messages generated

by client calls to the synchronized versions of put and get and captured just the messages between

the client and the two replicas8. Since Voldemort does not log vector timestamps, we annotated the

traces to include them.

Dynoptic mined 112 valid invariants and generated the model in Figure 3.21. This model contains

a client FSM and two replica FSMs. As expected, the replica FSMs are identical. Synchronized

8The replicas also communicate with each other to maintain key availability, but we excluded this communication

from the log
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(a) Voldemort
    Replica 1

(b) Voldemort
client
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c2

R1-C?put-re

c3 C-R2!put

R2-C?put-re

C-R1!putc0

R1-C C-R1

c4

c5

R1-C?get-re

c6C-R2!get

R2-C?get-re

C-R1!get

r1r0r2

R1-C!get-re

C-R1?get C-R1?put

R1-C!put-re

(c) Voldemort
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R2-CC-R2

Figure 3.21: The inferred star-topology within a three node Voldemort cluster with (a,c) the Volde-

mort replica models, and (b) the Voldemort client model.

Voldemort operations are serialized in a specific order, so the flow of messages for put as well as for

get is identical — the client first executes the operation at replica 1 and then at replica 2.

The model is accurate and provides a high-level overview of how replication messages flow in the

system. However, as with the TCP protocol, the model is also abstract and omits numerous details,

such as what happens when replicas fail. The advantage of Dynoptic is that a developer can focus on

those aspects of system behavior that are important to them (e.g., flow of replication messages) and

ignore irrelevant details (e.g., replica failures).
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3.13.5 User study

To determine whether CFSM models are useful in finding bugs, we designed and ran a user study

that compared the efficacy of CFSM models against time-space diagrams in bug finding tasks.

Time-space diagrams were described in Section 3.1.1. Even though developers typically deal with

vector-timestamped logs generated by distributed systems, and convert those manually to time-space

diagrams, we compared CFSMs against time-space diagrams because developers prefer to visualize

the logged executions as time-space diagrams and the conversion process is too laborious for a study.

The study consisted of an in-class assignment in a Software Engineering class with 39 Computer

Science undergraduate students at a major university. Throughout the study and in the oral feedback

session that followed, students were not told the purpose of the study.

The study consisted of two distributed systems: the stop-and-wait protocol and Voldemort.

We introduced a bug into each system — the sender in the stop-and-wait protocol failed to re-

transmit packets on timeout, and the synchronized Voldemort client sent requests to all replicas

concurrently, instead of blocking on acknowledgment from each replica. In our experience, both

bugs are representative of real bugs faced by distributed system developers. The root cause of the

stop-and-wait bug is not taking the right action on an event; the root cause of the Voldemort bug

is performing an action at the wrong time. For each buggy system, we generated: (1) a set of

representative time-space execution diagrams (8 for the stop-and-wait protocol and 6 for Voldemort),

and (2) a CFSM model. Overall, we created four artifacts for the study — tspace-saw and cfsm-saw

(time-space diagrams and CFSM model of the buggy stop-and-wait protocol), and tspace-vol and

cfsm-vol (artifacts for buggy Voldemort).

Students performed the study as an in-class web-based assignment. To account for learning

effects, we used a within-participants mixed design across all 39 participants. We considered two

factors: the model factor (time-space diagrams vs. CFSM models), and the task factor (stop-and-

wait vs. Voldemort). We randomly assigned each student to one of four possible study sequences:

htspace-saw, cfsm-vol i, htspace-vol, cfsm-saw i, hcfsm-saw, tspace-vol i, hcfsm-vol, tspace-saw i. We

considered the two bugs to be independent — finding one bug in one artifact does not help in finding

the second bug in a different artifact.

Each task consisted of three steps:
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1. To familiarize the students with the idea of time-space diagrams and CFSMs, prior to each task

(time-space and CFSM), each student went through a mini-tutorial on the appropriate diagram

(time-space and CFSM, respectively). To verify their understanding, at the end of each tutorial,

each student had to answer two basic questions correctly. They had to answer both questions

correctly to move on and could resubmit their answers until both were correct.9

2. Each student was given a correct description of the system in English, along with either a set

of time-space diagrams or a CFSM model.

3. The student was asked to respond to a single open-ended question. For time-space diagrams

(tspace-saw, tspace-vol) we asked:

List all of the time-space diagrams above that you think do not conform to the description of the

system above. What made you choose these diagrams?

For the CFSM models (cfsm-saw, cfsm-vol) we asked:

How does the observed model differ from the intended system description?

As a complete example, the (tspace-saw, cfsm-vol) sequence mapped to four webpages in the

assignment: (1) time-space tutorial and two questions, (2) description of stop-and-wait, tspace-saw

diagrams, and one open-ended question, (3) CFSM tutorial and two questions, (4) description of

Voldemort, cfsm-vol model, and one open-ended question.

Results

The 39 students who completed the assignment had, on average, 4.2 years of programming experience,

and 76% of the students had never taken a networks course. We manually graded students’ answers

to the open-ended questions.

Students found bugs about as well with the CFSM model as they did with time-space diagrams.

For the stop-and-wait protocol, students who were shown the CFSM were 71.5% successful in getting

the right answer, while those who were shown the 8 time-space diagrams were 61.2% successful.

9The average time to complete a tutorial was 5 minutes. Students made, on average, 1.8 attempts to answer the tutorial

questions correctly. These measures were similar when the time-space and the CFSM tutorials were considered separately.
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For Voldemort, the success rate with the CFSM was 72.3% and success rate with the 6 time-space

diagrams was 85.7%.

We were surprised that students found CFSMs just as useful (for completing the task) as time-

space diagrams. We expected the small collection of time-space diagrams to be simpler to understand

and check against a system description than the more complex CFSM model. These results indicate

that CFSM models can be used to effectively find bugs. Moreover, in practice, developers have to

inspect neither 8 nor 6 executions of the system, but hundreds or thousands. The CFSM models,

though, will remain roughly of the same size and complexity. In other words, finding anomalous

behavior in the time-space diagrams becomes harder with more executions, whereas the difficulty

remains constant with CFSM models. For example, consider if the study presented 8,000 stop-and-

wait and 6,000 Voldemort time-space diagrams (the same system executions, but repeated 1,000 times

each). The task of manually finding the anomalous time-space diagrams would be infeasible, whereas

the CFSM models would remain the same. Since many system executions are, in fact, identical, this

scenario is realistic. Therefore, we believe that our results on the utility of CFSMs over time-space

diagrams are conservative, and CFSMs would perform even better in practice. Our study finds that

they already perform as well as time-space diagrams tightly focused on the buggy behavior.

We collected students’ oral feedback on the assignment, which reveals why many of them

preferred the CFSM model:

According to many students, time-space diagrams were difficult to follow, especially for long

executions:

“I found the time-space diagrams confusing. It was hard to tell what was happening when. The models

were simpler and made it clear what state a system was in and I could keep track of that state.” – student 1

“Time-space diagrams were easy to follow for small time segments. For longer time segments, you got

lost. The other models were better for longer time.” – student 2

Students also preferred a CFSM model because they could compare it to their own mental model,

or the model they would draw after reading the system description:

“I read the description and tried to recreate the model myself first. Then, I compared what I drew to the

given diagram and found mistakes. Understanding those mistakes helped me understand the system a lot

better.” – student 3
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Finally, students mentioned that CFSM models were easier to use because they did not explicitly

model time, making them simpler for understanding executions in the abstract.

“For the models, I assumed no time delay in the network messages. It was harder to do in the time-space

diagrams because you cannot ignore the delay there. In CFSMs, you can ignore time at first, and then

allow for it.” – student 4

3.14 Discussion

The vector timestamps that Dynoptic requires may adversely affect the system’s performance and

increase its implementation complexity. Moreover, not all systems use vector timestamps. We are

working on a library that will transparently maintain and log vector timestamps for an arbitrary

distributed system that uses TCP and UDP sockets. There has also been prior work on optimizing the

overhead of maintaining vector timestamps (e.g., [78]). Further, as is typical for production systems,

logging vector timestamps can be enabled for a small fraction of the requests. As long as the collected

traces are representative of typical system behavior, Dynoptic’s model will too be representative.

CFSM models (Def 3.16) may contain two kinds of error states [27] — unspecified reception

and deadlock — neither of which can be eliminated directly by Dynoptic’s model construction.

Unspecified reception occurs when a process enters a state with a message m at the head of its

channel, but has no reachable future state that receives m. A deadlocked system state occurs when

no process can send a message and at least one process cannot reach a terminating state. Currently,

Dynoptic does not check if these error states are reachable in the final model. It is possible to extend

Dynoptic with such a check, for example, by using the McScM model checker, but the check would

be computationally expensive.

Dynoptic uses three of the five mined invariant types and ensures that the final model satisfies

the valid invariants subset. While we found these invariant types to be sufficient to infer interesting

models in practice, more extensive invariants can lead to more expressive models. For example, a

developer might know of a property that the system must satisfy and might want Dynoptic to require

that the final model preserves it if this property is true of the input log. In this case, the developer

may extend Dynoptic to support a user-defined LTL invariant by (1) implementing a miner to mine

invariant instances of this type from the log, and (2) sub-classing and updating a basic template that

encodes invariants for model checking with the McScM model checker.
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To simplify presentation, we omitted certain details about the mining algorithms. For instance,

some invariants are logically equivalent, such as STARTi ! xi and xi  ENDi. Others, such as

the local versions of k and , are trivial. Also, some invariants may be subsumed by others. For

example, the distributed versions of! and invariants make stronger claims about event ordering

and therefore subsume distributed , invariants. The mining algorithm implementations detect such

duplicate, trivial, and subsumed invariants and filter them out.

Dynoptic works for system traces that satisfy certain communication constraints (Def. 3.6). For

example, Dynoptic cannot model unclean termination and assumes that each execution terminates

with empty channels. However, in practice, system logs may not satisfy these constraints. For

example, it might not be possible to acquiesce a production system to process all outstanding

messages or the user might be interested in modeling a subset of a trace. Our future work will extend

Dynoptic to handle terminal states with non-empty channels. One way to do this is to introduce a

terminal state qt
i for each process i, and append synthetic receive events to each trace to receive all

outstanding messages while remaining in the qt
i state. This drains non-empty channels and converts

incompatible traces into ones that Dynoptic can already process.

In generating process states Dynoptic assumes that in each execution trace each process began

executing from an identical state. Dynoptic can also run with the assumption that the same process

always initiates execution from a unique state in each trace. The first mode is more memory efficient

than the first, and may produce more accurate models, however it is not as general as the second

mode.

Finally, Dynoptic does not currently scale to very large logs. The scalability bottleneck is the

McScM model checker, whose runtime depends on model size and model complexity. To improve

scalability, we are integrating the more efficient Spin model checker [72], through Spin is less precise

on channels with many messages (beyond a predefined channel capacity bound).

3.15 Summary

Networked systems are hard to implement, debug, and verify. This chapter described Dynoptic,

which is a tool that helps with these tasks. Dynoptic uses a partially ordered log of events to infer a

concise and precise communicating finite state machine model of the system. Dynoptic’s precision
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comes from its use of mined temporal properties that relate events in the log.

We have evaluated Dynoptic in three ways. First, we formally defined the Dynoptic models and

the model derivation process and proved that (1) the Dynoptic process eliminates property counter-

examples produced by model-checking, and (2) the final model satisfies the subset of properties

that are valid. Second, we implemented Dynoptic and ran it on logs produced by three distributed

systems/protocols — the stop-and-wait protocol, TCP, and Voldemort, a distributed storage system.

Finally, we carried out a user study to evaluate the utility of CFSM models in finding bugs.

By automatically mining a system model from logs Dynoptic has the potential to ease system

understanding, debugging, and maintenance tasks.
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Chapter 4

InvariMint: model inference through declarative specification

Model inference is a promising approach to help users make sense of large and complex

executions. The previous two chapters focused on two particular model-inference approaches

that derive models from logs to support software comprehension. However, numerous related

model-inference algorithms and corresponding tools exist to help debug, verify, and validate sys-

tems [6, 66, 69, 87, 88, 90, 91, 95, 108, 134]. Unfortunately, it is challenging to apply and extend

this rich body of work because model-inference algorithms are primarily expressed procedurally,

as algorithms that iteratively modify a representation of the log (e.g., a graph) to infer and output

a model that can be shown to a user. The procedural specification of these algorithms makes them

difficult to understand, extend, and compare.

This chapter of the thesis presents InvariMint, an approach to specify model inference algorithms

declaratively. InvariMint (1) leads to new fundamental insights and better understanding of exist-

ing algorithms, (2) simplifies creation of new algorithms, including hybrids that extend existing

algorithms, and (3) makes it easy to compare and contrast previously published algorithms. Finally,

algorithms specified with InvariMint can outperform their procedural versions.

4.1 Problems with existing model inference algorithms

Existing model-inference algorithms are difficult to understand, extend, and compare.

1. Understand. For most algorithms, it is difficult to understand which temporal and structural

properties of the log are preserved in the inferred model. For example, if an inferred model of

an email client states that each login event is immediately followed by a check mail event, a

developer may wish to know whether that property is true for all traces in the log, or is an artifact of

the model-inference algorithm.

2. Extend. It is difficult to modify existing model-inference algorithms or to compose them to

create hybrids. For example, suppose that a developer uses two inference algorithms: one to model
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exceptional executions and another that identifies executions with sequences of library calls not

observed during testing. The developer may want to compose these two algorithms to generate a

single model, but combining the procedurally-specified algorithms may require a complete algorithm

redesign. Further, it is difficult or impossible to exclude a specific instance of a log property from

a specific invocation of the algorithm. If a log has every login event followed by a check mail

event and if the developer decides that this property is an artifact of an incomplete log, the developer

may want the inferred model to allow traces that violate this property. However, this may be difficult

because a procedural algorithm definition does not explicitly specify the properties that the inferred

model will satisfy.

3. Compare. Previously published algorithms lack a common form to aid comparison and

juxtaposition. Instead, researchers must reason about pseudocode and work out complex proofs. A

declarative approach, in which a model-inference algorithm is specified in terms of log properties

that the inferred model will satisfy, allows researchers to, for example, identify when two algorithms

with vastly different procedural definitions produce models with identical, or overlapping, sets of

properties.

This chapter proposes InvariMint, a technique to specify model-inference algorithms declaratively.

InvariMint has two key features: (1) it explicitly specifies the types of properties that will be enforced

in the final model, and (2) it decouples the mechanism of property mining from property specification.

We illustrate the advantages of InvariMint by specifying two procedural algorithms declaratively. We

find that InvariMint alleviates the above problems:

1. Understand. InvariMint expresses an algorithm in terms of the properties that the inferred

model must satisfy. This formulation is more clear, concise, and comprehensible. Further, this formu-

lation makes evident certain complexities that may otherwise be hidden, such as non-determinism.

2. Extend. With InvariMint, it is easy to add, remove, and modify both (1) the instances of

properties in a specific inference execution (e.g., each login event must be followed by a check

mail event), and (2) the types of properties the algorithm preserves (e.g., an event may only follow

another event if it did so in the log). New algorithms can be created, and multiple algorithms can

be trivially composed to create hybrid approaches. For example, the Synoptic [22] algorithm uses

the kTails algorithm as a final (coarsening) step to derive a more compact final model. Synoptic’s
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InvariMint specification expresses this by simply merging the kTails property types into the Synoptic

specification.

3. Compare. InvariMint makes it easier for those using and developing model-inference

algorithms to compare and improve on those algorithms. For example, algorithms with incomparable

procedural definitions may enforce overlapping sets of properties on their inferred models. InvariMint

makes this overlap evident.

4.2 Overview of approach

A model-inference algorithm outputs a model that accepts a formal language. The model’s language

is smaller than S⇤: it is limited by certain temporal or structural properties that the algorithm mined

from the log. Some of these properties may be explicit in the algorithm definition, whereas others

may be implicit and deeply hidden in the procedural definitions.

InvariMint (Figure 4.1) represents a model-inference algorithm with the types of properties that

are expected to be true of the inferred model. InvariMint mines instances of these properties from

the log, represents each property as a DFA, and composes the DFAs using standard DFA operations

(such as DFA union and intersection). Well-understood work on formal languages allows InvariMint

to perform these operations efficiently and to produce minimal models [73].

To evaluate InvariMint, we applied it to two previously-published algorithms. First, we used

InvariMint to declaratively and exactly specify the well-known kTails [23] algorithm. From our past

experiences with kTails, we know that this algorithm behaves non-trivially on large log inputs. For

instance, it is neither apparent which states will be merged, nor what synthetic traces the final kTails-

inferred model will accept. The InvariMint formulation decomposes a kTails execution into a set of

properties that are easy to inspect to better understand the characteristics of the final kTails-inferred

model. The InvariMint kTails specification also provides the user with more fine-grained control over

the execution of the algorithm — the user may remove a particular merge (by modifying a property

instance) without having to modify the algorithm implementation.

Second, we used InvariMint to approximate Synoptic [22]. Synoptic is a more recent algorithm

constructed with explicit log properties in mind. Although Synoptic attempts to make certain

properties explicit, we found that it in fact preserves a set of implicit, or hidden, properties in its
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procedural declaration. Specifically, Synoptic allows a log event type to be immediately followed by

another type only if such following occurred in the observed log. For example, Synoptic forbids a

login event from being immediately followed by a compose mail event if, in the log, login was

never immediately followed by compose mail. Synoptic’s procedural declaration does not allow

this property to be removed, altered, or relaxed, and hides this property from the user. In contrast,

an InvariMint formulation of Synoptic makes this property explicit and allows a user to remove all

properties of this type or to select individual instances of this property for specific log event types to

enforce. More importantly, InvariMint makes the algorithm’s user and developer explicitly aware of

the properties it enforces.

Another feature of Synoptic is that it is a non-deterministic algorithm. Depending on the order

with which Synoptic satisfies the mined log properties, the algorithm might produce a different final

model. Although our InvariMint Synoptic formulation is an approximation of Synoptic, its advantage

is that it is deterministic and highly predictable. In particular, it is easier to check whether two

different logs produce identical models.

As a final benefit, the InvariMint versions of kTails and Synoptic with efficient property mining

scale linearly with log size and greatly outperform their procedural counterparts.

The rest of this chapter is structured as follows: Section 4.3 uses an example model-inference

algorithm to explain the InvariMint approach. Sections 4.4 and 4.5 present InvariMint specifications

of kTails and Synoptic, respectively. Section 4.6 discusses implications of our work. Section 4.7

summarizes this chapter.

4.3 The InvariMint approach

This section describes a model-inference algorithm named SimpleAlg and then overviews the

InvariMint approach by outlining the InvariMint steps in specifying an example algorithm, called

SimpleAlg. Sections 4.4 and 4.5 extend SimpleAlg’s specification to derive the kTails and Synoptic

algorithms.
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Figure 4.1: An overview of the InvariMint approach. An InvariMint algorithm is parameterized by

an algorithm specification, which consists of a set of property types and a composition function. The

resulting InvariMint algorithm is a model-inference algorithm — it takes a log of traces as input and

outputs an inferred model which describes the process that generated the input log. Internally, the

algorithm uses property types to mine property instances, and then applies the composition function

to the property instances to derive the model. This is an elaboration of the more abstract description

in Figure 1.5(b).

4.3.1 SimpleAlg

A model-inference algorithm’s input is a log — a set of traces of a system’s execution. Each trace

is an ordered sequence of events (elements of a finite alphabet) that occurred during execution.

SimpleAlg’s output is a model — a finite state machine whose language is a set of traces. (Figure 4.2

shows example input and output.) The language corresponding to the model accepts all the traces in

the log, as well as other traces. A model-inference algorithm’s goal is to infer a model that accurately

describes and generalizes the log: the extra accepted traces should be ones that are likely to be

generated by the system that produced the log.

SimpleAlg is a model-inference algorithm. It generalizes in the following way: if SimpleAlg

ever observes an event e1 to be immediately followed by an event e2 in the log, then whenever the

system being modeled produces or consumes an e1 event, SimpleAlg assumes that it is legal for the

system to then produce or consume an e2 event.

Pseudocode for SimpleAlg appears in Figure 4.3. In the generated model, each state represents
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Figure 4.2: (a) An example log of an email client with two traces. (b) The model inferred with

SimpleAlg (Figure 4.3) for the input log in (a).

an event that has just occurred. The model contains one state for each unique event type that occurs

in the log, plus one “initial” state. The model contains a transition from the state for event type e1 to

the state for event type e2, with the label e2, iff there exists a trace in the log in which an e2 event

immediately follows an e1 event.

Figure 4.2(a) lists an email client log with two traces. The event alphabet is {login, check mail

(shortened to check), compose, send, logout}. Figure 4.2(b) shows the model SimpleAlg infers for

this input log. The model has six states, one for each event type (e.g., s4 corresponds to compose)

plus the initial state (s1).

SimpleAlg’s models are compact — the number of states is one more than the number of unique

event types in the log, which is independent of the total number of events in the log. The running

time is asymptotically linear in the size of the log. The inferred model’s language always contains

every trace in the input log, plus other traces SimpleAlg deemed possible.

4.3.2 InvariMint overview

InvariMint is an approach — or a common language — for describing model-inference algorithms,

such as SimpleAlg. Figure 4.1 overviews the InvariMint approach. Like other model-inference

algorithms, an InvariMint algorithm takes as input a log of traces to be modeled, and outputs a
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1 Input: Log L
2 let M = new FSM model
3
4 // Create states
5 M.addState(init)
6 foreach (Trace t in L):
7 foreach (Event e in t):
8 let y = Event type of e
9 if (¬M.hasState(sy)) : M.addState(sy)

10
11 // Add transitions among the states.
12 foreach (Trace t in L):
13 // Add transition from init state to first event.
14 let f = Event type of first event in t
15 M.addTransition(src=init, dst=s f, label= f)
16
17 // For each pair of adjacent events, add a transition
18 // between states of corresponding event types.
19 foreach (Event e in t):
20 if (e.hasNext()):
21 let y = Event type of e
22 let z = Event type of e.next()
23 if (¬M.hasTransition(sy, sz)):
24 M.addTransition(src=sy, dst=sz, label=z)
25
26 Output: M

Figure 4.3: Procedural pseudocode of the SimpleAlg algorithm.

model. The common language InvariMint uses to specify an algorithm is: a set of property types

that describe properties to be mined from the log to derive property instances; and a composition

function that combines the mined property instances into a final model.

Different model-inference algorithms take different approaches to generalizing the traces in the

log to infer traces likely traces that are not in the log. What constitutes reasonable generalization is

often subjective and depends on features of the system, its environment, and the specific development

task that the model will be used for. While typical model-inference algorithms hard-code these
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Figure 4.4: An InvariMint specification of SimpleAlg. This is equivalent to the pseudocode in

Figure 4.3. (a) The property type “event x can be immediately followed by an event from set Y ”,

represented as a parameterized FSM (PFSM) and a corresponding evaluation function (Eval). Given

an input log, Eval determines the validity of bindings of parameters in the PFSM to event types. (b)

The composition function, which InvariMint uses to compose a model from mined property instances.

features as assumptions in their procedural definitions, InvariMint uses property types and the

composition function to generalize the model-inference process. Property types define desirable

properties of the final model. For example, the SimpleAlg-inferred model preserves log properties,

such as “event x can be immediately followed by an event from set Y ”. A property type consists

of a parameterized FSM (PFSM) — an FSM with variable-labeled transitions (e.g., top portion of

Figure 4.4(a)) — and an evaluation function to decide which bindings of PFSM variables to event

types are valid in the log (e.g., bottom portion of Figure 4.4(a)). Together, the PFSM and evaluation

function encode relationships between event types.

Using these evaluation functions, InvariMint mines the log for property instances, which are

instantiations of the corresponding PFSM. InvariMint then combines the derived property instances

into a model using the composition function (e.g., Figure 4.4(b)). The Minimize procedure referenced

in this composition is the FSM minimization algorithm [73], which guarantees that the final model
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Figure 4.5: Property instances mined by InvariMint from the log in Figure 4.2(a), based on property

types in Figure 4.4(a). Prop1 represents “event login can be immediately followed by an event from

set {check}”. Prop2 represents “event check can be immediately followed by an event from set

{check, logout, compose}”.

will be minimal.

We now illustrate InvariMint on the SimpleAlg example.

4.3.3 Specifying SimpleAlg with InvariMint

InvariMint’s formulation of SimpleAlg has only a single property type: “event x can be immediately

followed by an event from set Y ”. Figure 4.4 shows the InvariMint specification of SimpleAlg.

Figure 4.4(a) shows the property type (a PFSM and an evaluation function). The PFSM is an FSM

with variable labels that accepts all traces that relate event x and a set of events Y . The evaluation

function defines which bindings of variables to log events result in valid property type instances.

We use LTL to compactly specify evaluation functions. LTL statements use the operators always

(⇤), eventually (⌃), until (U), and next (�). For example, the evaluation function in Figure 4.4(a)

returns true for event a and events set B whenever a can be immediately followed by only events

from B across all traces in the log — that is, there is a trace for every b 2 B and there is a b 2 B for

every trace such that eventually (⌃), if we observe an a event, then we will observe a b as the next

(�) event.

By indicating how to evaluate a binding of x and Y to event types, the evaluation function specifies
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1 Input: Log L, Property types hPFSM1,Eval1i, ...,hPFSMn,Evalni
2 let Props = {}
3 foreach (Property type hPFSMi,Evalii)
4 foreach (Binding of variables in PFSMi, B)
5 if (Evali(L, B)):
6 Props = Props[{PFSMi(B)}
7 Output: Props

Figure 4.6: The generic property miner algorithm.

how x and Y must relate: an event of type x must be immediately followed by one event from the set

Y .

While all bindings can create property instances, the evaluation function determines which

instances are valid for a given log. Figure 4.5 lists two of the property instances that are valid for the

log in Figure 4.2(a): hx,Y i= {hlogin,{check}i, and hx,Y i= hcheck,{check,logout,compose}i.

In addition to these two property instances, there are three others (one for each of compose, send,

and logout). Note that hlogout, /0i is necessary to prevent allowing all events to follow logout in

the inferred model.

Finally, InvariMint composes property instances using the composition function in Figure 4.4(b)

to produce the final model. For SimpleAlg, the composition function returns the minimized version

of the intersection of the property instances. Therefore, the resulting model is compact and includes

only those traces that satisfy all of the mined property instances. This final model is identical to the

one produced by SimpleAlg (Figure 4.2(b)). This chapter mostly focuses on composition functions

that involve only intersections and minimizations, but this limitation is not inherent to InvariMint.

More complex functions may include unions, set differences, and other set operations. For example,

an algorithm that uses positive and negative trace example may subtract the model of negative traces

from one of positive traces.
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1 Input: Property instances Prop1, . . . ,Propn, Composition function C
2 let Model = C(Prop1, . . . ,Propn)
3 Output: Model

Figure 4.7: The generic property composition algorithm.

4.3.4 InvariMint benefits

The InvariMint formulation of SimpleAlg provides three benefits over the SimpleAlg pseudocode:

(1) The InvariMint formulation helps us understand the key properties of the final model derived with

SimpleAlg by decoupling these properties from the mining and composition procedures, while the

pseudocode mixes all three. (2) We can more easily add new constraints to the model by defining

new property types, and eliminate behavior from the model by omitting property instances. For

example, if we do not want login to only be immediately followed by check, we can simply omit

Prop1 in Figure 4.5. (3) We can, and will, extend the InvariMint formulation of SimpleAlg to

construct InvariMint specifications for kTails and Synoptic. The pseudocode for these algorithms

looks completely different from SimpleAlg’s pseudocode, yet the InvariMint specification reveals

that both kTails and Synoptic are based on the same property type (Figure 4.4(a)) used by SimpleAlg.

The fact that all three algorithms share this property type is one of the insights gained from specifying

these algorithms with InvariMint.

InvariMint’s goal is not to produce models, per se, but rather to provide a common language

for expressing, or specifying, model-inference algorithms. Specifying different algorithms with the

same language allows us to understand, combine, and compare the algorithms. InvariMint’s common

language is property types and composition functions. Once specified, the resulting property mining

and property composition procedures (Figure 4.1) are straightforward. Figures 4.6 and 4.7 list the

unoptimized pseudocode for these two procedures. Note that in practice, both of these algorithms can

be further optimized and tailored to specific choices of property types and composition functions.

Next, we describe and evaluate the InvariMint specification of two previously-published model-

inference algorithms — kTails and Synoptic.
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1 Input: Log L,int k
2 let M = initial FSM model of traces in L
3
4 let merged = true
5 while (merged):
6 merged = false
7 foreach (States s1,s2 in M):
8 if (s1,s2 are k-equivalent):
9 M.merge(s1,s2)

10 merged = true
11
12 Output: M

Figure 4.8: Procedural pseudocode of the kTails algorithm. Section 4.4.1 defines k-equivalence.

4.4 Expressing kTails with InvariMint

kTails [23] is an extremely popular algorithm that has served as the basis for many modern model-

inference algorithms. Unfortunately, there are many procedural descriptions of kTails, and it is

difficult to tell if they produce identical or different models.

This section defines the kTails algorithm (Section 4.4.1), demonstrates its InvariMint declarative

specification (Section 4.4.2), discusses the insights about kTails that InvariMint reveals (Section 4.4.2),

and reports on our empirical comparison of the procedural and declarative implementations of kTails

(Section 4.4.3).

4.4.1 kTails

kTails is a state-merging algorithm. kTails takes a log and a parameter k. It represents the log as a

DFA composed of linear sub-DFAs, one per trace, that are joined in a parallel fashion, with a single

initial state transitioning to the start of each trace, and all traces finishing by transitioning to a single

terminal state. kTails then iteratively merges states in the DFA that are “k-equivalent”. Two states

are k-equivalent if their kTails are identical. A state’s kTail is the set of strings, of length k or shorter,

that map to valid paths starting from that state. The algorithm terminates and outputs the model when
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Figure 4.9: (a) kTails(k = 1) property type. (a+b) kTails(k = 2) property types. Each of these is

equivalent to the pseudocode in Figure 4.8 for the specific value of k.

no two remaining states are k-equivalent. Figure 4.8 lists the kTails pseudocode.

The intuition behind kTails is that if two execution points have identical, k-long sequences of

observed events following them, then those points likely represent the same program state. Therefore,

to infer a concise model, kTails merges execution points that it considers to represent the same

program state. The process stops once all points deemed equivalent are merged. The parameter k

determines the size and generality of the inferred model — a smaller k leads to more merges and

produces more compact (and more general) models, while a greater k restricts state equivalence.

In InvariMint kTails we introduce a pre- and a post-processing step. We modify each input trace

to include an a and w symbols at the start and end of each of the traces, respectively. After the

property instances are composed into a final model we update states in the model with incoming a

transition to be initial states, update states with outgoing w transition to be accept states, and also

remove all a and w transitions from the model.
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InvariMint uses property types to capture tail-equivalence and to specify kTails. Figure 4.9(a)

lists the k = 1 property type for kTails. For k = 2, InvariMint requires two property types — the

property type for k = 1 in Figure 4.9(a) and a new property type shown in Figure 4.9(b). Note that

the property type for k = 1 kTails in Figure 4.9(a) is identical to the “can be immediately followed

by” property type in Figure 4.4(a). This equality is not a coincidence — the k parameter generalizes

the “can be immediately followed by” property type to k steps into the future.

The greater k is, the finer the granularity of the properties kTails enforces. For example, the

property type in Figure 4.9(b) says that an event x, followed by an event y, must be followed by one

— any one — of the events in the set Z. In other words, it corresponds to merging all x,y tails together.

Section 4.6 discusses in more detail the granularity of properties and how the wrong granularity may

cause the algorithm to overfit to the input log.

An important feature of the InvariMint kTails specification is that it is deterministic. This

feature helped us better understand the kTails algorithm and helped to reveal a bug in our procedural

implementation, which happened to be non-deterministic.

4.4.2 Comparing procedural and InvariMint versions of kTails

The model produced by the kTails algorithm behaves identically to the model produced by the

InvariMint formulation of kTails. Next, we formally define the kTails algorithm based on the

formulation in [35], and prove that the two formulations of the algorithm are identical.

Let Sk denote the set of all strings of length k or less. Let a trace be a string over alphabet

S[{a,w}, and let a log L be a set of traces, each of which starts with an a symbol and terminates

with the w symbol. Let PFL be the set of all prefixes of strings in L. We use p · t to denote

concatenation of string t to p, and refer to t as the tail.

For example, consider the log L = {aabcw,aabw,acdw}. Then, the corresponding PFL =

{aew,aaw,aabw,aabcw,acw,acdw}. And, the string aabcw = aa ·bcw, in which bcw is a tail.

Definition 4.1 (kTails FSM FkTails). The kTails algorithm takes a log L and an integer k as inputs

and generates a kTails FSM FkTails. The states of FkTails correspond to equivalence classes of prefixes

from PFL. An equivalence class E is a set of prefixes such that:

8(p, p0) 2 E,8t 2 Sk,(p · t) 2 PFL, (p0 · t) 2 PFL



112 4.4. Expressing kTails with InvariMint

�Z�\

Z�\x0 x1 xi+1
t0 t1 ti xi+2

t0

...

�\t1

... xg
tg�1 tg

�\tg

Eval(Log L, ha0, . . . , ai, Ci) =

8
>>>>>>>>>><

>>>>>>>>>>:

true : 8t 2 L, 9c 2 C,
⇤

�
a0 ^ �a1 · · · ^ (�1· · · �i ai) !
�1· · · �i �c

�
in t

^
8c 2 C, 9t 2 L,
⇤

�
a0 ^ �a1 · · · ^ (�1· · · �i ai) !
�1· · · �i �c

�
in t

false : otherwise

Figure 4.10: The kTails(k = i) property type.

That is, all prefixes in a class E have the same set of tails of length k or less, and every prefix in

PFL is assigned to some equivalence class.

The transition function D for equivalence classes, or states, in FkTails is defined as follows. Given

a state Ei and a symbol a 2 S,

D(Ei,a) =
[

E[p ·a],8p 2 Ei

where E[p ·a] is the equivalence class of p ·a.

The initial state of FkTails is E[e], and an equivalence class Ei is an accept state of FkTails if

9 s 2 L, such that s 2 Ei.

Definition 4.2 (InvariMint kTails FSM FInvMint). For a log L and an integer k, let FInvMint be the FSM

derived using the InvariMint algorithm specified by the kTails(k) property types and the input log L.

We can express FInvMint as a composition of property instances1:

FInvMint =
\

(P1
1 , . . . ,P1

n1
, . . . ,Pk

1 , . . . ,Pk
nk

)

1We omit FSM minimization as it does not change the FSM’s language.
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where Pi
1, . . . ,P

j
ni are the property instances for the PFSM corresponding to kTails(k = i) property

type. Figure 4.10 shows this generalized property type.

Definition 4.3 (Terminal rejection). Let F be an FSM. F terminally rejects s if 6 9 t such that s · t is

accepted by F .

Observation 4.1. FInvMint does not terminally reject strings in PFL.

Proof: Consider a string s 2 PFL. Choose a tail t such that s · t is a trace in L. Such a tail must exist

since s is a prefix for some trace in L. By construction, FInvMint accepts all strings in L. Therefore,

FInvMint accepts (s · t) 2 L, and does not terminally reject s.

Theorem 4.1 (InvariMint specification of kTails is exact). For an input log L and an integer k, let

FkTails be the corresponding kTails FSM and let FInvMint be the InvariMint kTails FSM. Then, the

languages of the two FSMs are equivalent, or:

Lang(FkTails) = Lang(FInvMint)

Proof: We prove the two directions of equality in Theorem 4.1 separately.

1) Lang(FkTails)✓ Lang(FInvMint)

Proof by contradiction:

Assume that 9 s 2 Lang(FkTails) and s 62 Lang(FInvMint).

Because s 62 Lang(FInvMint) there is a non-empty set of rejecting (non-accepting) property in-

stances ¬. That is, 8P 2 ¬,s 62 Lang(P). Let r be the shortest prefix of s to be rejected by some

property instance Pi
j 2¬, with i k.

Now consider the prefix string r, which is rejected by Pi
j. We can express r as r = u ·a for some

a 2 S. The property instance Pi
j (in Figure 4.10) can reject r in two ways:

(1a) Pi
j rejects r by terminating in state xi+2, because a 62 Z.

In this case, r must be at least i + 1 symbols long, and can be expressed as r = v · t0 · · · ti · a.

Consider the equivalence class Ev = E[v]. This class must be non-empty because there exists a

transition on t0 from Ev to E[v · t0]. Since Ev is non-empty, consider a prefix p 2 Ev. Because i < k,

and since t0 · · · ti ·a is a tail of v, by definition of equivalence classes, p · t0 · · · ti ·a 2 PFL. However,

because t0, . . . , ti matches the tail corresponding to Pi
j, a 2 Z. Contradiction (a 62 Z).



114 4.4. Expressing kTails with InvariMint

(1b) Pi
j rejects r by terminating in xh, 0 < h i+1, and s = r.

Note that the LTL formula of the general kTails property type evaluation function (in Figure 4.10)

mandates that each am bound to tm must be followed by some am+1 in some trace. Since w is the last

symbol in any trace, it cannot be bound to any am in the evaluation function.

The above implies that 8g, 0 < g  i + 1 there is no transition on w into xg. Since every trace

terminates with w, we can express r as r = v ·w. But, this contradicts Pi
j rejecting r in state xh, since

Pi
j can only terminate on v ·w in states xi+2 or x0.

We have shown that Pi
j cannot reject r since it cannot terminate on r in any non-accepting states.

Therefore, by contradiction, s 2 Lang(FInvMint) and Lang(FkTails)✓ Lang(FInvMint).

2) Lang(FInvMint)✓ Lang(FkTails)

Note that s 2 Lang(FInvMint) implies that s is accepted by all property instances that make up

FInvMint.

Let s = a0 · · ·an. By induction on k and n, we will show that if s 2 Lang(FInvMint) then there

exists a valid and accepting path of equivalence classes, [E0, . . . ,En], that corresponds to s, and thus

s 2 FkTails.

Base case (k = 1): We prove this base case by induction on n, assuming k = 1.

Base case (n = 2): Show that s = a0 ·a1 ·a2 = a ·a1 ·w maps to an accepting path E0,E1,E2,E3

in FkTails.

Let E0 = E[e].

Since a 2 S, there must be a property instance P1
j , of the property type in Figure 4.9(a), that

binds t0 to a. This P1
j accepts a ·a1, and therefore P1

j must bind Y to a set B, such that a1 2 B. Next,

the LTL formula corresponding to P1
j tells us that 9 t 2 L such that ⌃(a!�a1). Since a is the first

symbol for any trace, this means that a ·a1 is a prefix for this t. Since a is a valid prefix, there must

exist a non-empty equivalence class E1 = E[a]. E0 has a transition to E1 on a, because a is a valid

prefix for traces in L.

Now, consider the string a1 ·w. Since a1 appears in some trace there must be a corresponding

property instance P1
m. By the same reasoning as above, P1

m binds t0 to a1 and binds Y to a set B0 such

that w 2 B0. The LTL formula corresponding to P1
m tells us that 9 t 0 2 L such that ⌃(a1!�w). We

can represent this t 0 as t 0 = p ·a1 ·w.
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Note that p (a prefix of t 0) and a have identical 1-tails, namely {a1}. By construction of FkTails

this means that p and a belong to the same equivalence class E1. Since, p ·a1 is a valid prefix, there

must exist an equivalence class E2 = E[p ·a1], and there must be a transition from E1 to E2 on a1.

Finally, we will use t 0 to construct E3. Since p ·a1 maps to E2, there must be a transition on w to

E3. This E3 must be terminal because it contains the trace t 0.

As a result, we have constructed an accepting path E0,E1,E2,E3 for the string s.

Inductive hypothesis (n = i): Assume that a0 · · ·ai maps to a valid path E0, . . . ,Ei. Show that

a0 · · ·ai+1 maps to a valid path E0, . . . ,Ei+1.

Consider the string ai ·ai+1. Since ai appears in some trace there must be a corresponding property

instance P1
j . By the reasoning in the base case, P1

j binds t0 to ai and binds Y to a set B such that

ai+1 2 B. The LTL formula corresponding to P1
j tells us that 9 t 2 L such that ⌃(ai!�ai+1). We

can represent this t as t = p ·ai ·ai+1.

Based on our induction assumption, there exists an equivalence class Ei�1 that corresponds to

ai�1. Since the prefix p is followed by ai in t, p must also map to Ei�1. Therefore, we can extend

E0, . . . ,Ei�1 with E 0i and Ei+1, where E 0i = E[p ·ai] and Ei+1 = [p ·ai ·ai+1].

Inductive hypothesis (k = j): We prove this by induction on n. We assume that the proof statement

is true for k = j and perform induction on n to show that the statement is true for k = j +1.

Base case (n = 2): Show that s = a0 ·a1 ·a2 = a ·a1 ·w maps to an accepting path E0,E1,E2,E3

in FkTails.

Since k = j > 1, FInvMint includes property instances corresponding to the kTails(k = 1) property

type (Definition 4.2). This means that we can re-use the base case for k = 1 above and construct the

path E0,E1,E2,E3 corresponding to s in FkTails in the same manner. This construction also holds for

k = j +1.

Inductive hypothesis (n = i): Assume that a0 · · ·ai maps to a valid path E0, . . . ,Ei. Show that

a0 · · ·ai+1 maps to a valid path E0, . . . ,Ei+1.

Consider the string t = ai� j · · ·ai. Each symbol in t corresponds to a property P, for a particular

k value, that makes up FInvMint and which accepts all of the symbols at the tail of t in front of the

symbol.

For example, ai� j corresponds to some property P j, which accepts the tail ai� j+1 · · ·ai of t. Using
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Figure 4.11: The running time of procedural kTails and the declarative InvariMint version of kTails

for different log input sizes. The number of property instances true of the log was held constant at

182.

the base case construction of overlapping prefixes, we construct a path E0, . . . ,Ei+1 that corresponds

to a0 · · ·ai+1.

4.4.3 Empirical evaluation

We implemented InvariMint and the kTails algorithm in Java and evaluated their relative performance

in two experiments. Both experiments were executed on an OS X 10.8 machine with a 2.8GHz

Intel i7 processor and 8GB of RAM. In all experiments the bottleneck resource was the CPU. Our

experiments used logs with tens of thousands of events. From our previous studies [22] we consider

this to be a representative log size for logs generated by developers during debugging sessions.

In the first experiment, we ran both algorithms on logs that ranged in size from 5K to 50K events,

but maintained a constant number of property instances per log. Each log ranged over an alphabet of

5 event types, and each log was partitioned into 20 traces of equal length. The number of property

instances true for each log was held constant at 182. We performed this experiment three times.

Figure 4.11 plots the average runtime of the three runs for each log size.

In the figure, as the log size increases the standard kTails algorithm scales poorly because it needs
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to perform more merges. The InvariMint kTails algorithm maintains an almost constant running time.

This is because for a constant number of property instances InvariMint kTails composes property

instances in constant time — composing 182 property instances used in the experiment took about

10 seconds. Although the time to mine property instances does increase linearly with log size, it

remains insignificant (for a 50K event log, all property instances are mined in under one second).

In the second experiment, we varied the number of property instances for the log from 108 to

1,480, but maintained a constant log size of 25K events. Logs were drawn from an alphabet that

had between 9 and 37 event types. As above, each run was repeated three times and Figure 4.12

plots the average for each set of three running times. Overall InvariMint kTails had a lower running

time than procedural kTails. However, the relative ratio between the two running times indicates that

InvariMint kTails scales worse than procedural kTails as the number of property instances increases.

Overall we found that our declarative InvariMint kTails implementation outperforms kTails on

large logs with few property instances, while procedural kTails scales better with increasing number

of property instances.

4.5 Expressing Synoptic with InvariMint

This section describes the Synoptic model-inference algorithm, formulates it with InvariMint, and

evaluates the resulting formulation.

4.5.1 Synoptic and its shortcomings

Synoptic is a model-inference algorithm that explicitly infers properties from the log, then constructs

a model that satisfies them.2 Synoptic first infers an overly-general model of the log, which accepts

too many traces. Then, Synoptic progressively refines the model until every trace in the language of

the model satisfies specific properties mined from the log. Because Synoptic models enforce these

observed properties, prior work has found that the models accurately describe the underlying system

and can improve understanding and aid debugging [22].

The Synoptic algorithm has four steps: (1) Mine three kinds of properties from the log — “x

2For simplicity, and despite minor differences, we use “property” where the Synoptic literature uses the term

“invariant”.
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Figure 4.12: The running time of procedural kTails and the declarative InvariMint version of kTails

for logs with different number of property instances. The size of the log was held constant at 25K

events.

AlwaysFollowedBy y” (whenever event x occurs in a trace, event y also occurs later in the same

trace), “x AlwaysPrecedes y” (whenever event y occurs in a trace, event x also occurs earlier in the

same trace), and “x NeverFollowedBy y” (whenever event x occurs in a trace, event y never occurs

later in the same trace). (2) Build an initial model by merging all anonymous3 states with the same

outgoing event into a single state. (3) Iteratively apply counterexample-guided abstraction refinement

(CEGAR) [32] to derive a model that satisfies all of the mined properties. Synoptic does this by

model checking the current (e.g., initial) model against the mined properties to find counterexample

traces in the model’s language, which falsify one or more of the properties. Synoptic then traces the

found counterexample in the model to find the first state responsible for falsifying the property, and

refines (splits) that state to remove the counterexample path. Synoptic repeatedly refines the model

to eliminate counterexamples until it reaches a model that satisfies all of the properties. (4) Finally,

to compact the model, Synoptic applies kTails(k=1) to the refined model, but only performs a merge

3Synoptic uses an event-based graph model with nodes representing event types and unlabeled edges representing

observed event orderings in the log. This model is equivalent to an FSM with anonymous states, which is the model type

we use in this chapter.
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if it does not un-satisfy any of the properties.4

While empirically shown to help developers improve their system understanding and find

bugs [22], Synoptic has two features that may cause its users difficulty.

First, Synoptic is non-deterministic. The order in which it resolves the counterexamples may

affect the language of the final model it produces. (More generally, the problem Synoptic tries to

solve is NP-complete [32, 61, 10], so the non-deterministic algorithm attempts to balance running

time against the size of the final model.) If a user makes a change to the input log and Synoptic

produces a different model, the user does not know if the input log difference explains the change in

the returned model. This makes it difficult to apply Synoptic to verify a bug fix or to check how a

new feature impacts the model.

Second, while significantly more efficient on large traces than kTail-based model inference,

Synoptic may still be slow. This is because Synoptic must maintain all of the parsed log traces in

memory, and it makes repeated model checking invocations and repeatedly traverses the model.

Next, we present an InvariMint formulation that approximates Synoptic. We show that the

InvariMint algorithm resolves the above two issues of non-determinism and performance, and discuss

insights that we gained about Synoptic through this formulation.

4.5.2 Modeling Synoptic with InvariMint

Synoptic’s use of well-defined properties simplifies the task of declaratively specifying it with

InvariMint — each of the three mined properties in Synoptic (AlwaysFollowedBy, AlwaysPrecedes,

and NeverFollowedBy) has a corresponding property type, shown in Figure 4.13.

However, while Synoptic explicitly specifies some of the log properties that the inferred models

will enforce, its original procedural definition imposed a property that was unknown both to Synoptic

users and to us, the researchers who developed the algorithm. The process of specifying Synoptic

declaratively with InvariMint revealed this property. We found that the initial Synoptic model is

not captured by the three explicit properties and the InvariMint formulation requires the additional

“immediately followed by” property type, which is exactly SimpleAlg’s property type (Figure 4.4(b)).

4In an event-based model, Synoptic uses kTails(k=0) to merge nodes with identical event labels. This is equivalent to

kTails(k=1) in a state-based model.
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Figure 4.13: Three of the four property types used by InvariMint to model the Synoptic algorithm.

Figure 4.4(a) shows the fourth property type, which captures Synoptic’s initial model.

To compose Synoptic property instances, InvariMint uses a composition formula that is similar to

SimpleAlg: Compose(Prop1, . . . ,Propn) = Minimize( · · · (Minimize(Prop1\Prop2)\ · · ·)\Propn).

This composition minimizes intermediate models so as to maintain a small model in memory at
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Figure 4.14: The inclusion relationships between an input log, the language of the model derived

from the log with InvariMint Synoptic, and the languages of two potential non-deterministically-

derived Synoptic models for the log.

runtime. For a large number of property instances, this composition yields a faster algorithm.

Next, we evaluate this InvariMint formulation of Synoptic.

4.5.3 Theoretical evaluation

We were already intimately familiar with Synoptic. Nonetheless, when we modeled Synoptic with

InvariMint, we discovered a new feature, demonstrating how InvariMint can improve algorithm

understanding. The InvariMint formulation of Synoptic is, in fact, an approximation of the Synoptic

algorithm. A key feature of Synoptic models is that they have no spurious transitions. That is, every

transition in the model is associated with some event in the log — there are no uncovered, or spurious,

transitions. The reason for this feature is that Synoptic models are defined in terms of traces — a

transition between two states in the model exists only if there are two observed states in the log that

map to the model states and have this transition.

InvariMint models, on the other hand, are specified in terms of event types, so the particular

trace-specific constraints are absent from an InvariMint model unless they are explicitly specified

with property types. Therefore, InvariMint models may contain spurious transitions. Figure 4.14 sum-

marizes the relationships between the language of the model derived using an InvariMint formulation

of Synoptic, the languages of possible non-deterministically-derived Synoptic models, and the input

log. The InvariMint formulation is more permissive than Synoptic, and includes the language of all
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possible non-deterministically-derived Synoptic models. Here, we prove that a Synoptic model’s

language is a subset of the model derived using InvariMint Synoptic algorithm. We also show that

the InvariMint model does not satisfy any Synoptic property instances that are not true of the input

log. This result is analogous to Theorem 3 in [22].

Theorem 4.2 (InvariMint specification of Synoptic encompasses Synoptic). Let L be a log. Let

FSynoptic and FInvMint be the FSMs produced by the Synoptic algorithm and the InvariMint Synoptic

algorithm on L, respectively. Let Lang(FSynoptic) and Lang(FInvMint) be the languages of those models.

Then Lang(FSynoptic)✓ Lang(FInvMint).

Proof: Let t be a trace in Lang(FSynoptic). By construction, Synoptic terminates when all traces

accepted by its inferred model satisfy all instances of the AlwaysFollowedBy, AlwaysPrecedes, and

NeverFollowedBy property instances mined from L. Therefore, t must satisfy all such property

instances.

Consider each of the property instances intersected to form FInvMint. First, each property instance

of the three types described in Figure 4.13 is mined from L, and therefore must be true in each trace

in L. Since t satisfies all such property instances, the language of each of these instance FSMs must

contain t. Second, each property instance of the type described in Figure 4.4(a) accepts all traces

whose transitions are pairs of consecutive events observed in L. Since each transition in FInvMint maps

to at least one pair of consecutive events in at least one trace in L, a property instance FSM must

accept t.

Since every property instance intersected to form FInvMint accepts t, t 2 Lang(FInvMint). Therefore,

Lang(FSynoptic)✓ Lang(FInvMint).

Theorem 4.3 (Models produced by InvariMint Synoptic do not include false property instances). Let

L be a log and let FInvMint be the FSM produced by the InvariMint Synoptic algorithm on L. More

specifically, let FInvMint = Compose(P1, ...,Pn).

Let Pf alse be a set of property instances, such that 8Pf 2 Pf alse, Pf is an instantiation of some

Synoptic property type hPFSM,Evali, such that 9 a binding B f , Pf = PFSM(B f ) and Eval(L,B f )

is f alse. That is, Pf alse contains well formed property instances that are not true for the input log L.

Then 8i,Pi 62 Pf alse.
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Figure 4.15: The running time of procedural Synoptic and the declarative InvariMint version of

Synoptic for different log input sizes. The number of property instances true of the log was held

constant at 19.

Proof:

We present a proof by contradiction. Assume the opposite — 9Pi, Pi 2 Pf alse.

Since Pi is used to construct FInvMint, it must correspond to some property type hPFSM,Evali,

and by the pseudocode in Figure 4.6, 9B, Pi = PFSM(L,B) and Eval(L,B) is true.

However, by definition of the set Pf alse, Eval(L,B) must be false. Contradiction.

As discussed in Section 4.5.1, Synoptic is non-deterministic and executing Synoptic on two

similar logs may produce different models, even when using identical random number generator seeds.

The InvariMint formulation of Synoptic removes this non-determinism because FSM intersection

and minimization are commutative. This, in turn, makes it possible to use the algorithm to assist in

other development tasks, such as to verify a bug fix or to check how a new feature impacts the model.

4.5.4 Empirical evaluation

We compared the performance of procedural Synoptic against the declarative InvariMint Synoptic

implementation. Both algorithms are implemented in Java and we use the same experimental setting
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Figure 4.16: The running time of procedural Synoptic and the declarative InvariMint version of

Synoptic for logs with different number of property instances. The size of the log was held constant

at 25K events.

as in the kTails experiments (Section 4.4.3).

We carried out two experiments to compare algorithm performance across different log sizes

(Figure 4.15), and across logs with varying number of property instances (Figure 4.16). As with

the kTails algorithm, Figure 4.15 indicates that the declarative version of Synoptic outperforms

procedural Synoptic on large logs. As the number of property instances increases (in Figure 4.16),

InvariMint Synoptic continues to outperform Synoptic.

4.6 Discussion

Although this chapter has presented insights derived from expressing existing model-inference

algorithms with InvariMint, there are other benefits to the InvariMint formulation. If the model is

used for model checking or runtime verification, a declarative specification can be more efficiently

checked (e.g., in parallel) against a property, and can yield more efficient runtime conformance

checking of a trace. A violated property instance can also be more helpful than a path counterexample

in understanding why the property does not hold or why a trace does not conform to the model.

As an example of the generality and expressiveness of our approach, an evaluation function may
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deem a property valid if it is true in most of the traces. This can be useful when the properties are

probabilistic or the log is incomplete, as when it is not feasible to capture a log from a live, online

system’s start of execution to its end. For example, some traces at the start may be missing the login

event while others at the end may be missing the logout event. InvariMint can still mine the property

that all traces start with login and end with logout, as long as an overwhelming fraction of the

traces satisfy that property. Other kinds of property types include conditional properties (e.g., an

event is present only if the username is root), properties on resource usage (e.g., time or space), and

anomaly-detecting properties (e.g., two events co-occur rarely).

In this chapter we use LTL to compactly specify evaluation functions. As a result, in all of

the presented examples the PFSM could be automatically derived from the LTL — the PFSM is a

parameterized version of the büchi automaton corresponding to the LTL formula. However, this is

not possible for the alternative evaluation functions mentioned above, as these cannot be expressed

with LTL.

InvariMint can be robust to specifications with overlapping or conflicting property types. For

example, an evaluation function that intersects property instances will ignore overlapping property

instances, and will immediately reveal conflicting property instances as their intersection would be

the empty set.

4.6.1 Tips for Declaratively Expressing Algorithms with InvariMint

First, identify the right property-type granularity. Do not simply simulate the procedural version of

the algorithm with the property types. Instead, consider the properties that the procedural algorithm

enforces. Property types that are too fine-grained and too close to the input traces (e.g., union of

positive example trace DFAs) lead to models that overfit the log, rather than describe the algorithm.

Property types can describe algorithm operations. For example, Section 4.4 showed how a single

property type describes merging of all states with the same k-tail.

If the procedural algorithm deals with positive examples of traces (as both kTails and Synoptic

do), starting from a formulation that produces a model that is a generalization of the desired model

may be easier, as this model may enforce fewer properties. Then, refine this model towards the

desired model by introducing new property types or by refining the existing properties.
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If the procedural algorithm deals with both positive and negative examples of traces (we have not

shown such an algorithm), consider building separate models, one for the positive examples and one

for the negative examples. Then, in the composition function, subtract the negative-example model

from the positive-example model.

4.7 Summary

Model-inference algorithms can automatically mine models of complex systems. Such models aid

numerous development tasks, such as program understanding and debugging. Unfortunately, existing

model-inference algorithms are defined procedurally, making them difficult to understand, extend,

and compare to one another.

This chapter presented InvariMint, a declarative specification approach for model-inference

algorithms. InvariMint enables specification of algorithms in terms of the types of properties they

enforce in the models they infer. InvariMint’s declarative specifications (1) provide insight into how

inference algorithms work and how the model relates to the underlying system, (2) allow for easy

extension of existing algorithms to construct hybrid alternatives, and (3) provide a common language

for comparing and contrasting the essential aspects of model-inference algorithms.

We demonstrated the benefits of InvariMint by declaratively specifying two existing algorithms,

kTails and Synoptic. For example, the InvariMint versions of these algorithms greatly outperform

their procedural analogs.
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Chapter 5

Related work

This chapter overviews related prior work that this dissertation builds on. This prior work can

be placed into four categories: related techniques, particularly other approaches to model inference

and related work in formal methods (Section 5.1); prior work on analysis and visualization of logs

(Section 5.2); and, work on comprehension, debugging, and verification of systems (Section 5.3).

5.1 Model inference and formal methods

5.1.1 Inference of DFA models

The problem of automata inference from positive examples of executions is computable [24], but is

NP-complete [61, 10], and the FSM cannot be approximated by any polynomial-time algorithm [104].

Therefore, polynomial-time algorithms that explore the FSM space are approximation algorithms.

Many of the traditional automata inference algorithms are implemented in LearnLib [106], a modular

library for automata learning.

One of the first papers to apply automata inference to software engineering for process discovery

is by Cook et al. [35]. A key contribution of this paper is to introduce the software engineering

community to the kTails algorithm [23]. This algorithm takes a finite state model and produces a

more compact one by recursively merging states whose root subgraphs are identical up to a depth

of k. kTails can produce precise models for small and simple systems, but when complexity of the

system increases, the precision of the inferred models decreases dramatically [87].

The key idea in kTails is to start from a large FSM in which a state represents the state of the system

after a single observed event instances in the log. Then, relying on some criterion, depending on the

algorithm variant, the states of this FSM are merged. The techniques differ largely in the criterion.

kTails is the basis for numerous model-inference algorithms [35, 90, 87, 88, 91, 29, 108, 126]. Many

of these algorithms can be modeled with InvariMint to better understand, extend, combine, and

compare them.
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As an example of an extension made to the kTails algorithm, Lo et al. [90] use temporal properties

mined from execution traces to guide state merging and ensure that the final model satisfies temporal

constraints. Temporal-invariant-consistency greatly increases the model’s precision. Synoptic

produces similar high-precision models while leveraging refinement, as opposed to coarsening, to

greatly increase the efficiency and scalability of the approach. Krka et al. [81] have proposed, though

have not yet implemented, using refinement and mined invariants to improve precision of inferred

models beyond that of Lo et al.’s approach.

Numerous techniques leverage developer-written specifications to infer system models. Whittle

and Schumann [127] generate component statecharts from scenarios and properties. Damas et al. [38]

inductively infer labeled transition system (LTS) models from scenarios interactively provided by the

developer. A later extension of this approach reduces the number of questions to the developer [39]

by incorporating FLTL properties [60]. However, these techniques can synthesize overspecified

models and require significant human input. Uchitel et al. [122] proposed using message sequence

charts [75] to infer LTS models and discover implied scenarios. Harel et al. [68] synthesize statecharts

from live sequence charts [40]. LTSs can also be constructed based on pre- and post-condition

specifications [9, 42]. De Caso et al. [42] generate abstract models to support validation of the

specifications. Alarjeh et al.’s technique [9] facilitates refinement of pre- and post-conditions

based on system goals and execution scenarios. Similarly, Krka et al.’s algorithm [80] synthesizes

behavioral models from pre- and post-condition specifications and execution scenarios and can

synthesize component-level models from system-level specification. Uchitel et al. [121] argued that it

is crucial to consider the specifications’ partiality when using developer-written specifications to infer

models. In contrast to all these approaches, the tools in this dissertation require much less input from

the developer — the logs that are usually already generated by systems, and a small set of regular

expressions, and are suitable for legacy systems. Although some systems are not instrumented to

generate logs and may require developers to change the implementation, logging is considered to be

generally useful and adding such instrumentation leads to better software. Further, we hope that the

utility of the Synoptic, Dynoptic, and InvariMint tools will motivate developers to improve their own

logging habbits.

Model-inference frameworks can facilitate algorithm comparison [105]. However, to date, these

frameworks have been used to compare model performance and accuracy, not properties of model
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inference. Further, much of the kTails-based model-inference work compares the recall and precision

of inferred models against manually-specified ground-truth models. This process is manual, error-

prone, and, again, compares model quality, as opposed to model-inference properties. Model quality is

a notoriously challenging aspect of model inference [87]. QUARK, a comparison framework, allows

for comparing the quality of models generated by algorithms such as kTails and sk-strings [107].

InvariMint is complementary to these frameworks, as it aims to unify model-inference algorithms

with a declarative specification language, facilitating algorithm comparison, and model property

comparison.

Li et al. came up with an approach that resembles InvariMint, but targets reactive systems [85].

Their approach is similar to InvariMint in that it uses a set of property templates and mines LTL

specifications based on these templates. Unlike InvariMint, the mined properties are not composed

into a model.

Walkinshaw et al. [126] propose a model-inference technique in which the user provides a model-

inference algorithm with LTL formulae, which are then checked by a model checker and are used

as constraints on feasible state merges in the inference algorithm. InvariMint uses LTL differently.

Our intent is generalize the specification of model-inference algorithms. To this end, LTL formulae

encode valid bindings of variables in a parameterized FSM to event types for a particular log input.

Many model inference techniques require richer model formalisms than the standard FSM models

inferred by Synoptic and InvariMint. For example, GK-Tails [91] requires extended FSMs, and

RPNI [29] requires probabilistic FSMs. These more general models and non-FSM model inference

(e.g., of UML sequence diagrams [138], communicating automata [26], and symbolic message

sequence graphs [82]) have even more potential in aiding developers. We believe that InvariMint can

be extended to accommodate these other model types. Similarly, InvariMint may be extendable to

other types of properties, such as those used to infer behavioral models of web-services [17].

For a broad overview of other FSM model inference algorithms see the survey by Shaukat et

al.[8].

5.1.2 Property inference

Temporal properties.
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Javert [56] is a specification mining tool that infers complex specifications by composing simpler

patterns into larger ones. Javert’s invariants are more complex than ours (e.g., it handles invariants

over three events). Similarly, Perracotta [134] mines and visualizes temporal properties of event

traces. These invariants have been used to study program evolution [132]. All of these systems

require TO logs (or observed executions), whereas our work concentrates on PO logs, common in

distributed systems.

The properties used by Synoptic and Dynoptic are specified with code (i.e., in Java), however

there is prior work that lowers the bar to specifying these properties, for example with graphical

approaches [12].

Perracotta [133, 132] mines and visualizes temporal properties from event traces, for a similar

purpose. To aid software developers, Gabel et al. developed Javert [56], a specification mining tool

that infers complex specifications by composing simpler temporal patterns into larger ones. Their

rule-based pattern composition technique is an elegant means of extending a finite temporal invariant

set. The mined invariants can then be a step towards other applications, such as increasing the

accuracy of model inference.

Jiang et al. [77] proposed approximately mining certain types of invariants that relate flow

intensities (e.g., traffic volume) in distributed systems. These invariants capture non-temporal

properties. In contrast, our proposal is exact, not approximate, and captures temporal properties.

Yabandeh et al. [130] describe Avenger, which mines invariants that hold most of the time. These

almost-invariants are helpful for finding bugs that manifest infrequently. Avenger mines a rich set of

data invariant types; it does not mine temporal properties.

Finally, Lou et al. [93] define a set of event dependencies that range over events in interleaved

traces of independent processes. These include what they term forward and backward dependencies.

The temporal invariants in Dynoptic consider communicating processes, and not just dependent

processes.

The Dynoptic evaluation compared three invariant mining algorithms that pre-process the log

into DAGs to mine invariants. However, it is also possible to mine invariants directly from a log

by first enumerating all the possible invariants based on event types in the log, and then traversing

each of the system traces in the log and checking each invariant to eliminate the false invariants.

Algorithm developed by Sen et al. [115] for efficiently checking certain kinds of temporal predicates
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over consistent cuts of a distributed execution could be used for this. However, efficient traversal

of the traces without an explicit DAG structure is non-trivial. We plan to implement this more

direct algorithm in our future work. More generally, other approaches such as those based on graph

reachability could be used for mining invariants [31]. Counting seems to capture the minimum

information necessary for our invariant types, but we want to explore other approaches in our future

work.

Recent work by Gabel and Zhendong can be applied to validate property instances during an

InvariMint execution [57].

Structural properties.

This thesis concentrates on temporal invariants of system behavior. However, there are other

types of invaraints, or properties, that have been used in model inference, and that can inspire further

work in extending the techniques in the thesis.

Daikon [51] is one of the more popular tools to mine data-value, or structural invariants. Daikon

observes system executions and mines data structure invariants as method pre- and post-conditions,

and class-level properties over internal program variables. Daikon invariants have been shown to be

useful for understanding program evolution. However, they have also been extensively used in work

on model-inference.

For example, Lorenzoli et al. [91] developed GK-Tail, a variant of kTails, and applied it to logged

sequences of method call invocations. Their technique generates Extended Finite State Machines

(EFSMs). In their setting each trace consists of a sequence of method invocations annotated with

values for parameters and variables, and is generated by a single execution run of the program being

analyzed. The transition arcs of the resulting EFSM are annotated with the relevant constraints on

the data to transition from one state to the next state, providing a behavioral view of the program

that includes how the input data affects the behavior. Unlike the model inference techniques in this

dissertation, the GK-Tail algorithm does not preserve mined trace invariants.

Daikon invariants have also been used to infer better models of distributed systems. Lo et al. have

used Daikon to infer more accurate live sequence charts, which are interaction specifications blocks

between two concurrent components [89].
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5.1.3 Inferrence of networked and concurrency models

CFSMs inferred from executions can demonstrate certain properties, such as absence of deadlocks

and unspecified receptions [30, 123]. This prior work is theoretical, and while such properties are

important in theory, in practice, we found that they are not necessary to generate models that provide

insight into system implementation. Bollig et al. have also explored the problem of inferring a CFSM

from message sequence charts [26]. However, these charts must be manually labeled as positive

or negative examples of system behavior. In contrast, Dynoptic relies on mined invariants and

automates the inference. Recent work by Kumar et al. considers the problem of inferring class level

specifications of distributed systems, in the form of symbolic message sequence charts [82]. This can

be used by Dynoptic to merge identical process FSMs (e.g., the replica models in Figure 3.21(a,c)).

A Petri net [103] is an alternative formalism to a CFSM. Petri nets provide a formal means to

model and reason about concurrent systems. Their main advantage over CFSMs is their explicit

representation of concurrency and associated concepts like mutual exclusion. However, Petri nets are

more difficult to understand and generate than CFSMs and, in our experiments, the ability to express

explicit concurrency made it more difficult to understand system behavior.

Dynoptic’s goal is to find a short sequence of refinements to produce a small (abstract) AFSM

that satisfies all of the valid invariants. This problem is NP-hard [32], and Dynoptic’s design finds an

approximate solution. Unlike Dynoptic, prior work on model inference from totally ordered logs

either excluded concurrency or captured a particular interleaving of concurrent events [36, 108, 34, 6].

Dynoptic captures concurrency as a partial order, which we believe is crucial for understanding a

concurrent system’s behavior.

Besides Synoptic, the closest total-order log work to Dynoptic is Tomte [5], which also leverages

CEGAR [32]. Synoptic mines temporal invariants and infers FSM models from a log of sequential

executions while Tomte infers scalarset Mealy machines. In contrast to both of these tools, Dynoptic

accounts for richer kinds of invariants, deals with a richer model type, and provides insight into

partially ordered logs.

Dynoptic relies on the McScM model checker [71, 70] for checking the validity of invariants in a

CFSM model. McScM is one of the most advanced verification tools for communicating systems;

building on prior state of the art systems like TReX [11], and symbolic verification of CFSMs with
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QDDs [25]. A key property of McScM is that unlike most CFSM verification tools, like SPIN [72],

McScM verifies models with no apriori bound on channel size. However, McScM is not guaranteed

to terminate. To make model checking more tractable (and faster) we plan to extend Dynoptic to

support model checkers that verify CFSM models with bounded channel lengths.

There is significant prior work on software comprehension that is relevant to this dissertation.

The most relevant of these is work by Murphy et al. on reflexion models [98]. This work uses

user-defined regular expressions to extract an abstract model from the source code, by matching

regular expressions against the code statements and reasoning about control flow between the matched

statements. The abstract model can then be utilized by developers to better understand the underlying

software. A key difference between reflexion models and models inferred by tools like Synoptic is

that reflexion models deal directly with code. Synoptic and related tools treat the system as a black

box and only require observations of system behavior (i.e., a log).

5.1.4 Model refinement

Synoptic uses counterexample-guided abstraction refinement (CEGAR) [32] to derive a model that

satisfies a set of temporal properties.

A bisimulation is a simulation relation that provides a strong notion of similarity for relational

structures [112]. Its key feature is to preserve certain properties of the relational structure, for example,

two strongly bisimilar transition systems are guaranteed to satisfy the same set of LTL formulae. An

important application in model checking is model minimization [53]. Our BisimH algorithm is a

modification of a partition refinement algorithm [100], which uses invariants to determine which

state to split next and when to stop splitting, resulting in a coarser representation that is not bisimilar

to the input structure. Our BisimH algorithm is also related to the partition refinement algorithms

in [50], but BisimH uses invariants to guide exploration and termination.
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5.2 Log analysis and visualization

5.2.1 Log analysis

Numerous log analysis tools exist; however, we know of no freely-available tool to extract finite state

machine models from console logs. A popular log processing tool in the enterprise is Splunk1, which

supports various analyses and understands many common log formats. Splunk’s main advantage is

the scalability of its analyses due to MapReduce [45]. Popular tools that are similar to Splunk are

Sawmill2 and AWStats3. Synoptic supports log exploration, which is a more general goal than what

is targeted by tools that have a tighter focus, such as Sisyphus4, which targets anomaly detection.

Other prior work on mining systems logs focused on detecting dependencies [92], anomalies [76,

94, 129, 136], and performance debugging [111, 118, 119]. That work does not target the problem of

finding a concise model for an arbitrary system generating the log. For instance, SALSA [118] and

Mochi [119] extract and visualize node behavior of Hadoop [65] node logs to support performance

debugging. This line of work is MapReduce-specific.

One area in which log analysis is helpful is debugging. Bugs can manifest themselves via

anomalous executions and detecting anomalies in distributed systems is a popular research area [129,

76, 136]. The models generated by the tools presented in this dissertation can be applied to anomaly

detection through model differencing.

Bates et al. [15] developed an event definition language that caused programs to generate logs

with deep semantics information, such as hierarchical relationships between events. Their approach

requires access to the source code. In contrast, our approach does not need access to the source code,

and works on the already generated logs. We do require the developer to express a set of regular

expressions. However, this set may be mined automatically [124, 137].

MapReduce-specific research — SALSA [118] and Mochi [119] — has created visualizations

helpful to performance debugging of Hadoop [65] node logs. Our approach, of course, is generic and

1http://www.splunk.com

2http://www.sawmill.net

3http://awstats.sourceforge.net

4http://www.cs.sandia.gov/~jrstear/sisyphus

http://www.splunk.com
http://www.sawmill.net
http://awstats.sourceforge.net
http://www.cs.sandia.gov/~jrstear/sisyphus
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applicable to a wide range of systems.

Dynoptic assumes the availability of vector timestamped logs. A drawback to using vector

timestamps in large systems is their performance penalty — vector length scales linearly with the

number of hosts in the system and exchanging them may negatively impact network performance.

Though more efficient vector clock mechanisms exist [16], we believe that their application can be

made practical by limiting their use to short time periods on large systems, or by using vector clocks

exclusively for debugging and during development and testing.

A partially ordered log contains more information, and is therefore more complex, than a totally

ordered log. It is generally infeasible to analyze it manually. Prior work on automated partially

ordered log analysis has concentrated on visualization for simplifying analysis [33, 117].

5.2.2 Log visualization

A well designed trace visualization tool can significantly improve productivity [37]. One important

reason for this is that developers often do not fully understand their systems [97]. Therefore, a

key feature of Synoptic, Dynoptic, and InvariMint is a model visualization interface, using which

developers explore the generated models.

As an alternative to timeline diagrams for describing distributed system executions Stone et al.

propose concurrency maps [117]. A concurrency map is essentially a matrix, with each column

corresponding to a single process, and a row corresponding to a time slice during which all the

events in the row (across some set of processes) are required to execute. Although concurrency maps

are unable to encode arbitrary concurrent executions [49], they have been highly influential as a

visualization paradigm. For example, DTVS is one system that builds on concurrency maps [48].

The concurrency map notion of a geometrically rigid temporal dimension can be used in Synoptic to

align inter-node edges to point in approximately the same direction.

De Pauw et al. mine communication flow patterns at transaction granularity, and have developed

a novel visualization tool to cluster and present the pattern clusters to users [44]. In contrast, Synoptic

mines a single compact model to describe all of the input traces. The visualization insight of

presenting independent paths that make up the model could be one potential way of simplifying the

display of complex Synoptic models. With a different tool, called Zinsight, De Pauw et al. help users
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make sense logs with millions of events [43]. This work has numerous visualization techniques that

Synoptic can build on, such as compact visual encoding of event statistics.

Finally, Hy+ [33] is a system for parallel and distributed systems debugging. This work demon-

strated that visualizing distributed executions can help developers identify bugs. Hy+ uses a visual-

ization technique that is a cross between Harel’s statecharts [67] and directed hypergraphs. Future

work on Dynoptic model visualization can integrate many of the techniques trailblazed by Hy+.

5.3 Comprehension and debugging of systems

Distributed systems are notoriously difficult to get right. This is exemplified by recent efforts that

target bug finding in distributed systems [135, 131].

5.3.1 Black-box debugging techniques

A popular black-box approach to debugging distributed systems has been pioneered by Aguilera et

al. [7]. In this approach, multiple observations of a distributed executions are used to infer causality,

dependencies, and other important characteristics of the system. This approach was somewhat relaxed

in later work to produce more informative and application specific results in Magpie [13] and later in

X-Trace [55]. However, the approach is still popular. For example, Mysore et al. [99] developed a

system that leverages information flow tracking for collecting and then visualizing execution flow in

a distributed setting. This is a black-box approach, but the focus is on data. This provides a much

finer level of granularity but has significant overhead. Another system — BorderPatrol [79] traces

requests among a set of binary modules that cannot be modified.

The tools in this dissertation rely on unstructured log analysis and are therefore black-box

techniques. However, these tools leverage existing logging mechanisms that a developer purposefully

added to the system. The assumption being that developers log information that they consider useful,

and this is therefore a sufficient source of information for making inferences about the system.

Another major difference from this prior systems debugging work is that this prior work focuses on

data, or request flow, while the tools in the dissertation generate models that describe sequences of

events executed by a system.
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5.3.2 General debugging of distributed system.

Quality specification can aid debugging, but as specification tools like CADP [58] have not gained

wide adoption by system builders, the community has begun advocating alternate specification styles.

Thereska et al. [120] has argued that modeling and specifying systems is hard. Automatically mined

invariants can serve as partial specification and can be used to compare the system’s implementation

to the developers’ understanding of the system.

Declarative programming is an alternative system construction model that Singh et al. [116]

argue is well suited to building robust systems that are easier to debug and understand. Unlike our

work, such a drastic approach requires significant effort from the developers and cannot be applied to

legacy systems.

There are also tools that perform run-time checking of distributed systems. These tools monitor

the system as it executes and check for user-defined system invariants or properties. If a property

is violated the checker might report the incident to the user or developer [109, 59, 86, 41], or the

system may automatically attempt to steer away from the violation [131, 101]. Unfortunately, many

of the built-in record-and-replay techniques [64] require access, and modifications, to the source

code [59, 41]. Others, require access to the binaries for instrumentation [86]. Again, our approach,

which can complement these techniques, can help remove the requirement for source code and binary

access.

Of all of these alternatives, Pip [109] is the only tool that provides the developer with visualization

and logging support to help explore what occurred during an execution. However, Pip’s ultimate

goal is to diagnose deviations from developer-supplied properties. In contrast, Dynoptic does not

check the system, requires few inputs, and is intended to help a developer better understand their

implementation by inferring a model that describes the observed executions.

MODIST [135], a transparent model checker for distributed system, does not require a user to

specify any properties, and instead explores the space of all possible event interleavings to find

bugs that crash the system. Our work addresses precisely the inefficiency of exploring all possible

interleavings.

The tools described in this dissertation take a fundamentally different approach from these prior

tools on the assumption that some developers will not want to specify properties of their systems,
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either because this is too difficult or too time-consuming. Instead, our tools mine a model to describe

what occurred and display the observed behavior visually. We have observed that developers can often

glean numerous details from a visualization, and discover system property violations for properties

that they would not have thought important or relevant prior to using the tool.
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Chapter 6

Conclusion

Logging is a popular debugging methodology. Unfortunately, large logs are often complex and

difficult to analyze manually. This dissertation presented three tools — Synoptic, Dynoptic, and

InvariMint — to help developers interpret the observed behavior of their systems through automated

model inference.

Synoptic mines logs to derive relational models of sequential systems. Dynoptic mines logs of

networked systems to infer communicating finite state machine models. InvariMint leverages the

insight of leveraging temporal invariants in Synoptic and Dynoptic to come up with a declarative

framework that simplifies the task of creating, understanding, extending, and comparing model

inference algorithms more generally.

These tools bridge the gap between systems developed by developers with little to no training in

formal methods, and a suite of methods developed by the formal methods community. Overall, this

dissertation demonstrates that execution logs generated by large systems can be mined with minimal

input from the user to generate models of system behavior that are useful for improving developers’

understanding of their systems.
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