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Abstract

Downloading and executing untrusted code requires careful considerations
to ensure that it is safe, but also something that happens often on the
internet. Therefore, untrusted code often requires run-time checks to ensure
safety during execution. These checks compromise performance and may be
unnecessary. We present the Wasm-prechk language, an assembly language
based on WebAssembly that is intended to ensure the same level of safety as
WebAssembly while justifying the static elimination of run-time checks.
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Lay Summary

Downloading and running code from unknown sources is unsafe, but also quite
common. Ill-behaved or erroneous code can expose your data or crash your
browser. Unfortunately, mitigating these risks often slows down programs.
WebAssembly is a language supported by many browsers and designed to be
both fast and safe, but the language still requires potentially unnecessary
safety check which make websites slower and less efficient.

We have designed a programming language based on WebAssembly, called
Wasm-prechk, that is meant to be as safe as WebAssembly without requiring
as many safety check. Wasm-prechk uses a more expressive type system
then WebAssembly to help the computer reason about when this extra work
may be unnecessary. We contribute the design of Wasm-prechk, as well as a
reference implementation, and prove that Wasm-prechk is in fact as safe as
WebAssembly.
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This dissertation is original, unpublished, independent work by the author,
Adam T. Geller, except for Chapter 4 and Appendix B. The subject reduction
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Chapter 1

Introduction

1.1 Unsafe Code

Browsers and the Internet-of-Things (IoT) require running untrusted code
(i.e., unknown code from an unknown source that could do anything), that
may have been downloaded from anywhere. It is crucial to ensure the safety of
the code being executed in these contexts. Otherwise, one website may crash
your entire browser/IoT device, read secret data in your browser/IoT device,
or attempt to take over control browser/IoT device. Many such exploits
have originated due to unsafe code being downloaded and run. Typically,
sandboxing and/or dynamic safety checks are used to ensure the safety of
untrusted code.

Sandboxing involves placing untrusted code into a secure environment
to contain the damage caused by unsafe behavior [3]. For example, Google
Chrome places the running scripts for each website in separate processes so
that unsafe code cannot access the address space of other websites or the
browser [7]. This prevents websites from crashing, stealing data, or taking
control of other websites and the browser. However, sandboxing in this way
requires more run time resources than running scripts in one process, as
processes require overhead in most OSes.

Dynamic safety checks are run time checks that catch any attempted
unsafe operations. For example, WebAssembly (Wasm) is a low-level language
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designed to be both safe and fast to execute in place of JavaScript for
performance-critical applications in browsers. While Wasm is type safe,
memory safe, and its semantics enforce the separation of control flow and data
(which together work like sandboxing to, e.g., prevent websites from crashing
each other), it still relies on dynamic checks to ensure these properties at run
time. These dynamic checks potentially slow down programs by introducing
unnecessary instructions to perform the checks.

We have designed an extension to Wasm, called Wasm-prechk, that adds
new instructions that do not require dynamic safety checks. However, under
the existing Wasm model the new Wasm-prechk instructions have potentially
unsafe semantics, as they require stronger static guarantees than Wasm can
provide to ensure the same level of safety as Wasm. These instructions are
likely to be faster than their Wasm counterparts because they do not require
the addition of instructions by the compiler/interpreter to perform checks.
To provide these additional static guarantees, we equip Wasm-prechk with a
more advanced type system than Wasm.

1.2 Type Systems

Types systems are useful for reasoning about programs. They can be used
to reason about the behavior of programs, usually in the form of safety
guarantees. For example, type safety is the property that a well-typed
program will never become stuck ; that is, an expression will always be a well-
formed irreducible value, reduce to an error, or reduce to another well-formed
expression. The safety guarantees of type systems provide a degree of trust
in programs, as a well-typed program implicitly contains a checkable proof
that it will only exhibit well-defined behavior (which, in the case of Wasm,
has several safety guarantees as discussed above).

Generally, low-level languages are either untyped or have simple type
systems that provide minimal guarantees. More expressive type systems
can encode richer invariants, enabling ruling out more bad behaviors with
static checks alone. Generally, such type systems are attached to high-level
languages, where explicit abstractions make it easier to reason about programs
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compared to low-level languages. Conversely, using expressive type systems
in low-level languages often requires reasoning about program state and
unstructured control flow (e.g., goto), which introduces more complexity into
the type system. However, prior work has attached expressive type systems
that permit rich correctness guarantees to simple low-level languages.

1.3 Related Work

Using type information to improve compiler optimizations is not a new idea.
Tarditi et al. [8] used strongly typed intermediate languages (TIL) to improve
optimizations of SML code. Compiling SML involves many translations
among intermediate languages, and by preserving type information across
those translations Tarditi et al. [8] were able to safely perform additional
compiler operations. Using TIL in the compilation of programs led to up to
50% faster programs. TIL focuses on compiler optimizations and eventually
translates into untyped languages and finally runnable assembly, so the
ensured guarantees of the type system are lost along the way (they may still
be present, but it is no longer possible to statically check them).

Proof-carrying code (PCC) was introduced by Necula [6]. PCC attached
explicit proofs that low-level code satisfies some safety properties. The proof
can then be checked to ensure the safety of the code before it is run. While
typed intermediate languages require types to be considered as part of the
language, PCC adds a separate logical framework on top. Thus, PCC can be
used with any language, and requires no support from the language. However,
because PCC has no support from the language, it has a higher proof burden
than using types inside a language.

Necula [6] provides a detailed example of invariants for extensions to TIL
to ensure type safety of compiled code. The example uses the Edinburgh
Logical Framework (LF) to encode the proof. A type safety proof of a
LF program is a proof of correctness (with respect to some specification).
Encoded proofs may be quite large, requiring extra time to transmit and
check compared to type annotations and typechecking.

Morrisett et al. [5] showed how types could provably be preserved during
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five different compilation passes to get from System F all the way down to a
typed assembly language (TAL). The purpose of TAL was focused on safety.
Although Morrisett et al. [5] argued that the type-preserving compilation
passes would permit similar optimizations to TIL, they didn’t include further
optimizations based on TAL. However, Morrisett et al. [5] did argue that
the guarantees of TAL were sufficient to allow untrusted code to be safely
executed.

Xi and Harper [9] created a much more expressive type system for an
assembly language which had the potential to allow more compiler optimiza-
tions. Their language, a dependently typed assembly language (DTAL), used
a limited dependent type system, which enabled safely removing some run
time checks, including array bounds checks. The goal of DTAL, similar to
TAL, was to support type-preserving compilation from a high-level language
for both optimizations and safety. DTAL intended to support type-preserving
compilation from Dependent ML as well as SML.

After almost two decades of JavaScript being the dominant language in
browsers, it was decided that an alternative was necessary for performance-
critical code. The alternative that was jointly created by the major browser
developers was WebAssembly (Wasm) [4]. Wasm is a stack-based assembly
language with structured control flow. It is designed to be safe as well as
performant, with a small binary footprint. The Wasm type system is simple,
only encoding primitive types, but strong enough to ensure certain safety
properties (i.e., that arbitrary code cannot be executed). Memory safety in
Wasm is enforced using run time checks. Wasm is supported by most major
browsers, and can work well for IoT devices due to its portability and safety.

1.4 Contributions

We want to use types to improve performance while ensuring safety in real-
world low-level programs. While prior work has used expressive type systems
for low-level languages, we want to show the feasibility of doing this with a
language commonly used in contexts that are both performance-critical and
untrusted. Towards that goal, we introduce Wasm-prechk, an extension of
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the WebAssembly (Wasm) language.
We chose Wasm to build on because it is used in browsers and IoT devices.

Both browsers and IoT device require strong safety guarantees (such as
preventing programs from crashing the whole browser/IoT device) since they
download and execute code from unknown sources. Further, the use case for
Wasm is often performance-critical applications such as in-browser games
and cryptographic algorithms.

Wasm-prechk introduces new versions of Wasm instructions which require
no dynamic checks, but also require stronger type-level safety guarantees
than their Wasm counterparts (section 3.2). To facilitate type-checking these
new instructions, Wasm-prechk uses an indexed type system which is able to
encode linear constraints on program variables and therefore ensure safety
properties of the new Wasm-prechk instructions (section 3.3). We ensure
that Wasm-prechk is as safe as Wasm by providing a type safety proof of the
Wasm-prechk indexed type system (section 4.3). Together, these additions
mean that Wasm-prechk is as safe as Wasm while potentially improving
performance by moving run-time checks to compile time.

We show that Wasm-prechk is backwards compatible with Wasm by
showing that Wasm programs can be turned into Wasm-prechk programs
(subsection 4.2.1). This means that there is no additional proof burden on
the programmer to use Wasm-prechk. We also show that we can go the
other way by turning Wasm-prechk programs into well-typed Wasm programs
(subsection 4.2.2).

1.5 Thesis Statement

An indexed type system can be used in an existing low-level
language to reduce the number of dynamic checks required, with-
out sacrificing safety and security guarantees or increasing the
programmer’s proof burden.
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Chapter 2

Background: Wasm

Here we present an overview of Wasm so readers have some familiarity
with it for when we present Wasm-prechk. We do not cover the entirety of
the Wasm language as presented in the 2017 paper [4], but rather present
selected important facets of the syntax, semantics, and type system. It is
recommended that the reader first skim this chapter to understand the basics
and then refer back while reading chapter 3 and chapter 4.

2.1 Wasm Syntax

Figure 2.1 shows the types of Wasm. Primitive Wasm types, represented
as t, include 32- and 64-bit floats and integers. Packed types, tp, include
8-, 16-, and 32- bit integers, are used in memory operations to load/store a
smaller payload (e.g., i8 loads/stores just one byte). Wasm is a stack-based
language, so the type of an instruction in Wasm consists of a precondition
and postcondition on the shape of the stack, which is what a Wasm function
type tf is encoding. This can be viewed as though instructions consume
certain values from the stack and then produce values to be pushed on the
stack. Thus, function types, tf , are just syntax used in certain instructions,
function declarations, and the Wasm typing judgment, not function types in
the traditional sense. Lastly, global types consist of a primitive type t and
an optional mutable flag (the ? form is explained more below).
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t ::= i32 | i64 | f32 | f64
tp ::= i8 | i16 | i32
tf ::= t∗ → t∗

tg ::= mut? t

Figure 2.1: Wasm Types

The Wasm syntax uses the Kleene star within its BNF (e.g., t∗) to denote
possibly empty sequences. For example, t∗ matches ε (the empty sequence,
which is an empty sequence of anything), i32 i32, and i32 i64 i32. Instructions,
represented by the metavariable e, are usually grouped into sequences e∗

which are possibly empty ε. As a further point on metavariables, e1 and
e2, both instruction metavariables, may happen to be the same instruction,
or not, we do not know. Similarly, e∗1 and e∗2 refer to different sequence
metavariables that may or may not be the same; we can make no assumptions
about them.

We can use different annotations in place of the Kleene star to add
additional information. The Kleene star may be replaced with an exact value
n when we know that the sequence has length n (e.g., a sequence of 3 types be
phrased as t3). We can also use a question mark to represent either an empty
sequence (ε), or a sequence with exactly one item (e.g., v? = v′ ∨ v? = ε).

There is no requirement that a sequence of non-terminals, e∗1, be made up
of entirely the same pattern, unless it is explicitly written out as in (t.const c)∗.
For example, e∗1 matches (t.const c1) (t.const c2) (t.binop). Further, we may
separate out subsequences: from (t.const c)∗ we may separate out t∗ and c∗

to refer to the sequences of types and constant values respectively.
With this notation in mind, we can now look over the Wasm instructions

in Figure 2.2 (we will discuss the instructions in section 2.2). Syntax written
in a blue sans serif font denotes a keyword, while text written in italics

represents a metavariable. Throughout the Wasm syntax there are many
metavariables used to represent natural numbers: n and m are usually used
for the table and memory sizes, i and j are often used as indexes (e.g., to
reference a local variable), o and align are used within memory operations
(we replace a with align for clarity and since we use a elsewhere), and lastly
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unopiN ::= clz | ctz | popcnt
testopiN ::= eqz
binopiN ::= add | sub | shl | or | ...
relopiN ::= eq | ne | gt | ge | ...
cvtop ::= convert | reinterpret

e ::= unreachable | nop | drop | select |
block tf e∗ end | loop tf e∗ end | if tf e∗ else e∗ end |
br i | br if i | br table i+ | return | call i | call indirect tf |
get local i | set local i | tee local i | get global i |
set global i | t.load (tp_sx)? align o | t.store tp? align o |
current memory | grow memory | t.const c |
t.unopt | t.binopt | t.testopt | t.relopt | t.cvtop t_sx? | ...

Figure 2.2: Wasm Instructions

c is used as a constant metavariable (which could also be a float). iN is used
to annotate operations that support integers, and fN is used to annotate
operations that support floats.

Some instructions, such as loop tf e∗ end include a sequence of instructions
e∗. We refer to such instructions as block instructions, since they define
control flow blocks for the instructions inside (not to be confused with the
block instruction, which is a block instruction). In a block instruction, you
will see one or more instruction sequences e∗ as part of the syntax before end,
we refer to this as the body. Further, many block instructions also include an
explicit type annotation tf declaring their precondition and postcondition.

Wasm has modules that include functions (f), global variables (glob), an
optional function table (tab), and an optional linear memory chunk (mem),
as seen in Figure 2.3. Functions, globals, the table, and memory can be
imported, using import ”name1” ”name2”, which imports name2 from the
file name1. Similarly, they can also be exported under any number of names
using export ”name”.

Functions include a list of local variable declarations to use within the
body (a sequence of instructions). Additionally, function arguments are
accessible as local variables within the body of functions. Global variables
may be mutable (although, exported global variables, which are accessible in
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(imports) im ::= import ”name” ”name”
(exports) ex ::= export ”name”
(functions) f ::= ex ∗ func tf local t∗ e∗ | ex ∗ func tf im
(globals) glob ::= ex∗ global tg e∗ | ex∗ global tg im
(table) tab ::= ex∗ table n i∗ | ex ∗ table n im
(memory) mem ::= ex∗ memory n | ex ∗ memory n im
(modules) module ::= module f∗ glob∗ tab? mem?

Figure 2.3: Wasm Module Definitions

other modules, cannot be mutable, as we will see later), and are initialized
via a sequence of instructions. Function tables store references to functions
that can be called using indirect function calls; they are used to more safely
represent function pointers. Indirect function calls take an index and use it
to lookup a function in the function table and call it. They must supply a
function type annotation, tf that gets checked against the function that ends
up being called at run-time. Linear memory, mem, is a continuous chunk
of memory. Memory load and store operations operate within the linear
memory chunk.

2.2 Wasm Dynamic Semantics

Wasm is a stack-based assembly language specified using reduction semantics
1. Before we introduce the Wasm semantics, we first must introduce some
administrative structures and instructions that are used in the reduction
relation to keep track of information. Administrative instructions are not
part of the surface syntax of a language (e.g., you cannot put a local block
in a Wasm-prechk program), and can only appear as an intermediate term
during reduction. Figure 2.4 shows the new administrative instructions and
run-time structures.

The runtime store, s, includes runtime instances for every module (inst∗),
as well as all of the tables (tabinst∗), and memory chunks (meminst∗). In

1For those unfamiliar with reduction semantics, I highly recommended these notes by
Ron Garcia: https://www.cs.ubc.ca/~rxg/cpsc509/05-reduction.pdf

9

https://www.cs.ubc.ca/~rxg/cpsc509/05-reduction.pdf


(closures) cl ::= {inst i, func f}
(bytes) b ::= 0x00, 0x01, ..., 0xff
(table instances) tabinst ::= cl∗

(memory instances) meminst ::= b∗

(modules instances) inst ::= {func cl∗, glob v∗, tab i?,mem i?}
(stores) s ::= {inst inst∗, tab tabinst∗,

mem meminst∗}
(values) v ::= t.const c
(admin. instrs.) e ::= ... | trap | call cl | labeln{e∗} e∗ end |

localn{i; v∗} e∗ end
(reduction contexts) L0 ::= v∗ � e∗

Lk+1 ::= v∗ labeln{e∗} Lk end e∗

Figure 2.4: Wasm Administrative Instructions and Run-Time Structures

other words, s includes an instantiation of every module. Module instances,
inst, represent Wasm modules after linking. They refer to their table and
memory (if they have either), by indexing into the list of runtime instances of
tables and memory chunks in the store s. A table instance tabinst contains
a list of closures that can be called. b represents a byte. A memory instance
meminst is a sequence of bytes representing a contiguous memory chunk.
Wasm closures, cl, intuitively represents a function closed under linking.
Closures include the module instance that the function is defined in, as well
as the function definition (which cannot be an import) with any exports
erased.

There are a few final notational digressions we must make before describing
the reduction relation. Firstly, objects such as s = {inst inst∗, . . .} can be
dereferenced using their keywords (e.g., “inst”). For example, sinst = inst∗

given the above definition of s. Secondly, we can index into a sequence to
get a specific element (e.g., inst∗(i) returns the ith inst in inst∗). Lastly,
Wasm uses several shorthands to get information out of module instances in s:
sfunc(i, j) = sinst(i)func(j). Essentially, this allows us to implicitly dereference
the ith module instance to get the jth function inside of the instance. This
shorthand is used similarly for glob, tab, and mem.

Constant instructions t.const c represent values, and are denoted by the
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metavariable v, when they should be interpreted that way. They produce a
constant value (known statically). This leads to a particular representation
of the stack, as discussed in subsection 2.2.1. A trap (trap) is the Wasm term
for a run-time error. call cl is a function call on a closure. As we will see, it
is an intermediate step for performing both direct and indirect function calls.

Two types of block instructions are introduced. The first, the label
block, is used in handling control flow. Specifically, they are used to handle
branching. All block instructions (block, loop, and if) reduce to label blocks.
Label blocks can store instructions (e∗ inside the curly braces), and the
annotation n is equal to the expected number of inputs to those instructions.
This is explained more when we describe how branching works.

The second block instruction is the local block. A local is the result of
reducing a closure call; it is used to reduce a function body within the closed
environment of the closure. They introduce an environment consisting of the
module instance and local variables inside which their body is reduced.

Finally, we introduce reduction contexts, Lk, where k is the nesting depth.
Reduction contexts are defined using label blocks, so Lk contains k nested
label blocks. As well as nested label blocks, reduction contexts contain
preceding values v∗ (i.e., a stack), and proceeding instructions e∗ that are
next to be executed after the nested label block finishes reducing.

2.2.1 The Wasm Reduction Relation

The Wasm Reduction Relation works on configurations that include the
store s, local variables (represented as a sequence of values v∗), and the
instruction sequence e∗. Reduction is relative the the current module index i,
which is used to know which module instance in the store to look at when
dereferencing the store. The store, local variables, and module index are
omitted when not used. We present all the reduction rules below.

s; v∗; e∗ ↪→i s
′; v′∗; e′∗

Instructions are reduced in place by decomposing the program using

11



reduction contexts. Intuitively, we pull out the next instruction to execute,
reduce it, and push the result on top of the stack. The “stack” is just the
sequence of values (i.e., constant instructions) preceding the first reducible
instruction. When an instruction reduces to a value, that value becomes
the new top of the stack and the next instruction is reduced. This method
of decomposing ensures that all of the instructions preceding the instruction
currently being reduced have already been reduced to values.

Binary and relation operations consume two values from the stack and
either push back onto the stack the specified operation applied to those
values, or trap if the operation on the values is not defined (in the case
of dividing by zero). Test operators only consume one value, and do not
trap, but are otherwise similar. The reduction rules for these operators
use metafunctions (e.g., testopt(c)) to compute the result of applying the
operator for the produced value.

The instruction unreachable causes a trap (it is similar to e.g., assert
false), nop reduces to the empty sequence, and drop consumes one value
and reduces to the empty sequence (i.e., it discards the value on top of the
stack). select is a ternary operator (like ? : in C) that consumes three values
and produces either the first or the second depending on the third value.
The true/non-zero case of select returns the first value consumed (k + 1 is a
common shorthand for a non-zero value), and the false/zero case returns the
second value consumed.

12



(t.const c1) (t.const c2) t.binop ↪→ t.const c
if c = binop(c1, c2)

(t.const c1) (t.const c2) t.binop ↪→ trap
otherwise

(t.const c1) (t.const c2) t.relop ↪→ t.const relop(c1, c2)
(t.const c) t.testop ↪→ i32.testopt(c)

unreachable ↪→ trap
nop ↪→ ε

v drop ↪→ ε

v1 v2 (i32.const 0) select ↪→ v2

v1 v2 (i32.const k + 1) select ↪→ v1

Block instructions define a control flow environment used by branching
instructions inside which their bodies are reduced. The true case of an if
block reduces to the first body inside of a block; the false case does the
same but with the second body. Both block and loop reduces to label blocks.
Stored instructions are only added when reducing a loop, in which case it
stores the loop code so it can run the loop again. If the body of a label
block is a trap or a sequence of values then the trap/values replace the block.
Since decomposition happens on label blocks, we have included the inductive
reduction rule, which intuitively pulls instructions out of the context, reduces
them outside the context, and then plugs them back in.
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s; v∗; e∗ ↪→ s′; v′∗; e′∗

s; v∗; Lk[e∗] ↪→ s′; v′∗; Lk[e′∗]

L0[trap] ↪→ trap
vn block (tn1 → tm2 ) e∗ end ↪→ labelm{}vn e∗ end
vn loop (tn1 → tm2 ) e∗ end ↪→ labeln{loop (tn1 → tm2 ) e∗

end}
vn e∗

end
(i32.const 0) if tf e∗1 else e∗2 end ↪→ block tf e∗2 end

(i32.const k + 1) if tf e∗1 else e∗2 end ↪→ block tf e∗1 end
labeln {e∗0} v∗ end ↪→ v∗

labeln {e∗0} trap end ↪→ trap

Branching (br j) intuitively jumps to the j + 1th outer control flow block
(i.e., a label block). More concretely, a br j inside a label block (which, you
may recall, are used as control flow blocks) jumps to the surrounding label
block with nesting depth j + 1 (essentially peeling back j layers). After
branching, execution continues with the values vn consumed by the br and
the stored instructions e∗0 of the j + 1th outer label block (this is in place
to support loops, as jumping to the label block introduced by loop is what
causes the next iteration to be performed). Extra stack values beyond those
consumed are discarded. Figure 2.5 has several examples of branching in
action.

Wasm also has a conditional branch instruction. This instruction, br if j,
consumes a value and reduces to br j if the value is non-zero, otherwise it
reduces to the empty sequence. Table branches, br table , has a list of one
or more numbers, i+ that may be used for a branch. It consumes a i32 k
and reduces to br with the kth number, or the last number if there is no kth
number.
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label0{loop . . . end} br 0 end
↪→ loop . . . end

label0{}
label0{loop . . . end} br 1 end

end
↪→ ε

label0{}
label0{}

label0{} br 1 end
end

end
↪→ label0{} end

Figure 2.5: Branching Examples

labeln {e∗0} Lj [vn br j] end ↪→ vn e∗0
(i32.const 0) br if j ↪→ ε

(i32.const k + 1) br if j ↪→ br j
(i32.const k) br table jk1 j j

∗
2 ↪→ br j

(i32.const k + n) br table jk1 j ↪→ br j

Direct and indirect function calls are expanded in two steps. First, the
associated closure is fetched either from the current module instance (for
direct calls) or from the table (for indirect calls, which traps if the type of
the fetched closure doesn’t match the expected type). This step reduces a
direct or indirect call to a call cl. Then, the closure body is placed into a
local block with the arguments from the stack and locals declared by the
function (tk), which are zero-initialized, being used as the local variables.
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s; call j ↪→i call sfunc(i, j)

s; call indirect j ↪→i stab(i, j)

if stab(i, j)code = (func tf local t∗ e∗)
s; call indirect j ↪→i trap

otherwise
vn (call cl) ↪→i localm{clinst;

vn (t.const 0)k}
block (ε→ tm2 ) e∗

end
end
where clfunc = (func tf local t∗ e∗)

The local block has the same module index, i, as the closure, so the body
of the local block is reduced within the module that the closure is defined
in and thus uses the global variables, table, and memory of that module
instance. This is handled by the inductive reduction rule (which has much
more of a structural operational small-step semantics flavor). In general,
return can be thought of as br k, where k is the context depth. A label block
is added inside of the local block when expanded a function call, so at the
top level of a function br 0 is essentially equivalent to return, except with
an additional reduction step. Returning, somewhat similarly to branching,
replaces the local block with the arguments to the return instruction, except
that it skips over any label blocks. If the body of a local block is a trap or
sequence of values equal to the number annotation on the local block, then
that is what the local block reduces to, similar to branching (also similar to
branching, any extra values on the stack are discarded).
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s; v∗; e∗ ↪→i s
′; v′∗; e′∗

s; v∗0; localn{i; v∗}e∗ end ↪→j s
′; v∗0; localn{i; v′∗}e′∗ end

localn{i; v∗l }vn ↪→ vn

localn{i; v∗l }trap ↪→ trap
localn{i; v∗l }Lk[vnreturn] ↪→ vn

Local variables are represented as a list of values at run time. They are
get/set by indexing into them, like everything else in Wasm. The same is
true of global variables, except there is an extra step since they are stored in
the current module instance inside the store s.

vj1 v v2; get local j ↪→ v

vj1 v v2; v
′ (set local j) ↪→ vj1 v

′ v2; ε
vj1 v v2; v

′ (tee local j) ↪→ vj1 v
′ v2; v

′

s; get global j ↪→i sglob(i, j)

s; v; (set global j) ↪→i s′; ε
where s′ = s with glob(i, j) = v′

Finally, there are the memory instructions. One can load or store a value
from or to memory, get the current memory size, or try to grow the memory.
|t| is used to represent the size of the type (e.g., |i64| = 8 bytes). We omit two
rules, one each for store and load, that include the ability to use packed types
to load/store smaller values and to load signed/unsigned. There is a lot of
minutiae detail, but none of it is particularly important. For example, tp is an
optional packed type which allows storing values smaller than the normal size
of the type of the value (e.g., storing eight bits i8 of a thirtytwo bit integer
i32). Loading from memory can optionally be signed or unsigned using sx,
which represented signed or unsigned. The “alignment exponent” align is
a mysterious variable that is not used during reduction, and is only used
during typechecking without any explanation. Two metafunctions, constt
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and bitst, are used to convert bits to values and vice versa. The key high
level takeaway is that load and store will trap if the supplied index k plus
the static offset o is out of bounds.

s; (i32.const k)
(t.load tp_sx align o) ↪→i s; (t.const constt(b∗))

if smem(i, k + o, |t|) = b∗

s; (i32.const k)
(t.load tp_sx align o) ↪→i trap

otherwise
s; (i32.const k) (t.const c)

(t.store tp_sx align o) ↪→i s′; ε
if s′ = s with mem(i, k + o, |t|) = bitst(c)

s; (i32.const k) (t.const c)
(t.store tp_sx align o) ↪→i trap

otherwise

s; current memory ↪→i i32.const |smem(i, ∗)|/64Ki
s; (i32.const k)
grow memory ↪→i s′; i32.const |s′mem(i, ∗)|/64Ki

if s′ = s with mem(i, ∗) = smem(i, ∗)(0)k∗64Ki

s; (i32.const k)
grow memory ↪→i i32.const (−1)

otherwise

2.3 The Wasm Type System

Instructions in Wasm are typed under a module type context C. C keeps
track of various module-level types: functions, globals, the table, memory,
locals, the label stack (i.e., the expected types for branching instructions),
and the return stack (i.e., the expected type of the return instruction).
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C ::= {func tf∗, global tg∗, table n?, memory m?,

local t∗, label (t∗)∗, return (t∗)?}

Here is an example of a Wasm typing rule, a binary operation of some
type t consumes two values of the given type t on the stack and produces a
value of type t:

C ` t.binop : t t→ t

The above example shows what a typical Wasm typing rule looks like.
The type associated with the instruction t.binop is a Wasm function type,
which is just the precondition (t t on the left of the →) and postcondition (t
on the right of the →) on the stack. In the precondition, the top of the stack
is the rightmost type (for example, in t1 t2 t3, t3 is the top of the stack),
since that represents the value closest to the instruction getting reduced. The
precondition and postcondition represent the shape of the stack before and
after executing a sequence of instructions. Intuitively, they represent the
“state of the world” before and after the instruction sequence is executed:
they require the world to be in a certain state, and then transform it into
some other state. Thus, the static Wasm typing judgement is as follows:

C ` e∗ : tf

In addition to this typing judgment, Wasm also includes typing judgments
for administrative instructions (which require additional type information
about runtime structures, so the judgment has a different form) and a typing
judgment in the form of the reduction relation for the Wasm type safety proof.
Wasm also has typing judgments for modules and module-level declarations.

We reproduce and explain a few selected typing rules from Wasm using
the static typing judgement. Most typing rules are for a single instruction
and there are a few rules which can combine rules. The rule for typing a
block, Rule Wasm-Block typechecks the body e∗ under the module type
context with the postcondition tm2 appended to the label stack. This is yet
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another common notational shorthand where x, y means x extended with
y. The branch rule, Rule Wasm-Br, accepts any precondition, extended
with the ith postcondition on the label stack (counting backwards), and
returns to any postcondition. A branch will return the n values before it,
so it is ok if there are more values on the stack, as they will be discarded.
Execution does not proceed after branching, so the postcondition can be
anything. For function calls we lookup the type of the function in the context
(Rule Wasm-Call). Recall that local variables are represented by a list
of values at runtime. Thus, the typing rule for set local checks that the
value consumed by set local , which will replace the ith local in the list, has
the correct type that is given by looking up the type of the ith local in the
context (Rule Wasm-Set-Local).

C ` t.binop : t t→ t
Wasm-Binop

tf = tn1 → tm2 C, label(tm2 ) ` e∗ : tf

C ` block tf e∗ end : tf
Wasm-Block

Clabel(i) = tn

C ` br i : t∗1 t
n → t∗2

Wasm-Br
Cfunc(i) = tf

C ` call i : tf
Wasm-Call

Clocal(i) = t

C ` set local i : t→ ε
Wasm-Set-Local

The empty instruction sequence has an empty precondition and post-
condition (Rule Wasm-Empty). An instruction e2 can be appended to
a sequence of instructions e∗1 if the precondition of e2 is the same as the
postcondition of e∗1 (Rule Wasm-Composition). Then, the precondition
of the full sequence e∗1 e2 is the precondition of e∗1 and the postcondition of
e∗1 e2 is the postcondition of e2.
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C ` ε : ε→ ε
Wasm-Empty

C ` e∗1 : t∗1 → t∗2 C ` e2 : t∗2 → t∗3

C ` e∗1 e2 : t∗1 → t∗3
Wasm-Composition

2.3.1 Stack Polymorphism

To compose together the types of many instructions, it is necessary to carry
around extra type information about the rest of the stack while type-checking
instructions. Stack polymorphism allows extending the precondition and
postcondition with the same data to thread unmodified parts of the stack
through a list of instructions. Intuitively, this allows you to “forget” the rest
of the stack and focus only on the part being manipulated by the instruction
being checked, after which point the “forgotten” part can be re-added.

For example, if the stack has the shape i64 i32 i32, then stack polymor-
phism allows us to ignore i64 and typecheck i32.binop with i32 i32. Then the
stack would look like i32, at which point we add i64 back to the postcondition
to get i64 i32 after executing i32.binop.
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Chapter 3

Wasm-prechk

The goal of Wasm-prechk is to eliminate unnecessary dynamic checks. To
accomplish this, it must (1) have instructions that do not require dynamic
checks and (2) statically prove that the assumptions of those instructions are
met. Wasm-prechk extends Wasm with new instructions that explicitly do
not require dynamic checks, and an indexed type system to reason about the
safety of omitting checks. Intuitively, we are replacing dynamic checks with
static checks whenever possible.

Consider the example of a Wasm program with an unnecessary dynamic
check in Figure 3.1. The program consists of a block instruction that consumes
two arguments from the stack and produces onto the stack their quotient if
the second argument is non-zero, and the first argument otherwise. In Wasm,
this program would have a dynamic division-by-zero check inserted for the

block (i32 i32→ i32)
(tee local 0)
(i32.const 1)
(get local 0)
(select)
(i32.div)

end

Figure 3.1: An Example of an Unnecessary Wasm check
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division instruction (i32.div). However, this check would be unnecessary since
the instructions preceding the division instruction ensures that the second
argument is non-zero. This is guaranteed because the select instruction selects
the first value (the local) if the local is non-zero, and, otherwise, selects the
second value (i32.const 1).

In the above example, it is possible to check the necessary precondition
of the division instruction (that the second argument is non-zero) statically,
rather than dynamically. Wasm-prechk performs such static checks using
an indexed type system. An indexed type language uses an index language
in the type system to encode information within types. Wasm-prechk’s
index language must be capable of capturing enough information about a
Wasm-prechk program to statically verify the preconditions of prechk-tagged
instructions.

The Wasm-prechk index language is designed to encode linear constraints
on program values (the details of how they are encoded is discussed in
subsection 3.1.1). To do this, we “shadow” Wasm-prechk program values
using what we call index variables to track constraints on and relationships
between program values. Many of these constraints/relationships are written
using Wasm operators (e.g., binop), since they are the predominant way
that Wasm values end up being related to each other. Index variables are
associated with program values using indexed types, which combine the type
information from Wasm: the primitive type t of the value, with the indexed
type variable that represents the value in the index language. Finally, we
also use index variables to track local variables (specifically the current value
of local variables, since they are mutable and may change) via an index local
store.

3.1 Wasm-prechk Syntax

The syntax of Wasm-prechk has the same structure as Wasm, but different
instructions and richer types. First, Wasm-prechk introduces four additional
instructions, which are referred to as “prechk-tagged” instructions. Second,
Wasm-prechk does not support floating point values or unary operators on
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testopiN ::= eqz
binopiN ::= add | sub | shl | or | ...
relopiN ::= eq | ne | gt | ge | ...
e ::= unreachable | nop | drop | select |

block tfi e∗ end | loop tfi e∗ end | if tfi e∗ else e∗ end |
br i | br if i | br table i+ | return | call i | call indirect tfi |
get local i | set local i | tee local i | get global i |
set global i | t.load (tp_sx)? align o | t.store tp? align o |
current memory | grow memory | t.const c |
t.binopt | t.testopt | t.relopt |
t.divprechk | t.call indirectprechk |

t.loadprechk (tp_sx)? align o | t.storeprechk tp
? align o

Figure 3.2: Wasm-prechk syntax including the four prechk-tagged instructions

integers since they are difficult to reason about (this is explained in more
detail in chapter 5). While it would be possible to support them, we would
have no more type information about them than Wasm, and the focus of this
work is on the type information. Wasm-prechk uses a different representation
of types within instructions and functions, as we see in subsection 3.1.1.

Recall from section 2.2 that four Wasm instructions require run-time
checks: integer division, indirect function calls, and memory loads and stores.
“prechk-tagged” instructions refer to four Wasm-prechk instructions, listed in
Figure 3.2, that are counterparts to these four Wasm instructions. Intuitively,
we add a tag to the instruction to show that it doesn’t require run-time
checks. Formally, however, different instructions have different semantics and
typing rules, as explained below.

3.1.1 The Wasm-prechk Index Language

Wasm-prechk uses an indexed type system. We use the Wasm-prechk index
language to encode constraints on program values within types. Figure 3.3
shows the syntax for the index type language. Remember, syntax written in
a blue sans serif font denotes a Wasm keyword. Below is a quick overview of
each metavariable.
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t ::= i32 | i64
a ::= IndexV ariable

x y ::= a | (t c) | (binop x y) | (testop x) | (relop x y)
P ::= (= x y) | (if P P P ) | ¬P | P ∧ P | P ∨ P
φ ::= ◦ | φ, (t a) | φ, P

Figure 3.3: Syntax of the Wasm-prechk index type language

ti ::= (t a)
l ::= ti∗

tfi ::= ti∗; l; φ→ ti∗; l; φ
C ::= {func tfi∗, global (mut? t)∗, table n?, memory m?,

local t∗, label(ti∗; l; φ)∗, return (ti∗; l; φ)?}

Figure 3.4: Wasm-prechk indexed function types

• t represents a primitive Wasm type. We do not reason about floating
point values, so it is either a 32-bit integer (i32) or a 64-bit integer
(i64).

• a is a type index variable, which is used to track constraints on program
values.

• x and y are type indices; they can be an index type variable, a constant
with an explicit type, or a Wasm operation on a type index.

• P is a proposition about type indices which can encode equality con-
straints on type indices, or combine propositions using common first-
order logic operators.

• φ is the type index context which stores index type variable declarations
and propositions. Essentially, it contains all of the knowledge we have
about all of the index variables.

Indexed types are used to associate index variables a with values in the
program. Figure 3.4 shows the form of an indexed type, ti, which includes
both the type t and an index variable a. In Wasm-prechk, we represent the
shape of the stack as a sequence of indexed types ti∗.
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The index local store associates index variables with local variables. It has
an identical form to the stack: a sequence of indexed types to associate index
variables with local variables. We use the shorthand l to refer to the index
local store. The index type context φ is used to reason about the possible
values of computations. It stores constraints on and between program values
tracked by indexed types representing the stack and index local store.

Wasm-prechk uses indexed “function” types tfi , which, similar to Wasm’s
function types, are just a precondition and postcondition. However, indexed
function types include much more information in their precondition and
postcondition! They represent the stack using a sequence of indexed types
and track local variables using the index local store, and include φ which
contains constraints about those values. We see how this information is used
in subsection 3.3.2.

We retain C to refer to the module type context in Wasm-prechk, although
the representation of module types is slightly different. Wasm function
types are replaced with Wasm-prechk indexed function types. Further, the
postconditions in the label stack and return stack are replaced with Wasm-
prechk indexed postconditions including indexed types, the local index store,
and the index type context.

We can now introduce the Wasm-prechk typing judgement for instructions.
It is similar to the Wasm typing judgment, but uses indexed function types
which include much more information by tracking constraints about program
values.

C ` e∗ : tfi

Recall that certain Wasm instructions (such as block and call indirect )
include Wasm function types to declare the expected types of their bodies. In
Wasm-prechk, we replace those function types with indexed function types.
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s; v∗; e∗ → s′; v′∗; e′∗

(t.const c1) (t.const c2) t.binop ↪→ t.const c
if c = binop(c1, c2)

(t.const c1) (t.const c2) t.binop ↪→ trap
otherwise

s; call indirect j ↪→i stab(i, j)
if stab(i, j)code = (func tf local t∗ e∗)

s; call indirect j ↪→i trap
otherwise

s; (i32.const k)
(t.load tp_sx align o) ↪→i s; (t.const constt(b∗))

if smem(i, k + o, |t|) = b∗

s; (i32.const k)
(t.load tp_sx align o) ↪→i trap

otherwise
s; (i32.const k) (t.const c)

(t.store tp_sx align o) ↪→i s
′; ε
if s′ = s with
mem(i, k + o, |t|) = bitst(c)

s; (i32.const k) (t.const c)
(t.store tp_sx align o) ↪→i trap

otherwise

Figure 3.5: Wasm instructions that have preconditions for reduction

3.2 Wasm-prechk Dynamic Semantics

Wasm-prechk uses the same reduction relation with the same structure as
Wasm (explained in detail in section 2.2). All the reduction rules for all of the
Wasm-prechk instructions are the same as they are for Wasm, as presented
in section 2.2, except that indexed function types are used instead of Wasm
function types. We also have four new instructions, for which we introduce
new reduction rules.

The formal reason why certain Wasm instructions require run-time checks
is because they have preconditions as part of their semantics. If the precondi-
tions are not met then those instructions trap to avoid undefined behavior
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s; v∗; e∗ → s′; v′∗; e′∗

(t.const c1) (t.const c2)
t.divprechk ↪→ c

where c2 6= 0 ∧ c = c1/c2
s; (t.const j)

t.call indirectprechk tfi ↪→i call stab(i, j)
where stab(i, j) =
func tfi2 local t∗ e∗

and tfi2 <: tfi
s; (i32.const k)

(t.loadprechk (tp_sx)? a o) ↪→i t.const constt(b∗)
where smem(i, k + o, |t|) = b∗

s; (i32.const k) (t.const c)
(t.storeprechk tp

? a o) ↪→i s
′; ε
where s′ = s

with mem(i, k + o, |t|) = bits
|t|
t (c)

Figure 3.6: Behavior of new prechk-tagged instructions

(we’ve reproduced the reduction rules for those instructions in Figure 3.5).
The Wasm type system is not expressive enough to ensure these precondi-
tions statically, so they instead must be checked at run-time. However, the
Wasm-prechk type system is capable of statically checking these preconditions.

In Wasm-prechk, “prechk-tagged” instructions can assume that the pre-
conditions on their behavior hold because it is enforced by the Wasm-prechk
type system. This can be seen in the reduction rules for the “prechk-tagged”
instructions in Figure Figure 3.6, where they do not have rules to trap when
their preconditions do not hold. For example, in the divprechk rule, the second
argument c2 is guaranteed to be non-zero, so there will be no trap on division-
by-zero. call indirectprechk can assume that the function that gets pulled from
the table tfi2 has a subtype of the expected type tfi , so it is a valid type for
the indirect call (we will go over subtyping in more detail in subsection 3.3.1).
The prechk-tagged memory operations loadprechk and storeprechk can assume
that the memory operation takes place inside the memory bounds.
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Now, we can rewrite the example from Figure 3.1 to use the prechk-tagged
division instruction, as seen in Figure 3.7. Remember that we know the
second argument to divprechk is guaranteed to be non-zero, so we know the
assumption of the divprechk instruction (c2 6= 0) holds. Since divprechk does not
require a dynamic check, this program will presumably be faster than the
version with the dynamic check. We still have not shown how we statically
ensure that this assumption holds, which we will do in subsection 3.3.2.

3.3 The Wasm-prechk Indexed Type System

The Wasm-prechk type system is designed to provide sufficient information
to safely eliminate dynamic checks (i.e., to ensure that the required precon-
ditions are met to prechk-tag an instruction). As explained in 3.1.1, the
Wasm-prechk type system can encode constraints on program values in the
preconditions and postconditions of instructions. We will now show how
these constraints are added and used.

Recall the form of the Wasm-prechk typing judgement for instructions.

C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

Under C, the module type context, e∗ has the precondition ti∗1; l1; φ1
and postcondition ti∗2; l2; φ2. We sometimes use the metavariable abbrevi-
ation tfi ::= ti∗1; l1; φ1 → ti∗2; l2; φ2 as shorthand for the precondition and
postcondition of an instruction.

block (i32 i32→ i32)
(tee local 0)
(i32.const 1)
(get local 0)
(select)
(i32.divprechk)

end

Figure 3.7: An Example of Using a Wasm-prechk prechk-tagged Instruction
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As in Wasm, Wasm-prechk generally has two kinds of typing rules. Most
rules are for inferring or checking the types of instructions (in which case e∗

will be a single instruction). There are also a few rules to compose together
instruction sequences. We present the typing rules mixed with discussion of
those rules. The typing judgment definition in its entirety is reproduced in
the appendix Appendix A.

Here are some of the simpler rules. These rules don’t use or modify
index type information. Rule Unreachable accepts any precondition and
guarantees any postcondition since it just causes a trap. In Rule Nop, no
changes are made from the precondition to the post condition because the
instruction does nothing. Rule Drop consumes the top value from the stack
(without caring about its type) and does not change the local index store or
index type context.

C ` unreachable : ti∗1; l1; φ1 → ti∗2; l2; φ2
Unreachable

C ` nop : ε; l; φ→ ε; l; φ
Nop

C ` drop : (t a); l; φ→ ε; l; φ
Drop

The constant instruction is a simple example of how indexed types work.
Rule Const adds a new indexed type onto the stack to track the new program
variable (t a), declares the new indexed type in the index type context φ
(the (t a) part of φ, (t a), (= a (t c))), and constrains that indexed type to
be equal to the constant in φ (the (= a (t c)) part of φ, (t a), (= a (t c))).
We require a to be fresh (i.e., that it is not present in any types in the
program up to this point), so that we know a is not constrained/referenced
anywhere in the precondition. This is a common pattern to see in rules which
introduce new index variables. Since const does not change or reference the
local variables, the local index store l is unchanged between the precondition
and postcondition.

a is fresh

C ` t.const c : ε; l; φ→ (t a); l; φ, (t a), (= a(t c))
Const
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There are several different kinds of operations, but they all work similarly.
The binary operator instruction adds constraints between new and old pro-
gram values, since the result of the instruction is a new program value, while
the consumed values may already be constrained. A binary operation con-
sumes two values from the stack, which have associated indexed types (t a1)
and (t a2), and produces a value which is associated with the fresh indexed
type (t a3). The index type declaration (t a3) is added to the index type
context φ and a3 is constrained to be equal to the binary operator applied
to the index variables that correspond to the input (= a3 (‖binop‖ a1 a2).
As a side note, we use ‖binop‖ to indicate that we are moving the binop (or
relop or testop) from Wasm-prechk to the index language, where it will be
interpreted by the semantics of the index language. Binary operators do not
affect or use local variables, so the local index store. l, is the same in the
precondition and postcondition.

a3 is fresh

C ` t.binop : (t a1) (t a2); l; φ
→ (t a3); l; φ, (t a3), (= a3 (‖binop‖ a1 a2))

Binop

a3 is fresh

C ` t.testop : (t a1) l; φ
→ (i32 a2); l; φ, (t a2), (= a2 (‖testop‖ a1))

Testop

a3 is fresh

C ` t.relop : (t a1) (t a2); l; φ
→ (t a3); l; φ, (t a3), (= a3 (‖relop‖ a1 a2))

Relop

Rule Select constrains indexed types in a rather complex way. Select
consumes three values from the stack, it returns the second value if the third
value is zero, and otherwise returns the first value (similar to C’s ternary
operator). We use the type-level “if” to allow the constraint on the result to
depend on the third value consumed: (if (= a (i32 0)) (= a3 a2) (= a3 a1)).
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a3 is fresh

C ` select : (t a1) (t a2) (i32 a); l; φ
→ (t a3); l; φ, (t a3),

(if (= a (i32 0)) (= a3 a2) (= a3 a1))

Select

The rules for the three different kinds of blocks (block, loop, and if) are
similar to Wasm. They simply ensure that the interior instruction sequence
has the expected type under the context with the expected postcondition
(or precondition in the case of loop) appended to the local stack. In Wasm-
prechk, if blocks make extra assumptions about the consumed value in
the subsequences (that it is non-zero in the first sequence and zero in the
second), because those constraints must be true for that sequence to be
executed. While if and block append their postcondition to the label stack
for typechecking branching instructions within the block, loop appends its
precondition because branching to a loop means running the loop again.

C2, label (ti∗2; l2; φ2) ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` block (ti∗1; l1; φ1 → ti∗2; l2; φ2) e
∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2

Block

C2, label (ti∗1; l1; φ1)
∗ ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` loop (ti∗1; l1; φ1 → ti∗2; l2; φ2) e
∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2

Loop

C2, label (ti∗2; l2; φ2) ` e∗1 : ti∗1; l1; φ1,¬(= a (i32 0))→ ti∗2; l2; φ2
C2, label (ti∗2; l2; φ2) ` e∗2 : ti∗1; l1; φ1, (= a (i32 0)))→ ti∗2; l2; φ2

C ` if (ti∗1; l1; φ1 → ti∗2; l2; φ2) e
∗
1 else e∗2 end : ti∗1; l1; φ1 → ti∗2; l2; φ2

If

One thing to note is that all three of these rules include their expected
preconditions and postconditions as part of their syntax. We consider the
index variables in these indexed function types to be unification variables
rather than literals, allowing them to match any literal as long as the types
unify. Intuitively, this is very similar to alpha equivalence, where the precon-
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dition matches any preceding postcondition with the same structure as long
as the variable can be renamed to match. The postcondition appended to
the label stack also has unification variables instead of the supplied literals.

The rules for branching instructions and return are similar to Wasm.
However, br if adds the assumption that the consumed value is zero to its
postcondition. This assumption can be safely added because the value must
be zero for execution to continue without a branch occurring. If the consumed
value is constrained to be non-zero in the indexed type system, then this will
cause a contradiction in the constraints of the index type context φ. However,
that is fine since this means that no instructions following the br if will be
executed. Also remember the above note that the postconditions on the label
stack contain unification variables, not literals.

Recall from section 2.2 that br table branches to one of many different
labels. Thus, we must ensure that every possible branching postcondition to
which it might branch is implied by the precondition.

Clabel(i) = ti∗; l1; φ1

C ` br i : ti∗1 ti
∗; l1; φ1 → ti∗2; l2; φ2

Br

Creturn = ti∗; l1; φ1

C ` return : ti∗1 ti
∗; l1; φ1 → ti∗2; l2; φ2

Return

Clabel(i) = ti∗; l1; φ1,¬(= a (i32 0))

C ` br if i : ti∗ a; l1; φ1 → ti∗; l1; φ1, (= a (i32 0))
Br-If

(Clabel(i) = ti∗; l1; φi)+ (φ1 =⇒ φi)
n

C ` br table i+ : ti∗1 ti
∗ a; l1; φ1 → ti∗2; l2; φ2

Br-Table

Recall that functions are declared within the module with a specific
indexed function type tfi , that is a precondition and postcondition. These
declared indexed function types are placed inside the module type context
C. Direct function calls call i have the same type as the declared indexed
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function type of the function they are calling with two differences. First,
the local index store is unchanged, since the called function will have been
turned into a closure that operates on separate local variables in a local
block. Second, the index type context in the postcondition of the call is
extended with the declarations and constraints from the precondition of the
call. The precondition and postcondition of a function can only contain
constraints about the arguments supplied to that function, so simply copying
the postcondition of the function would result in the loss of information about
all other index variables.

Indirect function calls call indirect ti∗1; l1; φ1 → ti∗2; l2; φ2 include the
expected indexed function type ti∗1; l1; φ1 → ti∗2; l2; φ2 provided as part of
their syntax (the same note about index variables being unification variables
from above holds). Remember that indirect function calls perform a run
time typecheck against the closure that they end up calling, so we assume
statically that the check will proceed because if it does not the program will
trap (trap satisfies any tfi , including the one for the indirect call) and not
be able to do any harm. The same two differences described above between
the expected indexed function type tfi and the type of the call indirect tfi

instruction also hold.

Cfunc(i) = ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` call i : ti∗1; l; φ1 → ti∗2; l; φ1, φ2
Call

Ctable(i) = (j, tfi∗2)

C ` call indirect ti∗1; l1; φ1 → ti∗2; l2; φ2
: ti∗1 (i32 a); l; φ1 → ti∗2; l; φ1, φ2

Call-Indirect

The only instructions that actually mutate the local index store are those
that operate on local variables. get local produces a fresh indexed type (t a2)
that is constrained to be equal to the index variable associated with the local
being retrieved. set local works in the reverse direction, replacing the index
variable associated with the local being set. Because set local reasons about
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local variables, which are not part of the instruction sequence (unlike values
on the stack), we can copy the index variable instead of creating a fresh
one and constraining it to be equal like for get local Finally, tee local is
effectively a combined set local and get local that consumes and immediately
regurgitates a value, like the Unix tool “tee”. Thus, the typing rule is similarly
a combination of the set local and get local rules, where the indexed type
from the stack replaces the local variable indexed type, and a fresh indexed
type is produced that is constrained to be equal to the consumed index
variable.

Clocal(i) = t l(i) = (t a) a2 is fresh

C ` get local i : ε; l; φ→ (t a2); l; φ, (t a2), (= a2 a)
Get-Local

Clocal(i) = t l2 = l1[i := (t a)]

C ` set local i : (t a); l1; φ→ ε; l2; φ
Set-Local

Clocal(i) = t l2 = l1[i := (t a)] a2 is fresh

C ` tee local i : (t a); l1; φ→ (t a2); l2; φ, (t a2), (= a2 a)
Tee-Local

Instructions for getting and setting globals produce and consume uncon-
strained values respectively. Global variables are difficult to reason about in
the type system since they are different between modules. At compile-time,
before linking, a module has no information about globals from another
module which would be necessary for reasoning about the types of functions
imported from the other module. Therefore, we do not track index variables
for globals (we just treat them as unconstrained values when they are intro-
duced onto the stack by get global ). We do still statically ensure the same
properties as Wasm: that the value is of the correct Wasm type and in the
case of setting a global variable that the global variable is mutable (has the
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mut flag in its type).

Cglobal(i) = mut? t a is fresh

C ` get global i : ε; l; φ→ (t a); l; φ, (t a)
Get-Global

Cglobal(i) = mut t

C ` set global i : (t a); l; φ→ ε; l; φ
Set-Global

The typing rules for memory instructions are very similar to Wasm as
we do not reason about the contents of memory or how its size can change
throughout a program. As in Wasm, there are many small details related to
how exactly values are loaded and stored that are not particularly important
to the understanding of the type system, but they are explained with the
reduction rules for these values in section 2.2. One thing that does not appear
in the Wasm reduction rules but mysteriously appears in the typing rules
without much explanation is align. It is checked against the size of the type
of the value being stored/loaded |t| (or optionally |tp|, which should be less
than |t|) in the premise 2align ≤ (|tp| <)?|t|.

Cmemory = n 2align ≤ (|tp| <)?|t| a2 is fresh

C ` t.load (tp_sx)? align o : (i32 a1); l; φ→ (t a2); l; φ, (t a2)
Mem-Load

Cmemory = n 2align ≤ (|tp| <)?|t|

C ` t.store tp? align o : (i32 a1) (t a2); l; φ→ ε; l; φ
Mem-Store

Cmemory = n a is fresh

C ` current memory : ε; l; φ→ (i32 a); l; φ, (i32 a)
Current-Memory

Cmemory = n a2 is fresh

C ` grow memory : (i32 a1); l; φ→ (i32 a2); l; φ, (i32 a2)
Grow-Memory

The last rules are the ones that can be used to compose sequences of
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instructions. The first rule is for the empty instruction sequence ε, which,
similar to Wasm, simply has the same precondition and postcondition ε; l; φ.
Second, we have Rule Stack-Poly to add stack polymorphism (see subsec-
tion 2.3.1). Third, there is a rule to compose a sequence of instructions e∗1
with another instruction e2.

C ` ε : ε; l; φ→ ε; l; φ
Empty

C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` e∗ : ti∗ ti∗1; l1; φ1 → ti∗ ti∗2; l2; φ2
Stack-Poly

C ` e∗1 : ti∗1; l1; φ1 → ti∗2; l2; φ2
C ` e2 : ti∗2; l2; φ2 → ti∗3; l3; φ3

C ` e∗1 e2 : ti∗1; l1; φ1 → ti∗3; l3; φ3
Composition

3.3.1 Subtyping, Implication, and Constraint Satisfaction

One issue with adding the index type context φ to preconditions and postcon-
ditions is that the postcondition of one instruction and the precondition of the
next instruction might not match up exactly. For example, one instruction
may ensure a value is greater than ten, but the next just wants the value to
be greater than zero. Intuitively, if a value, “x”, is greater than ten it must
also be greater than zero, and we want the Wasm-prechk type system to be
able to figure this out as well. However, computers as of yet are unable to
use intuition, so we must instead formalize this.

Our formalization of this problem is to allow strengthening preconditions
and weakening postconditions. Strengthening and weakening is based on
implication ( =⇒ ). We say that φ1 =⇒ φ2 when the following holds: if φ1
is satisfied, then φ2 must also be satisfied. If φ1 =⇒ φ2, then we consider
φ1 to be stronger than φ2, and φ2 to be weaker than φ1. This solves the
aforementioned problem because we can weaken “x is greater than 10” to “x
is greater than 0” (or equivalently strengthen “x is greater than 0” to “x is
greater than 10”).
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To fit strengthening and weakening into the type system, we define a
subtyping judgment based on implication. We essentially parameterize our
typing judgment with the implication relation. As an aside, we show that this
is a practical thing to do and that such a relation exists by implementing such
an implication relation using Z3 (see subsection 5.2.1). The Rule Implies

says that if an indexed function type tfi1 has a stronger precondition and
weaker postcondition than some other indexed function type tfi2, and is
otherwise equivalent, then tfi1 is a subtype of tfi2 since it can safely be used
in place of tfi2.

φ0 =⇒ φ1 φ2 =⇒ φ3

ti∗1; l1; φ1 → ti∗2; l2; φ2 <: ti
∗
1; l1; φ0 → ti∗2; l2; φ3

Implies

We then use this in the Wasm-prechk type system by adding a typing rule
that allows the indexed function type for a list of instructions to be replaced
by a subtype of that indexed function type.

ti∗1; l1; φ1 → ti∗2; l2; φ2 <: ti
∗
1; l1; φ0 → ti∗2; l2; φ3

C ` e∗ → ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` e∗ → ti∗1; l1; φ0 → ti∗2; l2; φ3
Subtyping

3.3.2 Using Types for Check Elimination

In Section 3.2 we explained that prechk-tagged instructions do not need
dynamic checks because of the static guarantees of the Wasm-prechk type
system. Here, we see how the Wasm-prechk type system provides those
guarantees by looking at the typing rules for each of the prechk-tagged
instructions.

Integer division simply requires that the second argument is non-zero.
The premise φ =⇒ ¬(= a2 0) requires that the index constraints satisfy
the proposition a2 6= 0 for the pre-checked instruction to be safe. Therefore,
since a divide-by-zero is provably absent, it is safe to use the prechk-tagged
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division instruction. As an aside, recall that requiring a3 is fresh ensures that
it is not declared, constrained, or referenced by the precondition.

φ =⇒ ¬(= a2 0) a3 is fresh

C ` t.divprechk : (t a1) (t a2); l; φ
→ (t a3); l; φ, (t a3), (= a3 (‖div‖ a1 a2))

Div-Prechk

Tagging memory loads and stores with prechk requires ensuring that the
memory index is valid. Since Wasm and Wasm-prechk use linear memory,
which is a contiguous block of memory, we simply have to ensure that the
index is within those bounds. The initial memory size is the number of 64
Ki pages (65, 536 bytes), so we check that the constraints in the index type
context ensure that the memory index plus the static offset is between 0 and
65, 536−width. We use width as a shorthand to denote the number of bytes
that is being stored/loaded, it is equal to |t|/8 if tp? = ε, and otherwise equal
to |tp|/8.

Unfortunately, while the size of memory may be grown during program
execution, we are currently unable to reason about changing memory size.
Therefore, we just use the initial memory size.

Cmemory = n 2align ≤ (|tp| <)?|t| a3 is fresh
φ =⇒ (ge (add a1 (i32 o))(i32 0)),

(le (add a1 (add (i32 o+ width))) (i32 n ∗ 64Ki))

C ` t.loadprechk (tp_sx)? align o : (i32 a1); l; φ
→ (t a2); l; φ, (t a2)

Load-Prechk

Cmemory = n 2align ≤ (|tp| <)?|t|
φ =⇒ (ge (add a1 (i32 o)) (i32 0)),

(le (add a1 (add (i32 o+ width))) (i32 n ∗ 64Ki))

C ` t.storeprechk tp
? align o : (i32 a1) (t a2); l; φ→ ε; l; φ

Store-Prechk

Indirect function calls in Wasm require a dynamic check to ensure that
the index into the table points to a function of a suitable type (recall the
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explanation of tables and call indirect from section 2.2). Proving the safety
of an indirect function call involves showing that every possible function
that could be called will not cause a run-time type error. We ensure this by
requiring that the type of every function at every possible index value has a
subtype of the expected type: ∀0 < i ≤ n.(φ =⇒ ¬(= (i32 i) a)) ∨ tfis(i) <:

tfi where tfis = (tfi2...). The ∀ and ∨ (as in (φ =⇒ ¬(= (i32 i) a))∨ tfis(i) <:

tfi) in this case are at the meta level and not within the index language.
Further, we must show that the provided table index is within the table
boundaries: φ =⇒ (gt n a) ∧ (le (i32 0) a).

Ctable(i) = (n, (tfi2...))

φ =⇒ (gt n a) ∧ (le (i32 0) a)

tfis = (tfi2...) tfi = ti∗1; l1; φ1 → ti∗2; l2; φ2
∀0 < i ≤ n. (φ =⇒ ¬(= (i32 i) a)) ∨ tfis(i) <: tfi

C ` call indirectprechk tfi : ti∗1 (i32 a); l; φ1
→ ti∗2; l; φ1, φ2

Call-Indirect-Prechk

An Example of Using Types for Check Elimination Here we present
a short contrived example of using types for check elimination, based on the
example from Figure 3.7. We are typechecking a divprechk. First, we give the
module type context C1, which contains one local variable, which is an i32,
and the instruction sequence we are typing, which is a safe division happening
inside of a block (Figure 3.7). We also use the shorthand C2 for C1 extended
with the label postcondition for the instructions inside the block.

C1 = {func ε, global ε, table ε, memory ε,
local i32, label ε, return ε}

C2 = {func ε, global ε, table ε, memory ε,
local i32, label ((i32 a0); (i32 a2); ◦), return ε}

The block takes two integers, and, using the local as temporary storage,
either divides the first by the second, or the first by 1 if the second is 0. In
the example we build up type derivations to reach a typing derivation for the
whole block. We first state the rule that we will use, than give the derivation
(in many cases we apply Rule Stack-Poly inline for brevity). Typechecking
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the example relies on select, where the second argument (i32.const 1) is chosen
if the first argument (and the conditional) get local 0 is equal to zero, so the
result must be non-zero.

1. Rule Tee-Local and Rule Stack-Poly

Note that φ1 = ◦, (i32 a1), (i32 a2), and φ2 = φ1, (i32 a4), (= a4 a2).

C2local(0) = i32
(i32 a2) = (i32 a3)[0 := (i32 a2)] a4 is fresh

C2 ` tee local 0 : (i32 a1) (i32 a2); (i32 a3); φ1
→ (i32 a1) (i32 a4); (i32 a2); φ2

2. Rule Const and Rule Stack-Poly

Note that φ3 = φ2, (= a4 a2), (i32 a5), (= a5 (i32 1)).

a5 is fresh

C2 ` i32.const 1 : (i32 a1) (i32 a4); (i32 a2); φ2
→ (i32 a1) (i32 a4) (i32 a5); (i32 a2); φ3

3. Rule Composition

1. 2.

C2 ` (tee local 0) (i32.const 1)
: (i32 a1) (i32 a2); (i32 a3); φ1
→ (i32 a1) (i32 a4) (i32 a5); (i32 a2); φ3

4. Rule Get-Local and Rule Stack-Poly

Note that φ4 = φ3, (i32 a6), (= a6 a2).

a6 is fresh

C2 ` get local 0 : (i32 a1) (i32 a4) (i32 a5); (i32 a2); φ3
→ (i32 a1) (i32 a4) (i32 a5) (i32 a6); (i32 a2); φ4

5. Rule Composition
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Note that φ4 = φ3, (i32 a6), (= a6 a2).

3. 4.

C2 ` (tee local 0) (i32.const 1) (get local 0)
: (i32 a1) (i32 a2); (i32 a3); φ1
→ (i32 a1) (i32 a4) (i32 a5) (i32 a6); (i32 a2); φ4

6. Rule Select and Rule Stack-Poly

Note that φ5 = φ4, (i32 a7), (if (= a6 (i32 0)) (= a7 a5)(= a7 a4)).

a7 is fresh

C2 ` select
:→ (i32 a1) (i32 a4) (i32 a5) (i32 a6); (i32 a2); φ4
→ ((i32 a1) (i32 a7); (i32 a2); φ5

7. Rule Composition

5. 6.

C2 ` (tee local 0) (i32.const 1) (get local 0) (select)
: (i32 a1) (i32 a2); (i32 a3); φ1
→ ((i32 a1) (i32 a7); (i32 a2); φ5

8. Rule Div-Prechk

Note that φ5 = φ5, (i32 a8), (= a8(‖div‖ a1 a7)).

φ5 =⇒ ¬(= a7 0) a8 is fresh

C2 ` (i32.divprechk)

: ((i32 a1) (i32 a7); (i32 a2); φ5
→ (i32 a8); (i32 a2); φ6

9. Rule Composition
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7. 8.

C2 ` (tee local 0) (i32.const 1) (get local 0) (select) (i32.divprechk)

: (i32 a1) (i32 a2); (i32 a3); φ1
→ (i32 a8); (i32 a2); φ6

10. Rule Block

9.

C1 ` block (i32 a1) (i32 a2); (i32 a3); φ1
→ (i32 a8); (i32 a2); φ6

(tee local 0)
(i32.const 1)
(get local 0)
(select)
(i32.div)

end : (i32 a1) (i32 a2); (i32 a3); φ1
→ (i32 a8); (i32 a2); φ6

3.3.3 Module Types

The complete module typing rules are in Figure 3.8 (note that im is an
import and ex is an export). Functions f , typecheck their body e∗ under
the module type context C with the expected postcondition ti∗2; l2; φ2 in the
label stack and return position, and with the local index store (t1 a1)

∗ (t a2)
∗

constructed from the function’s arguments (t1 a1)∗ and declared locals (t a2)∗.
Global variables glob must ensure that their initialization instructions e∗

produce a value of the proper type t. Exported global variables cannot be
mutable, if there are any exports defined, the global cannot have the mutable
tag mut: ex∗ = ε ∨ tg = t. Tables tab ensure that the indices in refer to
well-typed functions and there are exactly as many indices as the expected
size n. Memory mem simply has its declared initial size n from which it can
only grow bigger. All imported functions, globals, tables, and memories are

43



expected to have their declared type. They are typechecked during linking.
Typechecking a module involves typechecking every component of the

module. Functions, f , are typechecked under the module type context, C,
containing the entirety of the module. This means that functions can refer
to themselves, other functions, all globals, the table, and memory. This
may seem to be a circular definition, but the type of the module is declared
statically (as the combined declared types of all the module components), so
it is just checking against the expected module index type context. Globals,
glob, are typechecked under the module index context containing only the
global variable declarations preceding the current declaration.
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tfi = (t1 a1)
∗; ε; φ1 → ti∗2; l2; φ2

C2 = C, local t∗1 t
∗, label (ti∗2; l2; φ2), return (ti∗2, l2, φ2)

C2 ` e∗ : ε; (t1 a1)∗ (t a2)∗; φ1 → ti∗2; l2; φ2
C ` ex∗ func tfi localt∗ e∗ : ex∗ tfi

Func

C ` ex∗ func tfi im : ex∗ tfi

tg = mut? t ex∗ = ε ∨ tg = t C ` e∗ : ε; ε; φ1 → (t a); ε; φ2
C ` ex∗ global tg e∗ : ex∗ tg

tg = t

C ` ex∗ global tg im : ex∗ tg

(Cfunc(i) = tfi)n

C ` ex∗ table n in : ex∗ (n, tfin)
Table

C ` ex∗ table (n, tfin) im : ex∗ (n, tfin) C ` ex∗ memory n : ex∗ n

C ` ex∗ memory n im : ex∗ n

(C ` f : ex∗f tfi)∗ (Ci ` globi : ex∗g tgi)∗

(C ` tab : ex∗t (n, tfin))? (C ` mem : ex∗m n)?

(Ci = {global tgi−1})∗i ex∗ ∗f ex∗ ∗g ex∗ ?t ex∗ ?m distinct
C = {func tfi∗, global tg∗, table (n, tfin)?,memory n?}

` module f∗ glob∗ tab? mem?

Figure 3.8: Indexed Module Typing Rules
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Chapter 4

Metatheory

Now that we have introduced Wasm-prechk and shown how it can be used
for reasoning, it is time to reason about Wasm-prechk itself. First, we will
take a look at the relationship between Wasm and Wasm-prechk, by showing
methods to translate Wasm programs to Wasm-prechk programs and vice
versa. Then, we will prove the type safety of Wasm-prechk, to ensure that
our claim that Wasm-prechk is as safe as Wasm is valid. However, before we
can do any of that, we must “complete” our reasoning ability by creating a
way to connect the reduction relation form with the type system.

4.1 Administrative Typing Rules

While we have shown the Wasm-prechk typing rules for instructions within a
static context, we still need typing rules for administrative instructions and
the store used in reduction. Administrative instructions are introduced for
reduction to keep track of information during reduction. For example, local
is the result of reducing a closure call; it is used to reduce a function body
within the closed environment of the closure. They are not part of the surface
syntax of a language (e.g., you cannot put a local block in a Wasm-prechk
program), and can only appear as an intermediate term during reduction.
Figure 4.2 shows the Wasm-prechk typing rules for module instances inst,
the run time store s, and various data structures contained within s. There
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S ::= {inst C∗, tab n∗, mem m∗}

` s; v∗; e∗

` s : S S; ε `i v∗; e∗ : ti∗; l; φ
`i s; v∗; e∗ : ti∗; l; φ

Program

S; (ti∗; l; φ)? `i v∗; e∗ : ti∗; l; φ

(` v : (t a); φv)∗ C = Sinst(i), local t∗, return (tin; l; φ)?

S; C ` e∗ : ε : (t a)∗; φ∗v → tin; l; φ

S; (tin; l; φ)? `i v∗; e∗ : tin; l; φ
Code

Figure 4.1: Wasm-prechk Program Typing Rules

are many different judgments being introduced, so we explicitly state the
form of the judgment before stating the rule for that judgment.

During reduction, we use Rule Program (Figure 4.1) to ensure that a
Wasm-prechk program state (consisting of the store s, local variables v∗, and
instruction sequence e∗) is well typed (notice that it has the same form as
the reduction relation). It uses Rule Code and relies on the store being well-
typed (Rule Store in Figure 4.2), to ensure that a reducible Wasm-prechk
program is well typed. Rule Code checks that a sequence of instructions is
well typed with an empty stack, the indexed types and constraints for the
given local variables in the precondition, and an optional return postcondition
(not used by Rule Program). Since local variables are values, we know
that each one of them is equal to some constant, so Rule Code is really just
checking that the sequence of instructions has some postcondition reachable
from the given local variables. There is an optional return postcondition for
Rule Code because the typing rule for local blocks (as seen in Rule Local

in Figure 4.3) has as a premise a judgment of the exactly same form, except
with a return postcondition.

In addition to getting the type of the instructions being reduced, we also
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need to know the type of the store s since it is part of the reduction relation.
Rule Store checks that a run-time store, s is well typed by the store context
S. The store context S is to s as C is to inst. That is, it contains the type
information for everything in s. Rule Store ensures that every module
instance inst in s has the type of the index module context C in S using
Rule Instance. Further, Rule Store ensures that all of the closures in all of
the tables in s are well typed, and the the sizes of all the tables and memory
chunks in S do not exceed the actual size of their implementations.

To get the type of the store, we in turn have to know the types of each of
the various run-time data structures. Rule Instance checks that a module
instance is well-typed by the index module context under the store context
S. It checks all of the closures cl∗ against their expected types tfi∗ in
C, and similarly for all of the globals (v∗ and (mut? t)∗). The table and
memory indices (i and j, respectively) are used to look up the the relevant
types ((n, tfi∗) and m, respectively) in the store context S. Closures are
typechecked by Rule Closure, which falls back on the module typing rules
from Figure 3.8 to typecheck the function definition inside of the closure.
Rule Admin-Const gets the postcondition indexed types and constraints on
values; it is used to typecheck local and global variables.

Now we will introduce the typing rules for administrative instructions,
and the administrative typing judgment in Figure 4.3. The administrative
typing judgment S; C ` e∗ : tfi extends the Wasm-prechk typing rules for
instructions to include administrative instructions and the store context S.
Every rule of the judgment C ` e∗ : tfi (recall the rules enumerated in
section 3.3) is implicitly added to the administrative judgment by accepting
any S.

Most of the rules for administrative instructions check against extra
information provided by the administrative typing judgment. Rule Local

typechecks a local block using Rule Code to ensure that the body e∗ is well
typed with the indexed types and constraints for local variables provided
by the local block as the precondition and any postcondition. Since local
blocks are inline expansions of function calls, we use the optional return
postcondition functionality of Rule Code to ensure that returning from
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` s : S

S = {inst C∗, tab n∗,mem m∗}
(S ` inst : C)∗ ((S ` cl : tfi)∗)∗ (n ≤ |cl∗|)∗ (m ≤ |b∗|)∗

` {inst inst∗, tab (cl∗)∗,mem (b∗)∗} : S
Store

S ` inst : C

(S ` cl : tfi)∗ (` v : (t a), φv)
∗

(Stab(i) = n)? (Smem(j) = m)?

S ` {func cl∗, glob v∗, tab i?,mem j?}
: {func tfi∗, global (mut? t)∗, table n?,memory m?}

Instance

` v : ti; φ

` t.const c : (t a); ◦, (t a), (eq a (t c))
Admin-Const

S ` cl : tfi

Sinst(i) ` f : tfi

S ` {inst i, code f} : tfi
Closure

Figure 4.2: Wasm-prechk Store Typing Rules

inside the local block will be well typed. Rule Call-Cl typechecks calling
a closure by ensuring that the closure cl being called has the same type as
the call instruction call cl in S. Rule Trap is always well typed under any
precondition and postcondition. Rule Label typechecks the body of the
label block with the precondition of the saved instructions pushed onto the
label stack. If the label was generated by a loop, then the precondition of
the saved values is the precondition of the loop, and we know the loop is well
typed. Otherwise, the saved instructions will be an empty sequence and will
be well typed from the precondition.
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S; C ` e∗ : tfi

S; (tin; l2; φ2) `i v∗l ; e∗ : tin; l2; φ2
S; C ` local{i; v∗l } e∗ end : ε; l1; φ1 → tin; l1; φ1, φ2

Local

S ` cl : tfi
S; C ` call cl : tfi

Call-Cl
S; C ` trap : tfi

Trap

S; C ` e∗0 : ti∗3; l3; φ3 → ti∗2; l2; φ2
S; C, label (ti∗3; l3; φ3) ` e∗ : ε; l1; φ1 → ti∗2; l2; φ2
S; C ` label{e∗0} e∗ end : ε; l1; φ1 → ti∗2; l2; φ2

Label

Figure 4.3: Wasm-prechk Administrative Instruction Rules

Given these additional typing judgments and rules, we can now show the
metatheoretic properties mentioned above.

4.2 Relationship Between Wasm and Wasm-prechk

We want to show two properties about the relationship between Wasm and
Wasm-prechk. First, we want Wasm-prechk to be backwards compatible
with Wasm. It should be possible to convert well-typed Wasm programs
into well-typed Wasm-prechk programs with no additional developer effort.
We demonstrate a simple yet naive way of embedding Wasm programs
into Wasm-prechk in subsection 4.2.1. Second, we want to show that well-
typed Wasm-prechk programs can be turned into Wasm programs. This
is accomplished in subsection 4.2.2 using an erasure function that turns
Wasm-prechk programs and types into Wasm programs and types.

4.2.1 Embedding Wasm in Wasm-prechk

We present a way to embed Wasm programs in Wasm-prechk. The embedding
function takes a Wasm program and replaces all of the type annotations with
indexed function types that have no constraints on the variables. Intuitively,
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the type annotations are the only part of the surface syntax of Wasm that
isn’t in Wasm-prechk, so we must figure out a way to bring it over. While this
embedding requires no additional developer effort, it provides no information
to the indexed type system beyond what can be inferred from the instructions
in the program. We conjecture that a well typed Wasm program embedded
in Wasm-prechk is also well typed, but we have not proved it.

We typeset Wasm-prechk instructions in a blue sans serif font and Wasm
instruction in a bold red font to set them apart.

Conjecture 1. Well Typed Wasm Programs Embedded in Wasm-prechk are
Well Typed

If `module f∗ glob∗ tab? mem?,
then ` embedmodule(module f∗ glob∗ tab? mem?)

Embedding works purely over the surface syntax of the languages. As
such, we define embedding over modules: the pinnacle syntactic objects of
both the Wasm and Wasm-prechk surface syntax hierarchies. Embedding a
module module means embedding all of the functions f∗ in the module, and
embedding the table tab parameterized with all of the function definitions f∗.
We do not have to embed globals glob∗ or the memory mem? as they have
the same syntax in both Wasm and Wasm-prechk. We explain how to embed
tables tab in Definition 2, and functions f in Definition 3.

Definition 1. embedmodule(module)
C = module

embedmodule(module f∗ glob∗ tab? mem?) = module embedf (f)∗

glob∗

embedtab(tab
?)f
∗

mem?

Tables in Wasm-prechk must also provide the indexed function types
of all the functions they contain, so to embed them we must include those
types. We do this by parameterizing the embedding of the table tab with all
of the declared functions f∗. Then, we retrieve the indexed function type
ti1; l1; φ1 → ti2; l2; φ2 of the function pointed to by the function index i in
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f∗ for every function index i in the table. We cannot embed imported tables
because we have no way of accessing the types of the functions included in
the table.

Definition 2. embedtab(tab)
f∗ = tab

embedtab(tab n in) = tab n (ti1; l1; φ1 → ti2; l2; φ2)n

where ∀i.f∗(i) = func ti1; l1; φ1 → ti2; l2; φ2
local t∗ e∗

The embedding of functions, Definition 3, both must construct an indexed
function type for itself and embed its body. Function bodies have their local
variables defined by the function that they are enclosed in. Thus, when the
function body is embedded we pass the local types (t∗1 t∗) so the body knows
how to constrain local variables. We construct an indexed function type that
has the precondition of the expected values on the stack turned into indexed
types using fresh index variables and the types t∗1 from the Wasm type, and
do the same with the postcondition and t∗2. We cannot embed imported
functions because we have no way of accessing the types of the local variables
of the function.

Definition 3. embedf (f) = f

embedf (func (t∗1 → t∗2)

local t∗ e∗)
= func ((t1 a1)

∗; ε; (◦, (t1 a1)∗)
→ (t2 a2)

∗; (t1 a3)∗ (t a4)∗;
(◦, (t2 a2)∗, (t1 a3)∗(t a4)∗))

t∗ (embede(e)
(t∗1 t

∗))∗

end

Embedding instructions replaces all function types used within the Wasm
syntax with Wasm-prechk indexed function types, and adds the function
types for all of the functions in a table to the table’s type declaration. This
occurs within blocks and indirect function calls, as shown in Definition 4.
The indexed types simply have fresh index variables that are different in the
precondition and postcondition, and the primitive types for the stack are
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known from the Wasm type t∗1 → t∗2. To know what the local variables are,
we parameterize the embedding over the types of local variables (t∗).

Definition 4. embede(e)
t∗ = e

embede∗(block (t∗1 → t∗2)

e∗

end)t∗

= block
((t1 a1)

∗; (t a3)∗; (◦, (t1 a1)∗, (t a3)∗)
→ (t2 a2)

∗; (t a4)∗; (◦, (t2 a2)∗, (t a4)∗))
embede∗(e

∗)t
∗

end
embede∗(loop (t∗1 → t∗2)

e∗

end)t∗

= loop
((t1 a1)

∗; (t a3)∗; (◦, (t1 a1)∗, (t a3)∗)
→ (t2 a2)

∗; (t a4)∗; (◦, (t2 a2)∗, (t a4)∗))
embede∗(e

∗)t
∗

end
embede∗(if (t∗1 → t∗2)

e∗

end)t∗

= if
((t1 a1)

∗; (t a3)∗; (◦, (t1 a1)∗, (t a3)∗)
→ (t2 a2)

∗; (t a4)∗; (◦, (t2 a2)∗, (t a4)∗))
embede(e

∗
1)
t∗ embede(e

∗
2)
t∗

end
embede∗(call indirect

(t∗1 → t∗2))
t∗

= call indirect
((t1 a1)

∗; (t a3)∗; (◦, (t1 a1)∗, (t a3)∗)
→ (t2 a2)

∗; (t a4)∗; (◦, (t2 a2)∗, (t a4)∗))
embede∗(e)

t∗ = e, otherwise
embede∗(e

∗)t
∗
= (embede∗(e)

t∗)∗

These are not the only differences in the surface syntax between Wasm and
Wasm-prechk: we also introduced four new instructions (the prechk-tagged
instructions). The definition of embedding we have introduced has been
entirely syntactic, but that will not work for replacing non-prechk-tagged
instructions with prechk-tagged versions during embedding since we must be
able to ensure that stronger guarantees are met. Thus, we do not have an
explicit embedding that provides prechk-tagged instructions, though we do
posit the existence of a trivial embedding that would provide prechk-tagged
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instructions. One could, for example, check at every div, call indirect , load ,
and store whether the prechk-tagged version of the instruction is well typed,
and only if it is well typed replace the instruction with the prechk-tagged
version. However, a more sophisticated static analysis could provide more
precise type annotations and therefore potentially allow even more check
eliminations.

4.2.2 Erasing Wasm-prechk to Wasm

We provide an erasure function for Wasm-prechk that transforms Wasm-
prechk programs into Wasm programs by discarding the extra information
from the Wasm-prechk type system and replacing prechk-tagged instructions
with their non-tagged counterparts. Erasure is useful in the type safety
proof because it lets us reuse much of the proof of progress from Wasm (see
subsection 4.3.2). Therefore, we define erasure not just for the surface syntax,
like we did for embedding, but also for typing constructs (such as the module
type context), administrative instructions, and runtime data structures (such
as the store). We show that erasing a well-typed Wasm-prechk program
produces a well-typed Wasm program.

As with the presentation of the embedding, we typeset Wasm-prechk
instructions in a blue sans serif font and Wasm instruction in a bold red
font.

Erasing Surface Syntax As with embedding, we start by defining erasure
with the pinnacle syntactic object: the module. Defining and erasure for
modules relies on the erasure of tables and functions, and therefore instructions
and indexed function types. Keep in mind that the proofs of sound erasure
work over the typing rules for these constructs, so we also define erasure of
module type contexts since they are used in the typing rules for modules.

Erasing a module erases all of the functions f∗ and the table tab?. The
globals glob∗ and optional memory mem? both have the same syntax in
Wasm-prechk as in Wasm.

Definition 5. erasemodule(module) = module
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erasemodule(module f∗ glob∗ tab? mem?) = module erasef (f)∗

glob∗

erasetab(tab)
?

mem?

We show that erasing a well-typed Wasm-prechk module yields a well-
typed Wasm module.

Theorem 1. Sound Module Erasure
If ` module f∗ glob∗ (n, tfin)? mem?,

then `module erasef (f)∗glob∗n?mem?

Proof. Note that the globals glob∗ and memory mem? are not affected by
erasure, and have the same module typing rules in Wasm as in Wasm-prechk.
Thus, we only need to reason about the functions f∗ and table tab?.

Then, by Lemma Sound Function Typing Erasure and Lemma
Sound Table Erasure, we have that `module erasef (f)∗glob∗n?mem?.

Erasing a table definition table n in does nothing, since a table definition
has the same syntax in Wasm-prechk and in Wasm. However, erasing an
imported table declaration table (n, tfin) im must get rid of the indexed
function types tfin. We do not use or care about the exports, since they are
unchanged and only used for linking, so we omit them.

Definition 6. erasetab(tab) = tab

table n in = table n in

table (n, tfin) im = table n im

We show that erasure on well typed Wasm-prechk tables tab is sound
with respect to Wasm’s type system. This proof relies on the definition of
eraseC(C): Definition 10.
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Lemma 1. Sound Table Erasure

If C ` tab,
then eraseC(C) ` erasetab(tab)

Proof. By case analysis on erasetab(tab).

• Case: tab = table n in

We know (Cfunc(i) = tfi)n because it is a premise of Rule Table.

Then, (eraseC(C)func(i) = tfi)n by definition of eraseC(C).

Therefore, eraseC(C) ` table n in because Wasm accepts any module
type context in that rule.

• Case: tab = table (n, tfin) im

Trivially eraseC(C) ` table n im because Wasm accepts any module
type context and imported table.

To erase a function definition f , we erase both the type declaration
ti∗1; l1; φ1 → ti∗2; l2; φ2 and the body e∗. We can also erase an imported
function by erasing the declared type tfi.

Definition 7. erasef (f) = f

erasef (func ti∗1; l1; φ1
→ ti∗2; l2; φ2
local t∗ e∗)

= func erasetfi(ti∗1; l1; φ1 → ti∗2; l2; φ2)
local t∗ erasee∗(e∗)

erasef (func ti∗1; l1; φ1
→ ti∗2; l2; φ2
im)

= func erasetfi(ti∗1; l1; φ1 → ti∗2; l2; φ2) im

We show that erasing a Wasm-prechk function f , that is well typed under
a module type context C, produces a Wasm function erasef (f) that is well
typed under the erased module type context eraseC(C). This is useful not
just for erasing the surface syntax, but also because functions are a part of
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closures which are used at run time (as part of module instances and tables).
The proof relies on Lemma Sound Static Typing Erasure to prove that
the body is still well typed. The case of imported functions is trivial because
an imported function is well typed under absolutely any context and with
any function type, so it is omitted.

Lemma 2. Sound Function Typing Erasure

If
C ` func (t1 a1)

∗; l1; φ1 → (t2 a2); l2; φ2
local t∗ e∗ : ex∗ (t1 a1)∗; l1; φ1 → (t2 a2); l2; φ2

then

eraseC(C) ` erasef (func erasetfi((t1 a1)∗; l1; φ1 → (t2 a2); l2; φ2)
local t∗ erasee∗(e∗))

: ex∗ erasetfi((t1 a1)
∗; l1; φ1 → (t2 a2); l2; φ2)

Proof. We must show that

eraseC(C, local(t∗1 t∗), label((t2 a2); l2; φ2), return((t2 a2); l2; φ2))
` erasee∗(e∗)
: erasetfi((t1 a1)

∗; l1; φ1 → (t2 a2); l2; φ2)

since it is the only premise of typechecking a function definition in Wasm.
We know the following because it is a premise of Rule Func which we

have assumed to hold.

C, local(t∗1 t∗), label((t2 a2); l2; φ2), return((t2 a2); l2; φ2)
` e∗

: (t1 a1)
∗; l1; φ1 → (t2 a2); l2; φ2

Then, by Lemma Sound Static Typing Erasure, we have that

eraseC(C, local(t∗1 t∗), label((t2 a2); l2; φ2), return((t2 a2); l2; φ2))
` erasee∗(e∗)
: erasetfi((t1 a1)

∗; l1; φ1 → (t2 a2); l2; φ2)
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Erasing an indexed type function keeps only the primitive Wasm types (t∗1
and t∗2) from the indexed types representing the stack ((t1 a1)∗ and (t2 a2)

∗),
and discards everything else.

Definition 8. erasetfi(tfi) = tf

erasetfi((t1 a1)
∗; l1; φ1 → (t2 a2)

∗; l2; φ2) = t∗1 → t∗2

Erasing instructions involves erasing the indexed function types for every
instruction that includes it as part of their syntax (blocks and indirect function
calls). We must also remove the prechk tag from prechk-tagged instructions
to turn them into instructions that exist in Wasm.
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Definition 9. erasee∗(e) = e

erasee∗(block tfi e∗ end) = block erasetfi(tfi)
erasee∗(e

∗)

end
erasee∗(loop tfi e∗ end) = loop erasetfi(tfi)

erasee∗(e
∗)

end
erasee∗(if tfi e∗1 e

∗
2 end) = if erasetfi(tfi)

erasee∗(e
∗
1)

erasee∗(e
∗
2)

end
erasee∗(labeln {e∗0} e∗ end) = labeln {erasee∗(e∗0)}

erasee∗(e
∗)

end
erasee∗(localn {i; v∗} e∗ end) = localn {i; v∗}

erasee∗(e
∗)

end
erasee∗(call indirect tfi) = call indirect erasetfi(tfi)

erasee∗(t.divprechk) = t.div
erasee∗(t.call indirectprechk ) = t.call indirect

erasee∗(t.storeprechk tp
? align o) = t.store tp? align o

erasee∗(t.loadprechk (tp_sx)? align o) = t.load (tp_sx)? align o
erasee∗(e) = e, otherwise
erasee∗(e

∗) = erasee∗(e)
∗

Erasing Typing Constructs Here, we prove that erasing a Wasm-prechk
static typing derivation is sound with respect to Wasm’s type system. This
means that erasure on the Wasm-prechk static typing judgment is sound
with respect to Wasm’s type system. Specifically, a Wasm-prechk instruction
sequence e∗, that is well typed under a module type context C, produces a
Wasm instruction sequence e′∗ = erasee∗(e

∗) that is well typed under the
erased module type context C ′ = eraseC(C).
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Lemma 3. Sound Static Typing Erasure

If C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then eraseC(C) ` erasee∗(e∗) : erasetfi(ti∗1; l1; φ1 → ti∗2; l2; φ2)

Proof. We proceed by induction over typing derivations. Most proof cases
are omitted as they are simple, but we provide a few to give an idea of what
the proofs look like. Intuitively, we want to show that erasing the typing
derivation produces a valid Wasm typing derivation.

For most of the cases, the sequence of instructions e∗ contains only a single
instruction e2, so we elide the step of turning erasee∗(e∗) into erasee∗(e2).

We present one Case below, the rest are in the appendix ( B.1).

• Case: C ` t.binop : (t a1) (t a2); l1; φ1
→ (t a3); l1; φ1, (t a3), (= a3 (binop a1 a2))

We want to show that

eraseC(C) ` erasee∗(t.binop)
: erasetfi((t a1) (t a2); l1; φ1

→ (t a3); l1; φ1, (t a3), (= a3 (binop a1 a2)))

By the definition of erasee, we want to show that eraseC(C) ` t.binop :

t t→ t is valid in Wasm.

Trivially, we have eraseC(C) ` t.binop : t t→ t by Rule Wasm-Binop,
since Rule Wasm-Binop works under any module type context.

To erase a module type context, we must erase all of the function types
tfi∗, the table type (n, tfi∗2) if one is present, and the postconditions in the
label stack ((t1 a1)

∗; l1; φ1)∗ and the return stack ((t2 a2)
∗; l2; φ2)?. We erase

postconditions the same way we erase the postconditions of indexed function
types: by keeping only the primitive Wasm types (t∗1 in the case of a label
postcondition). Recall that erasing a table type means discarding the type
information about the functions in the table.
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Definition 10. eraseC(C) = C

eraseC({func tfi∗, global tg∗,
table (n, tfi∗2)

?,

memory m?, local t∗,
label ((t1 a1)∗; l1; φ1)∗,
return ((t2 a2)

∗; l2; φ2)?})

= {func erasetfi(tfi∗),
global tg∗, table n?,
memory m?, local t∗,
label (t∗1)∗, return (t∗2)

?}

Erasing Programs Defining and erasure for programs relies on the erasure
of the store and its various structures, as well as the erasure of instructions
which we have already defined and proven. Remember, the proofs of sound
erasure work over the typing rules for these constructs, so we have to show
sound erasure for all of the various typing rules that Rule Program relies
on.

Now we will show that erasing a well-typed Wasm-prechk program in
reduction form (s; v∗; e∗) is sound with respect to Wasm’s type system.
Intuitively, we accomplish this by showing that erasing typing derivations of
the Rule Program judgment produce valid Wasm typing derivations, like in
Lemma Sound Static Typing Erasure. To do so, we must show sound
erasure for Rule Code, as it is a premise of Rule Program; this is done by
Lemma Sound Code Typing Erasure. Erasing programs involves erasing
many run-time data structures, including the store s and store context S, as
well as modules instances inst∗ in s, and closures cl in modules instances and
the optional table. Erasing the store is shown to be safe by Lemma Sound

Store Erasure.

Theorem 2. Sound Program Typing Erasure
If `i s; v∗ e∗ : (t2 a2)∗; l2; φ2,

then `i erases(s); v∗; erasee∗(e∗) : t∗2

Proof. We must show that ` erases(s) : S for some Wasm store context S,
and that eraseS(S); `i erasee∗(e∗) : erasetfi(ti∗1; l1; φ1 → ti∗2; l2; φ2).

We have ` s : S′, where S′ is a Wasm-prechk store context, because it is
a premise of Rule Program which we have assumed to hold.
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Then, ` erases(s) : eraseS(S′) is valid by Lemma Sound Store Era-

sure. Since eraseS(S′) is a Wasm store context, we have that ` erase(s) : §
for some Wasm store context S where S = eraseS(S

′).
We also have S; `i v∗ e∗ : ε; l1; φ1 → (t2 a2)

∗; l2; φ2 as a premise of Rule
Program.

In which case we have eraseS(S); `i erasee∗(e∗) : erasetfi(ti∗1; l1; φ1 →
ti∗2; l2; φ2) by Lemma Sound Code Typing Erasure.

The sound erasure of Rule Code is used in the sound erasure of programs.
Thus, we only prove the case when the optional return stack ((t2 a2)

∗; l2; φ2)?

is empty because we are only proving this to use later in Rule Program,
which never uses the return stack. Lemma Sound Code Typing Erasure

relies on Lemma Sound Admin Typing Erasure, which shows a similar
property, but for the administrative typing judgment S; C ` e∗ : tfi.

Lemma 4. Sound Code Typing Erasure

If S; `i v∗ e∗ : ε; l1; φ1 → (t2 a2)
∗; l2; φ2,

then eraseS(S); `i erasee∗(e∗) : erasetfi(ti∗1; l1; φ1 → ti∗2; l2; φ2)

Proof. We must show that (` v : tv)
∗ and

eraseS(S); eraseC(Sinst(i), local t∗v
` erasee∗(e∗)
: erasetfi(ε; l1; φ1 → (t2 a2)

n; l2; φ2)

We have (` v : tv)
∗ trivially since it is a premise of Rule Code which we

have assumed to hold.
We also have S; Sinst(i), local t∗v ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2 because it

too is a premise of Rule Code.
Then, by Lemma Sound Admin Typing Erasure, we have that

eraseS(S); eraseC(Sinst(i), local t∗v
` erasee∗(e∗)
: erasetfi(ε; l1; φ1 → (t2 a2)

n; l2; φ2)
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Lemma Sound Admin Typing Erasure builds on Lemma Sound

Static Typing Erasure by adding the store context S and typing rules
for administrative instructions. It is necessary to add these rules and extra
information because they are used for typechecking programs. Note that
while we add S to the judgment used in Lemma Sound Static Typing

Erasure to get S; C ` e∗; tfi, none of the rules previously proven reference
S in any way, they simply match any store context.

Lemma 5. Sound Admin Typing Erasure

If S; C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then eraseS(S); eraseC(C) ` erasee∗(e∗) : erasetfi(ti∗1; l1; φ1 → ti∗2; l2; φ2)

Proof. We proceed by induction over typing rules. In addition to the prior
cases from Lemma Sound Static Typing Erasure, which trivially still
hold since the value of S does not matter to those rules, we add proves for a
few administrative typing rules, which may refer to S. Again, several proof
cases are omitted as they are simple.

We present one Case below, the rest are in the appendix ( B.1).

• S; C ` labeln{e∗0} e∗ end : ε; l1; φ1 → (t2 a2)
n; l2; φ2

We must show that

eraseS(S); eraseC(C)` erasee∗(e∗0)
: erasetfi((t3 a3)

∗; l3; φ3 → (t2 a2)
n; l2; φ2)

and

eraseS(S); eraseC(C, label((t3 a3)∗; l3; φ3))
` erasee∗(e∗)
: erasetfi(ε; l1; φ1 → (t3 a3)

∗; l3; φ3)

as they are the premises of typechecking a label block in Wasm.

We have that S; C ` e∗0 : (t3 a3)∗; l3; φ3 → (t2 a2)
n; l2; φ2 since it is a

premise of Rule Label which we have assumed to hold.
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Then, by the inductive hypothesis for the stored instructions e∗0 being
well typed, we have that

eraseS(S); eraseC(C)` erasee∗(e∗0)
: erasetfi((t3 a3)

∗; l3; φ3 → (t2 a2)
∗; l2; φ2)

S; C, label((t3 a3)∗; l3; φ3)) ` e∗ : ε; l1; φ1 → (t3 a3)
∗; l3; φ3, because it

is a premise of Rule Label which we have assumed to hold.

By the inductive hypothesis for the body e∗ being well typed, we have
that

eraseS(S); eraseC(C, label((t3 a3)∗; l3; φ3))
` erasee∗(e∗)
: erasetfi(ε; l1; φ1 → (t3 a3)

∗; l3; φ3)

We must prove safe erasure about the store s for use in Theorem 2. First
though, we must define erasure for s. Erasing the store erases all of the
modules instances and closures in the tables inside the store. Note that
in the definition we have expanded the definition of a table instance to
({inst i, func f}∗)∗ for extra clarity.

Definition 11. erases(s) = s

erases({inst inst∗,
tab ({inst i, func f}∗)∗,
mem meminst∗})

= {inst eraseinst(inst)∗,
tab ({inst i, func erasef (f)}∗)∗,
mem meminst∗}

Lemma Sound Store Erasure proves that erasing a well-typed Wasm-
prechk store results in a well-typed Wasm store.

Lemma 6. Sound Store Erasure

If ` s : S, then ` erases(s) : eraseS(S)

64



Proof. Note that
s = {inst inst∗, tab ({inst i, func f}∗)∗, mem meminst∗} and
S = {inst C∗, tab (n, tfi∗)∗, mem m∗}
Then,

eraseS(S) = {func erasetfi(tfi)∗, global tg∗, table n, memory n?, ...}

by the definition of eraseC .
Then, we must prove the following properties, as they are the premises of

` erases(s) : eraseS(S):

1. (eraseS(S) ` eraseinst(inst) : eraseC(C))∗

We have that (S ` inst : C)∗, because it is a premise of Rule Store

that we have assumed to hold.

Then, we have eraseS(S) ` eraseinst(inst) : eraseC(C))∗ by Lemma
Sound Instance Typing Erasure.

2. ((eraseS(S) ` {inst i, func erasef (f)} : erasetfi(tfi))∗)∗

We have ((S ` cl : tfi)∗)∗), because it is a premise of Rule Store that
we have assumed to hold.

Then, ((eraseS(S) ` {inst i, func erasef (f)} : erasetfi(tfi))
∗)∗ by

Lemma Sound Closure Typing Erasure

3. (n ≤ |{inst i, func erasef (f)}|)∗

We have that (n ≤ |{inst i, func f}|)∗, because it is a premise of Rule
Store that we have assumed to hold.

Because the number of closures is not affected by erasure, we can then
say that (n ≤ |{inst i, func erasef (f)}|)∗

4. (m ≤ |b∗|)∗

Trivially, we have that (m ≤ |b∗|)∗, because it is a premise of Rule
Store that we have assumed to hold.

65



Erasing a module instance erases all of the functions f in the closures
(which we have expanded inline to {inst i, func f}) within the module in-
stance.

Definition 12. eraseinst(inst) = inst

eraseinst({func {inst i, func f}∗,
global v∗, table i?,
memory j?})

= {func {inst i, func erasef (f)}∗,
global v∗, table i?,
memory j?}

We now prove that if a Wasm-prechk module instance inst has type C
under the store context S, then the erased Wasm instance eraseinst(inst) will
have the erased type erasec(C) under the erased store context eraseS(S). To
do this, we rely on the above lemmas to safely erase index information from
function declarations and table declarations (globals and memory have the
same type information in both Wasm-prechk and Wasm). This will be useful
for proving that a well-typed Wasm-prechk store s erases to a well-typed
Wasm store erases(s) since stores contain many instances. To do this, we rely
on the above lemmas to safely erase index type information about closures
and tables (globals and memory have the same type information in both
Wasm-prechk and Wasm).

Lemma 7. Sound Instance Typing Erasure If S ` inst : C, then
eraseS(S) ` eraseinst(inst) : eraseC(C)

Proof. Note that
S = {inst C∗, tab (n, tfi∗)∗, mem m∗}

inst = {func {inst i, func f}∗, global v∗, table i?,memory j?}
C = {func tfi∗, global tg∗, table (n, tfi2)

?, memory n?, . . . }
Then,

eraseC(C) = {func erasetfi(tfi)∗, global tg∗, table n, memory n?, ...}

by the definition of eraseC .
Then, we must prove the following properties, as they are the premises of

eraseS(S) ` eraseinst(inst) : eraseC(C):
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1. eraseS(S) ` {inst i, func f} : erasetfi(tfi))∗

We have that S ` {inst i, func f} : tfi, because it is a premise of Rule
Instance that we have assumed to hold.

Then, we have eraseS(S) ` {inst i, func f} : erasetfi(tfi))∗ by Lemma
Sound Closure Typing Erasure.

2. (` v : tg)∗

Trivially, this is a premise of S ` inst : C and is not affected by erasure,
so therefore it holds.

3. eraseS(S)tab(i) = n

eraseS(S)tab(i) = n by definition of eraseS .

Therefore, eraseS(S)tab(i) = n.

4. eraseS(S)mem(i) = n?

Trivially, this is a premise of S ` inst : C and is not affected by erasure,
so therefore it holds.

We erase store contexts by erasing all of the module type instances C∗

and table types (n, tfi∗)∗ within.

Definition 13. eraseS(S) = S

eraseS({inst C∗,
tab (n, tfi∗)∗, mem m∗})

= {inst erasec(C)∗,
tab n∗,mem m∗}

Finally, we prove that if a Wasm-prechk closure is well typed than the
erased closure is well typed.

Lemma 8. Sound Closure Typing Erasure

If S ` {inst i, func f}∗ : tfi,
then eraseS(S) ` {inst i, func erasef (f)}∗ : erasetfi(tfi)
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Proof. We must show that eraseS(S)inst(i) ` erasef (f) : erasetfi(tfi).
We have Sinst(i) ` f : tfi since it is a premise of Rule Closure which

we have assumed to hold.
Then, eraseS(S)inst(i) ` erasef (f) : erasetfi(tfi) by Lemma Sound

Function Typing Erasure.

4.3 Type Safety

Type safety is the property that a well-typed program either reduces to another
well-typed program, is an intentionally irreducible expression (in the case of
Wasm-prechk, a sequence of values), or throws an error (trap, in the case of
Wasm-prechk). Thus, type safety assures us that the behavior of a well-typed
program is always well defined. The type safety of Wasm guarantees a number
of important properties, including memory safety. Proving the type safety of
Wasm-prechk gives us a high degree of assurance that it has the same level
of safety as Wasm.

4.3.1 Subject Reduction

Subject reduction, also sometimes referred to as “type preservation”, ensures
that if a program has a specific type, then the program will have the same
type after a reduction step. Before we present the subject reduction proof,
we first introduce a number of useful lemmas.

Lemma Inversion tells us what typing rules can apply to a given Wasm-
prechk instruction sequence, and therefore lets us reason about what the
type of that sequence looks like. For example, if we have a typing derivation,
D for S; C ` t.const c : ti∗1; l1; φ1 → ti∗2; l2; φ2, then we know that D must
have at its base Rule Const, because that is the only way we have of typing
constant instructions. D can also include any number of applications of Rule
Subtyping and Rule Stack-Poly, because they can be applied to any
well-typed sequence of instructions.

We do not know the exact types of instructions just from them being well
typed, since the typing rules are non-deterministic. However, we can reason

68



about the general shape of the types given the base type on top of which
Rule Subtyping and Rule Stack-Poly get applied. Additionally, Rule
Composition can be used with the empty sequence and any well-typed single
instruction. The addition of Rule Composition with the empty sequence is
trivial because the postcondition of an empty instruction sequence must be
immediately reachable from the precondition. Therefore the stack and local
index store must be the same in both the precondition and postcondition
of the empty sequence in the above case, and the postcondition index type
context must be reachable from the precondition index type context.

Most cases of Lemma Inversion are omitted. The complete definition
can be found in the appendix (section B.2).

Lemma 9. Inversion

• If S; C ` t.const c : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗2 = ti∗1 (t a), l1 = l2,
and φ1, (t a), (= a (t c)) =⇒ φ2.

• If S; C ` t.binop : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗ (t a1) (t a2),
ti∗2 = ti∗ (t a3), l1 = l2, and φ1, (t a3), (= a3 (binop a1 a2)) =⇒ φ2.

• If S; C ` block (ti∗3; l3; φ3 → tim4 ; l4; φ4)
e∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2

then ti∗1 = ti∗0 ti
∗
3, ti∗2 = ti∗0 ti

m
4 , l1 = l3, l2 = l4, φ1 =⇒ φ3, φ4 =⇒ φ2,

and S; C, label(tim4 ; l4; φ4) ` e∗ : ti∗3; l3; φ3 → tim4 ; l4; φ4.

• If S; C ` br i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗3 ti
∗, Clabel(i) =

ti∗; l1; φ3, and φ1 =⇒ φ3.

• If S; C ` call indirect ti∗3; l3; φ3 → ti∗4; l4; φ4 : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then ti∗1 = ti∗0 ti

∗
3, ti∗2 = ti∗0 ti

∗
4, l2 = l1, φ1 =⇒ φ3, and φ3, φ4 =⇒ φ2.

• If S; C ` e∗1 e2 : ti∗1; l1; φ1 → ti∗3; l3; φ3, then S; C ` e∗1 : ti∗1; l1; φ1 →
ti∗2; l2; φ2, and S; C ` e2 : ti∗2; l2; φ2 → ti∗3; l3; φ3.

Proof. Proof omitted, but follows from induction over typing derivations.
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The next lemma, Lemma Lift-Consts, shows that if a sequence of
constants, vn, has a certain postcondition within a nested context, Lj , then
it has the same postcondition outside of that context with the precondition
of the context. We use this rule for branching and returning when we have
some values vn inside a reduction context Lj .

The intuition for the proof is that the nature of nested contexts are such
that all of the instructions preceding vn are values and therefore only add
fresh index variables which are constrained to be equal to constants. Thus,
we can pull vn outside of the nested context and know that we can still get
to the postcondition because we can add back in, using implication, all of the
fresh index variables that we would have added from the values preceding.

Lemma 10. Lift-Consts

If S; C ` vn : ε; l3; φ3 → tin; l3; φ4 is a subderivation of S; C ` Lj [vn] :
s1; l1; φ1 → s2; l2; φ2,
then S; C ` vn : ε; l1; φ1 → tin; l3; φ4 after reduction

Proof. By induction on j.

• Base case: j = 0

We want to show that S; C ` vn : ε; l1; φ1 → tin; l3; φ4 after reduction.

We have S; C ` v∗0 vn e∗ end : s1; l1; φ1 → s2; l2; φ2 for some v∗0 and e∗

by expanding L0.

Then, S; C ` (t.const c)∗ : ε; l1; φ0 → (t a)∗; l1; φ0, (t a)∗, (eq a (t c))

where v∗0 = (t.const c)∗ and φ1 =⇒ φ0 by Lemma Inversion on Rule
Const.

Further, S; C ` vn : ε; l3; φ0, (t a)∗, (eq a (t c))→ (t a)∗ tin; l3; φ4, by
Lemma Inversion on Rule Const.

We now have all the information we need to show what we want to
show.

We know φ0, (t a)
∗, (eq a (t c)) =⇒ φ3.
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Recall that S; C ` vn : ε; l3; φ0, (t a)∗, (eq a (t c)) → (t a)∗ tin; l3; φ4,
then

S; C ` vn : (t a)∗; l3; φ0, (t a)∗, (eq a (t c))→ (t a)∗, (t a)∗ tin; l3; φ4

by Rule Subtyping.

If v∗0 are not executed (i.e., they are not part of the reduced expression),
then a∗ are fresh, so φ0 =⇒ φ0, (t a)

∗, (eq a (t c)), and therefore
S; C ` vn : ε; l1; φ0 → tin; l1; φ4 by Rule Subtyping and since l1 = l3.

Then, S; C ` vn : ε; l1; φ1 → tin; l1; φ4 by subtyping.

• Induction case: j = k + 1

We want to show that S; C ` vn : ε; l1; φ1 → tin; l3; φ4 after reduction.

We have S; C ` labeln{e∗0} v∗0 Lk[vn] e∗1 end : s1; l1; φ1 → s2; l2; φ2 for
some v∗0, e∗0, and e∗1 by expanding Lj .

Then, S; C ` (t.const c)∗ : ε; l1; φ0 → (t a)∗; l1; φ0, (t a)∗, (eq a (t c))

where v∗0 = (t.const c)∗ and φ1 =⇒ φ0 by Lemma Inversion on Rule
Const.

Further, S; C ` Lk[vn] : (t a)∗; l1; φ0, (t a)∗, (eq a (t c)) → s5; l5; φ5
for some s5; l5; φ5 by Lemma Inversion on Rule Label.

Now we can prove want we wanted to show.

We know S; C ` vn : ε; l1; φ0, (t a)∗, (eq a (t c)) → tin; l1; φ4 by the
inductive hypothesis.

If v∗0 are not executed (i.e., after one reduction step), a∗ are fresh,
so φ0 =⇒ (t a)∗, (eq a (t c)), and therefore S; C ` vn : ε; l1; φ0 →
(t a)∗ tin; l3; φ5 by Rule Subtyping and since l1 = l3.

Then, S; C ` vn : ε; l1; φ1 → (t a)∗ tin; l3; φ3 by Rule Subtyping.

Theorem 3. Subject Reduction
If `i s; v∗; e∗ : ti∗; l; φ and s; v∗; e∗ ↪→i s

′; v′∗; e′∗ then `i s′; v′∗; e′∗ :

ti∗; l; φ.
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Proof. We have ` s : S and S; ε `i v∗; e∗ : ti∗; l; φ because they are premises
of Rule Program.

Then, by Lemma Subject Reduction for Code, we have that ` s′ : S
and S; ε `i v′∗; e′∗ : ti∗; l; φ.

Thus, ` s′; v′∗; e′∗ : ti∗; l; φ by Rule Program.

Lemma Subject Reduction for Code proves subject reduction of the
Rule Code typing rule. That is, it proves that if a sequence of instructions
e∗ and local variables v∗ is typed by the Rule Code typing rule, then after
a step of reduction the reduced instructions e′∗ and locals v′∗ will have the
same postcondition ti∗; l; φ. Further, if reduction modifies the store s, than
the modified store s′ will have the same type S.

In many reduction cases, there are values on the stack that get consumed
by reducing an instruction. This creates a bit of a problem because those
values represent intermediate state, and as such will introduce new index
variables to the index type context in their postcondition. After reduction,
the intermediate state is no longer present, so we lose those index variables
from the postconditions.

For example, (t.const c) drop could be typed as ε; l; φ→ ε; l; φ, (t a), (=
a (t c)) where a represent the value on the stack t.const c. This would reduce
to ε, and then we lose the information about a in the postcondition index
type system. However, this can be solved using implication, as we know a is
fresh from the Rule Const, and therefore we allow saying φ =⇒ φ, (t a), (=

a (t c)) after reduction. This pattern will appear in any case of the proof
that consumes values.

Lemma 11. Subject Reduction for Code

If S; (ti; l; φ)? ` v∗; e∗ : ti; l; φ, ` s : S, (we omit this on rules that do not
use the store) and s; v∗; e∗ ↪→ s′; v′∗; e′∗, then S; (ti; l; φ)? ` v′∗; e′∗ : ti; l; φ,
and ` s′ : S (we omit this on rules that do not change the store)

Proof. By induction on reduction.
Most proof cases are omitted, the complete proof can be found in the

appendix ( B.2).
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• Case: S; (ti∗; l; φ)?`i vj1 (t.const c) vk2 ; (t.const c′) (set local j)
: ti∗; l; φ

∧ vj1 (t.const c) vk2 ; (t.const c′) set local j ↪→ vj1 (t.const c′) vk2 ; ε

We want to show that

S; (ti∗; l; φ)? `i vj1 (t.const c′) vk2 ; (t.const c′) (set local j) : ti∗; l; φ

We know ` (t.const c) : (t a); (◦, (t a), (= a (t c))), S; Sinst(i) `
(t.const c′) (set local j) : ε : l1; φ

j
1, (◦, (t a), (= a (t c))), φk2 → ti∗; l; φ,

and l1(j) = (t a), and Clocal(j) = t because they are premises of Rule
Code that we have assumed to hold.

By Lemma Inversion on Rule Composition, S; Sinst(i) ` (t.const c′) :
ε; l1; φ

j
1, (◦, (t a), (= a (t c))), φk2 → ti∗3; l3; φ3, S; Sinst(i) ` set local j :

ti∗3; l3; φ3 → ti∗; l; φ.

Recall that t = Clocal(j), then by Lemma Inversion on Rule Set-

Local we have ti∗3 = ti∗ (t a′), l = l3[j := (t a′)], and φ3 =⇒ φ.

Then, by Lemma Inversion on Rule Const, ti∗ = ε, l1 = l3, and
φj1, (◦, (t a), (= a (t c))), φk2, (t a

′), (= a′ (t c′)) =⇒ φ3.

Now we have all the information we need to derive the same type for
(t.const c′)

We have S; Sinst(i) ` ε : ε; l; φ→ ε; l; φ by Rule Empty.

Then, S; Sinst(i) ` ε : ε; l; φj1, (◦, (t a), (= a (t c))), φk2, (t a
′), (=

a′ (t c′))→ ε; l; φ by Rule Subtyping.

Since a is fresh, φj1, φ
k
2, (t a

′), (= a′ (t c′)) =⇒ φj1, (◦, (t a), (=
a (t c))), φk2, (t a

′), (= a′ (t c′)).

Then, S; Sinst(i) ` ε : ε; l; φj1, φk2, (t a′), (= a′ (t c′)) → ε; l; φ by Rule
Subtyping.

Further, ` (t.const c′) : (t a′); ◦, (t a′), (= a′ (t c′)) by Rule Admin-

Const.

Therefore, S; (ti∗; l; φ)? `i vj1 (t.const c′) vk2 ; ε : ti∗; l; φ by Rule Code.
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• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) (t.load align o) : ti∗; l; φ
∧ s; (i32.const k) (t.load align o) ↪→i t.const constt(b∗),

where smem(i, k + o, |t|) = b∗

We want to show that S; (ti∗; l; φ)? `i v∗; (t.const constt(b∗)) : ti∗; l; φ

We know (` v : tiv; φv)∗ and S; C ` (i32.const k) (t.load align o) :

ε; ti∗v; φ
∗
v → ti∗; l; φ because they are premises of Rule Code which we

have assumed to hold.

Then, by Lemma Inversion on Rule Composition, Rule Const,
Rule Mem-Load, we know ti∗ = (t a), ti∗v = l, and φ∗v, (t a) =⇒ φ.

We have

S; Sinst(i)` t.const constt(b∗)
: ε; ti∗v; φ

∗
v → (t a); l; φ∗v, (t a), (= a (t c))

by Rule Const.

Then, S; Sinst(i) ` (t.const constt(b∗)) : ε; ti∗v; φ∗v → (t a); l; φ by Rule
Subtyping.

Recall (` v : tiv; φv)∗, then S; (ti∗; l; φ)? `i v∗; t.const constt(b∗) :

ti∗; l; φ by Rule Code.

• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) (t.const c) (t.store align o) :

ti∗; l; φ
∧ s; (i32.const k) (t.const c) (t.store align o) ↪→i s

′; ε, where s′ =

s with mem(i, k + o, |t|) = bits|t|t (c)

We know (` v : tiv; φv)∗ and

S; Sinst(i)` (i32.const k) (t.const c) (t.store align o)
: ε; ti∗v; φ

∗
v → ti∗; l; φ

because they are premises of Rule Code which we have assumed to
hold.

Then, by Lemma Inversion on Rule Composition, Rule Const,
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and Rule Mem-Store, we have ti∗ = ε, tiv = l, and φ∗v, (i32 a1), (=
a1 (i32 k)), (t a2), (= a2 (t c)) =⇒ φ.

Since a1 and a2 are fresh, φ∗v =⇒ φ.

We have S; Sinst(i) ` ε : ε; l; φ∗v → ε; l; φ∗v by Rule Empty.

Then, S; Sinst(i) ` ε : ε; tiv; φ∗v → ε; l; φ by Rule Subtyping.

Recall that (` v : tiv; φv)∗. Therefore, S; (ti∗; l; φ)? `i v∗; ε : ti∗; l; φ
by Rule Code.

Now we must ensure that the new store s′ is well typed: ` s′ : S.

Recall ` s : S, then Smem(i) = n and smem(i) = b∗ where n ≤ |b∗|
because it’s a premise of Rule Store.

Since s′ = s with mem(i, k + o, |t|) = bits|t|t (c), then |s′textmem(i) |=
|stextmem(i)|, and therefore n ≤ |s′textmem(i)|, so s′ : S by Rule
Store.

• Otherwise: we have (` (t.const c) : (t a); (◦, (t a), (= a (t c))))∗, and
S, Sinst(i) ` e∗ : ε; (t a)∗; (◦, (t a), (= a (t c)))∗ → ti; l; φ

By Lemma Subject Reduction Without Effects, we have
S, Sinst(i) ` e′∗ : ε; (t a)∗; (◦, (t a), (= a (t c)))∗ → ti; l; φ.

Then, S; (ti∗; l; φ)? ` v∗; e′∗ : ti; l; φ

Lemma Subject Reduction Without Effects is used in the subject
reduction proof to separate out cases that do not modify state since it
simplifies the reasoning. Further, by separating these cases, we can abstract
out the common pattern of building back up to Rule Program from the
instruction typing judgment S; C ` tfi. To avoid needing to do mutual
inversion, we do not include the local block case here. We do not include any
instructions here that modify state, such as set local or storeprechk , meaning
that this is non-exhaustive. That is on purpose because we are using this
lemma to handle simple cases, and more complex cases are handled separately.
We show that if a sequence of instructions e∗ reduces to another sequence of
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instructions e′∗, and the reduction does not modify the program state (the
store s or the locals v∗), then e′∗ has the same precondition ti∗1; l1; φ1 and
postcondition ti∗2; l2; φ2 as e∗.

Lemma 12. Subject Reduction Without Effects

If S; C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2,
` s : S (note: we omit this for cases which do not use s),
and s; v∗; e∗ ↪→ s; v∗; e′∗,
then S; C ` e′∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

Proof. By case analysis on the reduction rules.
Most proof cases are omitted, the complete proof can be found in the

appendix ( B.2).

• S; C ` L0[trap] : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ L0[trap] ↪→ trap

This case is trivial since trap accepts any precondition and postcondition.
Thus, S; C ` trap : ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule Trap.

• S; C ` (t.const c1) (t.const c2) t.binop : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c1) (t.const c2) t.binop ↪→ t.const c where c = binop(c1, c2)

We want to show that S; C ` t.const c : ti∗1; l1; φ1 → ti∗2; l2; φ2.

We begin by reasoning about the type of the original instructions
(t.const c1) (t.const c2) t.binop

By Lemma Inversion on Rule Composition, Rule Const, and Rule
Binop, we know that ti∗2 = ti∗1(t a3), l2 = l1, and that

φ1, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2)),

(t a3), (= a3 (binop a1 a2))

=⇒ φ2

Now we will show that t.const c has the appropriate type.

By const, S; C ` t.const c : ε; l1; φ1
→ (t a3); l1; φ1, (t a3), (= a3 (t c))

.
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Because c = binopt(c1, c2), then by =⇒ ,

φ1, (t a), (= a (t c)) =⇒ φ1, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2)),

(t a3), (= a3 (binop a1a2))

Therefore, S; C ` (t.const c) : ti∗1; l1; φ1 → ti∗1 (t a3); l1; φ2, by Rule
Stack-Poly and Rule Subtyping.

• C ` (t.const c1) (t.const c2) t.binop : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c1) (t.const c2) t.binop ↪→ trap

This case is trivial since trap accepts any precondition and postcondition.
Thus, S; C ` trap : ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule Trap.

• Case: S; C ` (t.const c1) (t.const c2) (i32.const 0) select
: ti∗1; l1; φ1 → ti∗2; l2; φ2

∧ (t.const c1) (t.const c2) (i32.const 0) select ↪→ (t.const c2)

We want to show that S; C ` (t.const c2) : ti∗1; l1; φ1 → ti∗2; l2; φ2.

First, we reason about what the original type must look like.

By Lemma Inversion on Rule Composition, Rule Const, and Rule
Select, we know that ti∗2 = ti∗1 (a3 ), l2 = l1, and

φ1, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2)),

(i32 a), (= a (i32 0)),

(t a3), (if (= a (i32 0)) (= a3 a2) (= a3 a1))

=⇒ φ2

Now we show that (t.const c2) has the appropriate type.

By Rule Const,
C ` (t.const c2) : ε; l1; φ1

→ (t a3); l1; φ1, (t a3), (= a3 (t c2))
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Then, S; C ` (t.const c2) : ti∗1; l1; φ1 → ti∗1 (t a3); l1; φ1, (t a3), (=
a3 (t c2)) by Rule Stack-Poly.

By =⇒ , we have

φ1, (t a3), (= a3 (t c2)) =⇒ φ1, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2)),

(i32 a), (= a (i32 0)),

(t a3), (if (= a (i32 0))

(= a3 a2)

(= a3 a1))

Therefore, S; C ` (t.const c2) : ti∗1; l1; φ1 → ti∗2 (t a3); l1; φ2 by sub −
typing

• Case: S; C ` (t.const c)n block (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗ end :

ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c)n block (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗ end
↪→ labelm{ε} (t.const c)n e∗ end

We want to show that labelm{ε} (t.const c)n e∗ end : ti∗1; l1; φ1 →
ti∗2; l2; φ2.

First, we reason about ti∗1; l1; φ1 → ti∗2; l2; φ2.

We know S; C` block (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗ end
: ti∗1 (t a)

n; l1; φ1, (t a)n, (= a (t c))n → ti∗2; l2; φ2
by Lemma Inversion on Rule Composition and Rule Const.

By Lemma Inversion on Rule Block, l1 = l3 and l2 = l4. We will
use l1, l2 in place of l3, l4, respectively, for the remainder of the case.

Then, S; C, label(tm4 ; l2; φ4) ` e∗ : (t a)n; l1; φ3 → tim4 ; l2; φ4 because
it is a premise of Rule Block which we have already assumed to hold.

Also, (t a)n = tin3 , ti∗2 = ti∗1 ti
m
4 , φ1, (t a)n, (= a (t c))n =⇒ φ3, and

φ4 =⇒ φ2 by Lemma Inversion on Rule Block.

Now we have all the information we need to show that
labelm{ε} (t.const c)n e∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2.
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Remember that Rule Label uses the types of both the body
(t.const c)n e∗ and the stored instructions ε.

First, we show the type of the body.

We have

S; C, label(tm4 ; l2; φ4) ` (t.const c)n : ε; l1; φ1
→ (t a)n; l1; φ1, (t a)n, (= a (t c))n

by Rule Const.

Then, since φ1, (t a)n, (= a (t c))n =⇒ φ3, we have

S; C, label(tn3 ; l1; φ3) ` (t.const c)n : ε; l1; φ1 → (t a)n; l1; φ3

by Rule Subtyping.

Recall we have S; C, label(tm4 ; l2; φ4) ` e∗ : (t a)n; l1; φ3 → tim4 ; l2; φ4.

Then S; C, label(tm4 ; l2; φ4) ` (t.const c)n e∗ : ε; l1; φ1 → tim4 ; l2; φ4 by
Rule Composition.

We have the type we want from the body. Now we get the type we
want of the stored instructions. We already have the postcondition we
want, tm4 ; l2; φ4, in the label stack, so we want the stored instruction
to just pass the information through. Since the stored instructions is ε,
this is simple to show: we have S; C ` ε : tim2 ; l2; φ4 → tim2 ; l2; φ4 by
Rule Empty and Rule Stack-Poly.

Therefore, C ` labelm{ε} (t.const c)n e∗ end : ε; l1; φ1 → tim2 ; l2; φ4 by
label.

Finally, since φ4 =⇒ φ2, S; C ` labelm{ε} (t.const c)n e∗ end :

ti∗1; l1; φ1 → ti∗1 ti
m
4 ; l2; φ2 by Rule Stack-Poly and Rule Subtyping.

• Case: S; C ` labeln{e∗} Lj [(t.const c)n (br j)] end : ti∗1; l1; φ1 →
ti∗2; l2; φ2
∧ labeln{e∗} Lj [(t.const c)n (br j)] ↪→ (t.const c)n e∗

We want to show that vn e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2.
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Intuitively, this proof works because the premise of Rule Br assumes
that Clabel(i) is the precondition (tin1 ; l3; φ5, as we will soon see) of the
stored instructions e∗ in the i + 1th label, and the postcondition of
the label block is immediately reachable from the postcondition of e∗.
Meanwhile, that assumptions is ensured by Rule Label, which ensures
that e∗ has the same precondition as the i+1th branch postcondition on
the label stack and the same postcondition as the label block instruction.

By Lemma Inversion on Rule Label, ti∗2 = ti∗1 ti
∗
4 for some ti∗4.

Also, S; C, label(tin1 ; l3; φ5)j ` (t.const c)n (br j) : ε; l3; φ3 → ti∗∅; l∅; φ∅
for some l3 and φ3, where φ5 = φ3, (t a)

n, (= a (t c))n, by Lemma
Inversion on Rule Label and Rule Br.

Then, S; C, label(tin1 ; l3; φ5)j ` (br j) : tin1 ; l3; φ5 → ti∗∅; l∅; φ∅, by
Lemma Inversion on Rule Composition and Rule Const.

Then, S; C, label(tin1 ; l3; φ5)j ` (t.const c)n : ε; l3; φ3 → tin1 ; l3; φ5
since it is a premise of composition which we have assumed to hold.

Further, S; C ` e∗ : tin1 ; l3; φ5 → ti∗2; l2; φ4 since it is a premise of Rule
Label which we have assumed to hold, and φ4 =⇒ φ2 by Lemma
Inversion on Rule Label.

Then, S; C ` (t.const c)n e∗ : ε; l1; φ1 → ti∗2; l2; φ4 by Lemma Lift-

Consts and Rule Composition.

Finally, C ` (t.const c)n e∗ : ti∗1; l1; φ1 → ti∗1 ti
∗
4; l2; φ2 by Rule Stack-

Poly and Rule Subtyping.

• Case: S; C ` (i32.const j) call indirect ti∗3; l3; φ3 → ti∗4; l4; φ4
: ti∗1; l1; φ1 → ti∗2; l2; φ2

∧ s; (i32.const j) call indirect ti∗3; l3; φ3 → ti∗4; l4; φ4 ↪→i call stab(i, j)

where stab(i, j)code = (func tfi0 local t∗ e∗) and tfi0 <: ti
∗
3; l3; φ3 →

ti∗4; l4; φ4

We want to show that call stab(i, j) : ti
∗
1; l1; φ1 → ti∗2; l2; φ2.

By Lemma Inversion on Rule Composition, Rule Const, and Rule
Call-Indirect, we know that ti∗1 = ti∗0 ti

∗
3 and ti∗2 = ti∗0 ti

∗
4 for some
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ti∗0, l1 = l)2, φ1 =⇒ φ3, and φ4 =⇒ φ2.

We know S ` stab(i, j) : tfi0 since it is a premise of ` s : S which we
have assumed to hold.

Then, S; C ` call stab(i, j) : tfi0 by Rule Call-Cl.

S; C ` call stab(i, j) : ti
∗
3; l1; φ3 → ti∗4; l2; φ4 by Rule Subtyping.

Therefore, S; C ` call stab(i, j) : ti
∗
0 ti
∗
1; l1; φ1 → ti∗0 ti

∗
1; l2; φ2 by Rule

Stack-Poly.

4.3.2 Progress

Progress ensures that if a program is well typed then it either: entirely consists
of values, traps, or is reducible (i.e., there exists another program that it
reduces to). Proving progress for Wasm-prechk is the key metatheoretic
property that ensures that our claim that Wasm-prechk is as safe as Wasm is
valid. This is because it connects the static guarantees of the type system
to the dynamic assumptions of prechk-tagged instructions. By proving that
well-typed prechk-tagged instructions will always be reducible, we prove that
the static guarantees are sufficient to ensure that they will not trap and
therefore the dynamic checks are unnecessary.

Since most Wasm-prechk instructions have the same semantics as in
Wasm, and every Wasm-prechk type includes all the information of a Wasm
type, we can reuse the Wasm proof for those instructions by using the erasure
function from Section 4.2.2. The intuition for this is that the Wasm-prechk
indexed type system provides strictly more information than the Wasm type
system. However, for Wasm-prechk instructions that do not have the same
semantics as in Wasm, specifically prechk-tagged instructions, we still must
prove those cases.

Theorem 4. Progress If `i s; v∗; e∗ : ti∗; l; φ then either e∗ = v′∗, e∗ = trap,
or s; v∗; e∗ ↪→i s

′; v′∗; e′∗.

Proof. We proceed by induction on `i s; v∗; e∗ : ti∗; l; φ.
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Because `i s; v∗; e∗ : ti∗; l; φ, we know that ` s : S for some S, and that
S; ε `i v∗; e∗ : ti∗; l; φ because they are premises of Rule Program which
we have assumed to hold.

Then we know that (` v : (tv av); φv)∗ and S; Sinst(i), local t∗v ` e∗ :

ε; (tv av)∗; φ∗v → ti∗; l; φ because they are premises of Rule Code which we
have assumed to hold.

• Case: `i s; v∗; (t.const c1) (t.const c2) t.divprechk

We must show that (t.const c1) (t.const c2) t.divprechk ↪→ e′∗ for some
e′∗.

We have S; () `i v∗; (t.const c1) (t.const c2) t.divprechk : ti∗; l; φ for
some ti∗, l, and φ because it is a premise of Rule Program which we
have assumed to hold.

Then, (` v : (tv av); φv)∗ for some (tv av)
∗ and φ∗v, since it is a premise

of Rule Code which we have assumed to hold.

It is important to note that φ∗v cannot contain a contradiction because
it contains a single equality constraint per fresh index variable (see
Rule Admin-Const).

Further,

S; Sinst(i), local t∗v ` (t.const c1) (t.const c2) t.divprechk

: ε; (tv av)∗); φ∗v → ti∗; l; φ

because it too is a premise of Rule Code.

Then,

Sinst(i)` (t.const c1) (t.const c2)
: ε; (tv av)∗); φ∗v
→ (t a1) (t a2); (tv av)∗); φ∗v, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2))

where φ∗v, (t a1), (= a1 (t c1)), (t a2), (= a2 (t c2)) =⇒ ¬(= a2 (t 0))

by Lemma Inversion on Rule Composition and Rule Div-Prechk.
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Therefore, it must be the case that c2 6= 0, and therefore there must
exist some c3 such that c3 = div(c1, c2) since div(c1, c2) is well-defined
when c2 is non-zero. Then, s; (t.const c1) (t.const c2) t.divprechk ↪→i

(t.const c3).

• Case: `i s; v∗; (i32.const k) (t.loadprechk (tp_sx) align o)

We must show that s; (i32.const k) (t.loadprechk (tp_sx) align o) ↪→ e′∗

for some e′∗.

We have S; ε `i v∗; (i32.const k) (t.loadprechk (tp_sx) align o) : ti∗; l; φ
for some ti∗, l, and φ because it is a premise of Rule Program which
we have assumed to hold.

We also have that ` s : S, and therefore (n ≤ |b∗|)∗ where Stab = n∗

and smem = (b∗)∗.

Then, (` v : (tv av); φv)∗ for some (tv av)
∗ and φ∗v, since it is a premise

of Rule Code which we have assumed to hold.

It is important to note that φ∗v cannot contain a contradiction because
it contains a single equality constraint per fresh index variable (see
Rule Admin-Const).

Further, we have that

S; Sinst(i), local t∗v ` (i32.const k) (t.loadprechk (tp_sx) align o)
: ε; (tv av)∗; φ∗v → ti∗; l; φ

because it too is a premise of Rule Code.

Then,

Sinst(i) ` (i32.const k) : ε; (tv av)∗; φ∗v
→ (i32 a); (tv av)∗; φ∗v, (i32 a), (= a (i32 k))
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where

φ∗v, (i32 a), (= a (i32 k)) =⇒ (ge (add a (i32 o))(i32 0)),

(le (add a (add (i32 o+ width)))

(i32 n2 ∗ 64Ki))

and n2 ∗ 64Ki = Smem(i, j) by Lemma Inversion on Rule Composi-

tion and Rule Store-Prechk.

Because we have

φ∗v, (i32 a), (= a (i32 k)) =⇒ (ge (add a (i32 o))(i32 0)),

(le (add a (add (i32 o+ width)))

(i32 n2 ∗ 64Ki))

, then we must have k + o ≥ 0 and k + o+ |tp| ≤ n2 ∗ 64Ki.

Recall ` s : S. Then, since n2 ∗64Ki = Smem(i, j), we have smem(i, j) =

b∗2 where n2 ∗ 64Ki ≤ |b∗2|.

Therefore, it must be the case that k + o ≥ 0 and k + o+ |tp| < |b∗2|,
and therefore smem(i, k + o, |tp|) = b∗3 for some b∗3 that is a subse-
quence of b∗2. Then, s; (i32.const k) (t.loadprechk (tp_sx) align o) ↪→i

t.const constsxt (b∗3).

• Case: `i s; v∗; (i32.const k) t.loadprechk align o

Same as above, except with |t| replacing |tp| and constt(b∗3) instead of
constsxt (b∗3).

• Case: `i s; v∗; (i32.const k) (t.const c) (t.storeprechk tp align o)

We must show that s; (i32.const k) (t.storeprechk tp align o) ↪→ e′∗ for
some e′∗.

We have

S; () `i v∗; (i32.const k) (t.storeprechk (tp_sx) align o) : ti∗; l; φ
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for some ti∗, l, and φ because it is a premise of Rule Program which
we have assumed to hold.

We also have that ` s : S, and therefore (n ≤ |b∗|)∗ where Stab = n∗

and smem = (b∗)∗.

Then, (` v : (tv av); φv)∗ for some (tv av)
∗ and φ∗v, since it is a premise

of Rule Code which we have assumed to hold.

It is important to note that φ∗v cannot contain a contradiction because
it contains a single equality constraint per fresh index variable (see
Rule Admin-Const).

Further, we have that

S; Sinst(i), local t∗v ` (i32.const k) (t.storeprechk tp align o)

: ε; (tv av)∗; φ∗v → ti∗; l; φ

because it too is a premise of Rule Code.

Then,

Sinst(i) ` (i32.const k) (t.const c) :
ε; (tv av)∗; φ∗v
→ (i32 a) (t a2); (tv av)∗; φ∗v, (i32 a), (= a (i32 k)),

(t a2), (= a2 (t c))

where

φ∗v, (i32 a), (= a (i32 k)),
(t a2), (= a2 (t c))

=⇒ (ge (add a (i32 o))(i32 0)),

(le (add a (add (i32 o+ width)))

(i32 n2 ∗ 64Ki))

and n2 ∗ 64Ki = Smem(i, j) by Lemma Inversion on Rule Composi-

tion and Rule Load-Prechk.
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Because we have

(i32 a), (= a (i32 k)),
(t a2), (= a2 (t c))

=⇒ (ge (add a (i32 o))(i32 0)),

(le (add a (add (i32 o+ width)))

(i32 n2 ∗ 64Ki))

, then we must have k + o ≥ 0 and k + o+ |tp| ≤ n2 ∗ 64Ki.

Recall ` s : S. Then, since n2 ∗64Ki = Smem(i, j), we have smem(i, j) =

b∗2 where n2 ∗ 64Ki ≤ |b∗2|.

It must be the case that k+ o ≥ 0 and k+ o+ |tp| < |b∗2|, and therefore
smem(i, k + 0, |tp|) = b∗3 for some b∗3 that is a subsequence of b∗2 Then,
we can construct s′ = s with s′mem(i, k + o, |tp|) = bits

|tp|
t (c) because

|bits|tp|t (c) |= |b∗3|. Then,

s; (i32.const k) (i32.const c) (t.storeprechk tp align o) ↪→i s
′; ε

• Case: `i s; v∗; (i32.const c) (t.storeprechk align o)

Same as above, except with |t| replacing |tp|.

• Case: `i (i32.const c) call indirect ti∗1; l1; φ1 → ti∗2; l2; φ2

We must show that (i32.const c) call indirect ti∗1; l1; φ1 → ti∗2; l2; φ2 ↪→
e′∗ for some e′∗.

We have S; () `i v∗; (i32.const c) call indirect ti∗1; l1; φ1 → ti∗2; l2; φ2 :

ti∗; l; φ for some ti∗, l, and φ because it is a premise of Rule Program

which we have assumed to hold.

We also have that ` s : S, and therefore Stab(i) = (n, tfin) and
(S ` cl : tfi)∗ where stab(i) = cl∗ and n ≤ |cl∗|.

Then, (` v : (tv av); φv)∗ for some (tv av)
∗ and φ∗v, since it is a premise

of Rule Code which we have assumed to hold.

It is important to note that φ∗v cannot contain a contradiction because
it contains a single equality constraint per fresh index variable (see
Rule Admin-Const).
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Then,

Sinst(i) ` (i32.const c) :
ε; (tv av)∗; φ∗v
→ (i32 a); (tv av)∗; φ∗v, (i32 a), (= a (i32 c))

where φ∗v, (i32 a), (= a (i32 c)) =⇒ (gt n a) ∧ (le (i32 0) a) by Lemma
Inversion on Rule Composition and Rule Call-Indirect-Prechk.

We have

∀i. (φ =⇒ ¬(= (i32 i) a)) ∨ tfis(i) <: ti∗1; l1; φ1 → ti∗2; l2; φ2

where tfis = tfin, because it is a premise of Rule Call-Indirect-

Prechk which we have assumed to hold by Lemma Inversion. Since
(i32 a); (tv av)∗; φ∗v, (i32 a), (= a (i32 c)) =⇒ (= (i32 c) a), then it has
to be the case that tfis(c) <: ti∗1; l1; φ1 → ti∗2; l2; φ2.

Let, {inst j, func f} = stab(i, c). Recall from before that (S ` cl : tfi)∗.
Then, S ` {inst j, func f} : tfi2 for some tfi2.

Sinst(j) ` f : tfi2, as it is a premise of S ` {inst j, func f} : tfi2.

Then, we know that f = func tfi2 local . . . because it is a premise of
Sinst(j) ` f : tfi2, and we know that tfi2 <: ti∗1; l1; φ1 → ti∗2; l2; φ2.

Thus, s; (i32.const c) call indirect ti∗1; l1; φ1 → ti∗2; l2; φ2
↪→ call {inst j, func f}

.

• Otherwise, we reuse the Wasm proof, which we can do thanks to
Theorem 2.
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Chapter 5

Implementation

To ensure the feasibility of implementing the Wasm-prechk language we
implemented a reference implementation 1 in Redex [2]. We were able to
handle the entirety of the type system and use the reference implementation
to typecheck several test programs, including test programs for each prechk-
tagged instruction, and negative results that ensure illegal prechk-tagged
instructions are not well-typed. Further, our reference implementation is able
to implement constraint solving and implication.

5.1 Reference Implementation

We developed the reference implementation of Wasm-prechk in Redex by
creating a reference implementation of Wasm and extending it with the
Wasm-prechk syntax and type system. This ensured that our model works
on silicon and not just in set theory, and made it possible to quickly test
out various approaches. The syntactic representation we used in the Redex
model differs a bit from the syntactic representation provided here, as it is
s-expression based.

However, we have only implemented a typechecker in the Redex model.
Thus, we must manually construct derivations and ask if they are valid. This
may be solvable using a bi-directional type system approach, or by otherwise

1https://zenodo.org/record/3995114
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coming up with a type inference algorithm.
We implemented the static typing judgment (` C (e ...) tfi), where

e ... is Redex for e∗. Here is Rule Const in Redex. Note that it is
essentially the same, minus a few syntactic differences.

[(` C ((t const c))
((() l φ)
-> (((t a)) l ((φ (t a)) (= a (t c))))))]

There is an extra set of parentheses around (t const c) because the
judgment works over sequences of instructions (e ...), where e ... =

(t const c) here. Also, there’s no dot between the type t and the con-
stant instruction keyword const because that is not necessary in Redex’s
s-expressions.

In the above example, there is no requirement about the freshness of
a. Redex does not support freshness requirements in judgments. However,
because we use the typing judgment to check manually constructed derivations,
we are simply careful in writing the derivations to ensure that this property
is true.

5.2 Constraint Solving in Practice

In our implementation, we reason about constraints using the Z3 theorem
prover [1].

5.2.1 Translation of Constraints to Z3

Constraint solving and implication involves translating various parts of the
Wasm-prechk index language into Z3 constraints. We use Z3 bitvectors to
represent index variables. Z3 bitvectors are integers with a fixed-width bit
string representation, like Wasm-prechk’s i32 and i64, that Z3 can reason about
using standard operations (addition, multiplication, shift left, etc...), and
handle overflow (which can occur in Wasm). Further, fixed-width bitvectors
are a finite domain that has more efficient reasoning and decidability compared
to the natural numbers. Since bitvectors have similar operations to the Wasm-
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compilez3(x)
.
= SMT

a
.
= a

(i32 c) .
= (_ bvc 32)

(i64 c) .
= (_ bvc 64)

(binop x y) .
= (bvbinop compilez3(x) compilez3(y))

(relop x y) .
= (bvrelop compilez3(x) compilez3(y))

compilez3(P )
.
= SMT

(= x y)
.
= (= compilez3(x) compilez3(y))

(ifP1 P2 P3)
.
= (ite compilez3(P1) compilez3(P2) compilez3(P3))

¬P .
= (not compilez3(P ))

P1 ∧ P2
.
= (and compilez3(P1) compilez3(P2))

P1 ∨ P2
.
= (or compilez3(P1) compilez3(P2))

compilez3((t a))
.
= SMT

(i32 a) .
= (declare-const a (_BitVector32))

(i64 a) .
= (declare-const a (_BitVector64))

Figure 5.1: Translation of Wasm-prechk Index Language to Z3

prechk index language, translating an index x to Z3 only requires changing
the name of operations (for example, add becomes bv_add). Translating
propositions to Z3 is also straightforward because Z3 has support for all of
the first-order logic constructs we use to build and combine propositions.

To test whether the satisfiability of one index type context φ1 implies that
some other index type context φ2 is satisfiable, we first generate bitvectors to
represent all of the index variables. Z3 constraints are generated based on the
propositions in both contexts. We assert that the constraints generated for
the first context must hold. Finally, we ask Z3 to find an assignment to the
variables declared in the type index contexts where the constraints from the
second context do not hold (a counterexample). If a counterexample cannot
be found, then the implication must hold, otherwise, it does not hold.
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(declare-const a (_ BitVec 32))
(declare-const b (_ BitVec 32))
(declare-const c (_ BitVec 32))
(declare-const d (_ BitVec 32))
(define-fun satisfies () Bool

(=> (and (= c (_ bv1 32))
(ite (= b (_ bv0 32))

(= d c)
(= d b))

(and (not (= d (_ bv0 32))))))
(assert (not satisfies ))
(check-sat)
(get-model)

Figure 5.2: Example of a Z3 query for constraint satisfaction

We define the translations for certain parts of the index language to SMT
(the Z3 constraint language) used in the reference interpreter in Figure 5.1.
One key thing to note in the translation is that we use a slightly different
representation of relop and testop within the reference implementation. With
relop, the Z3 versions of the Wasm-prechk index language relation operators
returns booleans, not bitvectors, so we convert every use of relop from
(= a (relop x y)) to

(if (= (t 1) (relop x y)) (= a (t 1)) (= a (t 0)))

, where t is the primitive Wasm type of a from the type declaration of a in
φ. We do the same for testop, except we first convert (eqz x) (the only test
operator) to (= (t 0) x), so then (= a (eqz x)) becomes

(if (= (t 0) x) (= a (t 1)) (= a (t 0)))

We also include an example of a complete Z3 query in Figure 5.2. It is
the Z3 query for testing the implication in the divprechk rule in the example
in section 3.3.2.
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How we implement the table in Z3 Recall from subsection 3.3.2 that
for call indirectprechk tfi, we have to reason about which functions in a table
can be called. In practice, we construct a Z3 array (intuitively similar to a
normal array) that is the same size as the table (we chose Z3 arrays because
they have a similar abstraction to tables). We fill the array with boolean
values, which are true if the function at the table index is a suitable function
type (a subtype of the expected type tfi), and false otherwise. Finally, we
assert all of the translated constraints from the index type context about the
table index, and then make sure that reading from the array using the table
index returns true. We do not show here how we generate Z3 constraints for
tables, but it can be found in the Redex model.

5.2.2 Impact of Using Z3

Our choice of using Z3 has impacted Wasm-prechk in several ways.

Floating Point Values and Integer Bit Operations We currently do
not support floating point values because Z3 is unable to reason about them.
In addition, the Wasm unary operators (ctz, clz, and popcnt, which provide
bit-level information) and certain binary operators (rotr and rotl) would be
difficult and inefficient to reason about using Z3 due to their non-linearity, so
we do not currently support them in Wasm-prechk. However, we treat these
operators (and floating point values), like memory operations and simply
assume nothing about them.

Type Annotations in Constraints The requirement of adding explicit
type annotations for index variables and constants that appear in type indices
comes from needing to know what width the variable will be when we convert
it to a Z3 bitvector. Without these type annotations, we would not know
whether a constant c should be represented using a 32-bit or 64-bit vector
(depending on if it is an i32 or i64).

Performance Concerns There are performance concerns when using an
SMT solver. Our small examples programs have been near instantaneous to
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typecheck (usually involving only one Z3 invocation with a few constraints).
For example, the query in Figure 5.2, is very small and takes milliseconds
to run. However, it is likely that we will see a slowdown due to significantly
larger constraint sets when typechecking large Wasm programs. This would
require a clever approach to reducing the size of the constraint set (perhaps
using a form of type-level garbage collection on constraints on index variables
that cannot be referred to). Also, we would want to make sure when writing a
typechecker/synthesizer that we invoke Z3 as little as possible, by minimizing
the amount of reasoning we do about the constraints.
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Chapter 6

Discussion

By creating Wasm-prechk, we have taken the first step towards creating a
practical system in which an expressive type system is used with an existing
and widely low-level language for safety and performance. Wasm-prechk
provides concrete ways to use type information for compiler optimization at
the assembly language level. This is a first step in the sense that it provides
the scaffolding to build such a system that could be part of the infrastructure
of the internet: unlike prior work, it is backwards compatible with a commonly
used language, Wasm, supported by many major browsers. However, there
are still a number of unanswered questions. We have a number of future
ideas for this work some based on what we think is necessary to realize our
eventual goal of making Wasm-prechk practical in the real-world, and others
based on problems identified during the course of the project so far.

Support for Streaming Compilation The format of Wasm code allows
compilation and execution to begin with only part of the program downloaded.
Similar streaming compilation is theoretically possible with Wasm-prechk,
but there are unanswered questions about how to perform typechecking in
such a compilation pipeline. Here are two examples of problems that we
expect to face implementing such a system. First of all, we must make sure
such a system is safe, which is complicated by the fact that we may begin
executing code before we have finished typechecking. This should not be
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too much of an issue as long as we ensure code is typechecked before we can
execute it, so we only execute well-typed code and if we come across code
that is not well typed we halt execution and throw a type error. Second of all,
this will require highly efficient typechecking, preferably performed in parallel
to typecheck many functions at one. We could also try to be clever and
prioritize typechecking on functions that we expect to be executed sooner.

More Optimizations There is the potential to find other optimizations
we can perform with the additional type information. For example, remember
from section 3.3 that an if may have a contradiction in the index type context
in one of its branches. In this case, that branch will never be executed, and
therefore the other branch must always be taken, so we can safely replace the
if instruction with the other branch. We can do similar optimizations with
br if and select.

6.1 Future Work

Empirical Evaluation The first step would involve testing the actual
performance costs of dynamic checks. We could then implement a type-
checker and compiler for Wasm-prechk so we are able to perform experiments
and measure the real performance benefit provided by Wasm-prechk. This
would allow us to empirically test whether Wasm-prechk actually improves
performance. Our plan is to implement Wasm-prechk in Rust building on
the CraneLift compilier.

Better Type Annotations in Embedding Recall that the embedding of
Wasm into Wasm-prechk from subsection 4.2.1 does not take advantage of the
possibility of using type annotations on functions and blocks to check stronger
guarantees about programs. This means that we could potentially miss
opportunities to remove dynamic checks by using prechk-tagged instructions
because we have less type information to work with. Type annotations can be
added by the developer, who will then get stronger guarantees of correctness
along with the potential for more optimizations. However, we would prefer
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for the developer not to have to hand-annotate compiled Wasm. Instead,
we could use static analysis to try to find the weakest preconditions that
guarantee the safety of prechk-tagging instructions. We could also attempt to
have have a compiler from a higher-level language to Wasm add annotations
as a form of type preserving compilation similar to System F to Typed
Assembly Language [5].

6.2 Limitations

Reasoning About Global Variables Reasoning about global variables is
made difficult because static typechecking is restricted to within the module
we are checking, this restricts the reasoning ability of Wasm-prechk and again
could cause us to miss opportunities for optimizations. Thus, it is difficult
to reason about global variables imported from another module. Concretely,
imagine, in the jth module calling a function f that was imported from
the ith module. The call instruction will be reduced to call {inst i, func f}
where i is the module index for the module instance where f is defined.
Theoretically, f should not change the global variables in the jth module.
However, it may call a function in the jth module which could change the
globals in the jth module, and since we do not know what the behavior
of f is statically within j, we have to assume the worst and can make no
assumptions about the global variables after f returns.

Handling the Dynamic Resizing of Memory While linear memory
chunks are initialized with a static size, Wasm allows dynamically growing
memory using the grow memory instruction. Currently, Wasm-prechk only
supports typechecking prechk-tagged loads and stores based on the static
size. It should be possible to reason about the size of memory being increased
by inserting a dependency on the result of the grow memory instruction. If
the result is −1, we know that the memory remains the same size. Otherwise,
the result will be equal to the new memory size. This would require more
dependency in the type system then we currently have with indexed types,
since static type values would depend on dynamic control flow.
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Chapter 7

Conclusion

We have introduced Wasm-prechk, a low-level language that uses an expres-
sive type system to potentially improve performance via the elimination of
unnecessary run-time checks. Wasm-prechk is based on Wasm, an existing
real-world language commonly used in performance-critical and untrusted
contexts, where both safety and performance are critical. To ensure the
safety of Wasm-prechk, we have proven the type safety of the Wasm-prechk
language as well as showing a sound type erasure to Wasm, demonstrat-
ing that Wasm-prechk is at least as safe as Wasm. We have shown that
an indexed type system can be used in a low-level language to reduce the
number of dynamic checks required, without sacrificing safety and security
guarantees or increasing the programmer’s proof burden. We built a reference
interpreter for Wasm-prechk to demonstrate the practicality of implementing
a typechecker for Wasm-prechk. This demonstrates the usefulness of using
expressive type systems as a practical tool to improve performance and ensure
safety for low-level languages in real use cases.
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Appendix A

Complete Wasm-prechk Typing
Judgment Definition

tfi <: tfi

φ0 =⇒ φ1 φ2 =⇒ φ3

ti∗1; l1; φ1 → ti∗2; l2; φ2 <: ti
∗
1; l1; φ0 → ti∗2; l2; φ3

Implies
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C ` e∗ : tfi

C ` unreachable : ti∗1; l1; φ1 → ti∗2; l2; φ2
Unreachable

C ` nop : ε; l; φ→ ε; l; φ
Nop

C ` drop : (t a); l; φ→ ε; l; φ
Drop

a 6∈ φ

C ` t.const c : ε; l; φ→ (t a); l; φ, (t a), (= a(t c))
Const

a3 6∈ φ

C ` t.binop : (t a1) (t a2); l; φ
→ (t a3); l; φ, (t a3), (= a3 (‖binop‖ a1 a2))

Binop

a3 6∈ φ

C ` t.testop : (t a1) l; φ
→ (i32 a2); l; φ, (t a2), (= a2 (‖testop‖ a1))

Testop

a3 6∈ φ

C ` t.relop : (t a1) (t a2); l; φ
→ (t a3); l; φ, (t a3), (= a3 (‖relop‖ a1 a2))

Relop

a3 6∈ φ

C ` select : (t a1) (t a2) (i32 a); l; φ
→ (t a3); l; φ, (t a3),

(if (= a (i32 0)) (= a3 a2) (= a3 a1))

Select

C2, label (ti∗2; l2; φ2) ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` block (ti∗1; l1; φ1 → ti∗2; l2; φ2) e
∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2

Block
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C2, label (ti∗1; l1; φ1)
∗ ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` loop (ti∗1; l1; φ1 → ti∗2; l2; φ2) e
∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2

Loop

C2, label (ti∗2; l2; φ2) ` e∗1 : ti∗1; l1; φ1,¬(= a (i32 0))→ ti∗2; l2; φ2
C2, label (ti∗2; l2; φ2) ` e∗2 : ti∗1; l1; φ1, (= a (i32 0)))→ ti∗2; l2; φ2

C ` if (ti∗1; l1; φ1 → ti∗2; l2; φ2) e
∗
1 else e∗2 end : ti∗1; l1; φ1 → ti∗2; l2; φ2

If

Clabel(i) = ti∗; l1; φ1

C ` br i : ti∗1 ti
∗; l1; φ1 → ti∗2; l2; φ2

Br

Creturn = ti∗; l1; φ1

C ` return : ti∗1 ti
∗; l1; φ1 → ti∗2; l2; φ2

Return

Clabel(i) = ti∗; l1; φ1,¬(= a (i32 0))

C ` br if i : ti∗ a; l1; φ1 → ti∗; l1; φ1, (= a (i32 0))
Br-If

(Clabel(i) = ti∗; l1; φi)+ (φ1 =⇒ φi)
n

C ` br table i+ : ti∗1 ti
∗ a; l1; φ1 → ti∗2; l2; φ2

Br-Table

Cfunc(i) = ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` call i : ti∗1; l; φ1 → ti∗2; l; φ1, φ2
Call

Ctable(i) = (j, tfi∗2)

C ` call indirect ti∗1; l1; φ1 → ti∗2; l2; φ2
: ti∗1 (i32 a); l; φ1 → ti∗2; l; φ1, φ2

Call-Indirect

Clocal(i) = t l(i) = (t a) a2 6∈ φ

C ` get local i : ε; l; φ→ (t a2); l; φ, (t a2), (= a2 a)
Get-Local

Clocal(i) = t l2 = l1[i := (t a)]

C ` set local i : (t a); l1; φ→ ε; l2; φ
Set-Local
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Clocal(i) = t l2 = l1[i := (t a)] a2 6∈ φ

C ` tee local i : (t a); l1; φ→ (t a2); l2; φ, (t a2), (= a2 a)
Tee-Local

Cglobal(i) = mut? t a 6∈ φ

C ` get global i : ε; l; φ→ (t a); l; φ, (t a)
Get-Global

Cglobal(i) = mut t

C ` set global i : (t a); l; φ→ ε; l; φ
Set-Global

Cmemory = n 2align ≤ (|tp| <)?|t| a2 6∈ φ

C ` t.load (tp_sx)? align o : (i32 a1); l; φ→ (t a2); l; φ, (t a2)
Mem-Load

Cmemory = n 2align ≤ (|tp| <)?|t|

C ` t.store tp? align o : (i32 a1) (t a2); l; φ→ ε; l; φ
Mem-Store

Cmemory = n a 6∈ φ

C ` current memory : ε; l; φ→ (i32 a); l; φ, (i32 a)
Current-Memory

Cmemory = n a2 6∈ φ

C ` grow memory : (i32 a1); l; φ→ (i32 a2); l; φ, (i32 a2)
Grow-Memory

C ` ε : ε; l; φ→ ε; l; φ
Empty

C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` e∗ : ti∗ ti∗1; l1; φ1 → ti∗ ti∗2; l2; φ2
Stack-Poly
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C ` e∗1 : ti∗1; l1; φ1 → ti∗2; l2; φ2
C ` e2 : ti∗2; l2; φ2 → ti∗3; l3; φ3

C ` e∗1 e2 : ti∗1; l1; φ1 → ti∗3; l3; φ3
Composition

ti∗1; l1; φ1 → ti∗2; l2; φ2 <: ti
∗
1; l1; φ0 → ti∗2; l2; φ3

C ` e∗ → ti∗1; l1; φ1 → ti∗2; l2; φ2

C ` e∗ → ti∗1; l1; φ0 → ti∗2; l2; φ3
Subtyping

φ =⇒ ¬(= a2 0) a3 6∈ φ

C ` t.divprechk : (t a1) (t a2); l; φ
→ (t a3); l; φ, (t a3), (= a3 (‖div‖ a1 a2))

Div-Prechk

Cmemory = n 2align ≤ (|tp| <)?|t| a3 6∈ φ
φ =⇒ (ge (add a1 (i32 o))(i32 0)),

(le (add a1 (add (i32 o+ width))) (i32 n ∗ 64Ki))

C ` t.loadprechk (tp_sx)? align o : (i32 a1); l; φ
→ (t a2); l; φ, (t a2)

Load-Prechk

Cmemory = n 2align ≤ (|tp| <)?|t|
φ =⇒ (ge (add a1 (i32 o)) (i32 0)),

(le (add a1 (add (i32 o+ width))) (i32 n ∗ 64Ki))

C ` t.storeprechk tp
? align o : (i32 a1) (t a2); l; φ→ ε; l; φ

Store-Prechk

Ctable(i) = (n, (tfi2...))

φ =⇒ (gt n a) ∧ (le (i32 0) a)

tfis = (tfi2...) tfi = ti∗1; l1; φ1 → ti∗2; l2; φ2
∀0 < i ≤ n. (φ =⇒ ¬(= (i32 i) a)) ∨ tfis(i) <: tfi

C ` call indirectprechk tfi : ti∗1 (i32 a); l; φ1
→ ti∗2; l; φ1, φ2

Call-Indirect-Prechk
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Appendix B

Metatheory Proofs

B.1 Sound Erasure Proofs

Lemma 13. Sound Static Typing Erasure

If C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then eraseC(C) ` erasee∗(e∗) : erasetfi(ti∗1; l1; φ1 → ti∗2; l2; φ2)

Proof. We proceed by induction over typing derivations. Most proof cases
are omitted as they are simple, but we provide a few to give an idea of what
the proofs look like. Intuitively, we want to show that erasing the typing
derivation produces a valid Wasm typing derivation.

For most of the cases, the sequence of instructions e∗ contains only a single
instruction e2, so we elide the step of turning erasee∗(e∗) into erasee∗(e2).

• Case: C ` t.binop : (t a1) (t a2); l1; φ1
→ (t a3); l1; φ1, (t a3), (= a3 (binop a1 a2))

We want to show that

eraseC(C) ` erasee∗(t.binop)
: erasetfi((t a1) (t a2); l1; φ1

→ (t a3); l1; φ1, (t a3), (= a3 (binop a1 a2)))

By the definition of erasee, we want to show that eraseC(C) ` t.binop :

t t→ t is valid in Wasm.
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Trivially, we have eraseC(C) ` t.binop : t t→ t by Rule Wasm-Binop,
since Rule Wasm-Binop works under any module type context.

• Case: C ` block (t1 a1)
∗; l1; φ1

→ (t2 a2)
∗; l2; φ2

e∗ end : (t1 a1)
∗; l1; φ1

→ (t2 a2)
∗; l2; φ2

We want to show that

eraseC(C) ` erasee(block (t1 a1)
∗; l1; φ1

→ (t2 a2)
∗; l2; φ2

e∗ end : (t1 a1)
∗; l1; φ1

→ (t2 a2)
∗; l2; φ2)

By the definition of erasee and erasetfi (we also perform the step of
erasing indexed function types here to avoid an extra step), we want
to show that eraseC(C) ` block t∗1 → t∗2e

∗ end : t∗1 → t∗2 is a valid
Wasm judgment.

This proof is slightly more involved, since the derivation for this rule
includes a premise that

C, label((t2 a2)∗; l2; φ2) ` e∗ : (t1 a1)∗; l1; φ1 → (t2 a2)
∗; l2; φ2

By the inductive hypothesis for the well-typedness of e∗, we have that

eraseC(C, label((t2 a2)∗; l2; φ2)) ` erasee∗(e∗)
: erasetfi((t1 a1)

∗; l1; φ1
→ (t2 a2)

∗; l2; φ2)

Then we have eraseC(C), label(t∗2) ` erasee∗(e∗) : t∗1 → t∗2 by definition
of eraseC and erasetfi.

Now that we have satisfied the premise,

eraseC(C) ` block t∗1 → t∗2e
∗ end : t∗1 → t∗2
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by Rule Wasm-Block.

• Case: C ` br i : (t1 a1)∗; l1; φ1 → (t2 a2)
∗; l2; φ2

We want to show that

eraseC(C) ` erasee(br i)
: erasetfi((t1 a1)

∗; l1; φ1 → (t2 a2)
∗; l2; φ2)

We have to reason about eraseC(C) because the typing judgment relies
on the label stack from C.

From C ` br i : (t1 a1)
∗; l1; φ1 → (t2 a2)

∗; l2; φ2, we have that
Clabel(i) = (t1 a1)

∗; l1; φ1, since it is a premise.

Then eraseC(C)label(i) = t∗1, by the definition of eraseC .

eraseC(C) ` erasee(br i)
: erasetfi((t1 a1)

∗; l1; φ1
→ (t2 a2)

∗; l2; φ2)

= eraseC(C) ` br i : t∗1 → t∗2

Recall that eraseC(C)label(i) = t∗1 → t∗2, then eraseC(C) ` br i : t∗1 →
t∗2 by Rule Wasm-Br.

• Case: C ` call i : (t1 a1)∗; l1; φ1 → (t2 a2)
∗; l2; φ2

We want to show that

eraseC(C) ` erasee(call i)
: erasetfi((t1 a1)

∗; l1; φ1 → (t2 a2)
∗; l2; φ2)

We again have to reason about eraseC(C) because the typing judgment
relies on the function type from C.

From C ` call i : (t1 a1)
∗; l1; φ1 → (t2 a2)

∗; l2; φ2, we have that
Cfunc(i) = (t1 a1)

∗; l1; φ1 → (t2 a2)
∗; l2; φ2, since it is a premise.
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Then, eraseC(C)func(i) = erasetfi((t1 a1)
∗; l1; φ1 → (t2 a2)

∗; l2; φ2) =
t∗1 → t∗2, by the definition of eraseC .

eraseC(C) ` erasee(call i)
: erasetfi((t1 a1)

∗; l1; φ1
→ (t2 a2)

∗; l2; φ2)

= eraseC(C) ` call i : t∗1 → t∗2

Recall that eraseC(C)func(i) = t∗1 → t∗2.

Then eraseC(C) ` call i : t∗1 → t∗2 by Rule Wasm-Call.

• Case: C ` set local i : (t a); l1; φ1 → ε; l1[i := a]; φ1

We want to show that

eraseC(C) ` erasee(set local i)
: erasetfi((t a); l1; φ1 → ε; l1[i := a]; φ1)

We again have to reason about eraseC(C) because the typing judgment
relies on the local variable types from C.

From C ` set local i : (t a); l1; φ1 → ε; l1[i := a]; φ1, we have that
Clocal(i) = t, since it is a premise.

Then, we have that eraseC(C)local(i) = t, by the definition of eraseC .

eraseC(C) ` erasee(set local i)
: erasetfi((t a)

∗; l1; φ1
→ ε; l1[i := a]; φ1)

= eraseC(C) ` set local i : t→ ε

Recall that eraseC(C)local(i) = t → ε, then eraseC(C) ` set local i :
t→ ε by Rule Wasm-Set-Local.

• Case: C ` e∗1 e2 : (t1 a1)∗; l1; φ1 → (t2 a2); l2; φ2
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We want to show that

eraseC(C) ` erasee(e∗1 e2)
: erasetfi((t1 a1)

∗; l1; φ1 → (t2 a2); l2; φ2)

For this typing rule, we must invoke the inductive hypothesis twice:
one on the sequence e∗1 and once on the instruction e2. Then we must
show that we can compose the erased subsequence together to get a
well-typed sequence.

We know that C ` e∗1 : (t1 a1)
∗; l1; φ1 → (t3 a3); l3; φ3 and that

C ` e2 : (t3 a3)∗; l3; φ3 → (t2 a2); l2; φ2 because they are premieses of
Rule Composition which we have assumed to hold.

eraseC(C) ` erasee∗(e∗1) : erasetfi((t1 a1)∗; l1; φ1 → (t3 a3); l3; φ3) by
the inductive hypothesis on e∗1.

eraseC(C) ` erasee∗(e∗1) : t∗1 → t∗3 by definition of erasetfi.

eraseC(C) ` erasee∗(e2) : erasetfi((t3 a3)
∗; l3; φ3 → (t2 a2); l2; φ2),

by the inductive hypothesis on e2.

eraseC(C) ` erasee∗(e∗2) : t∗3 → t∗2 by definition of erasetfi.

eraseC(C) ` erasee∗(e∗1 e2)
: erasetfi((t1 a1)

∗; l1; φ1
→ (t2 a2); l2; φ2)

= eraseC(C)` erasee∗(e
∗
1)

erasee∗(e2)

: t∗1 → t∗2

Recall that we have eraseC(C) ` erasee∗(e
∗
1) : t∗1 → t∗3 and that

eraseC(C) ` erasee∗(e∗2) : t∗3 → t∗2 by definition of erasetfi.

Then, eraseC(C) ` erasee∗(e
∗
1) erasee∗(e2) : t

∗
1 → t∗2 by Rule Wasm-

Composition.

Lemma 14. Sound Admin Typing Erasure
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If S; C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then eraseS(S); eraseC(C) ` erasee∗(e∗) : erasetfi(ti∗1; l1; φ1 → ti∗2; l2; φ2)

Proof. We proceed by induction over typing rules. In addition to the prior
cases from Lemma Sound Static Typing Erasure, which trivially still
hold since the value of S does not matter to those rules, we add proves for a
few administrative typing rules, which may refer to S. Again, several proof
cases are omitted as they are simple.

• S; C ` labeln{e∗0} e∗ end : ε; l1; φ1 → (t2 a2)
n; l2; φ2

We must show that

eraseS(S); eraseC(C)` erasee∗(e∗0)
: erasetfi((t3 a3)

∗; l3; φ3 → (t2 a2)
n; l2; φ2)

and

eraseS(S); eraseC(C, label((t3 a3)∗; l3; φ3))
` erasee∗(e∗)
: erasetfi(ε; l1; φ1 → (t3 a3)

∗; l3; φ3)

as they are the premises of typechecking a label block in Wasm.

We have that S; C ` e∗0 : (t3 a3)∗; l3; φ3 → (t2 a2)
n; l2; φ2 since it is a

premise of Rule Label which we have assumed to hold.

Then, by the inductive hypothesis for the stored instructions e∗0 being
well typed, we have that

eraseS(S); eraseC(C)` erasee∗(e∗0)
: erasetfi((t3 a3)

∗; l3; φ3 → (t2 a2)
∗; l2; φ2)

S; C, label((t3 a3)∗; l3; φ3)) ` e∗ : ε; l1; φ1 → (t3 a3)
∗; l3; φ3, because it

is a premise of Rule Label which we have assumed to hold.
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By the inductive hypothesis for the body e∗ being well typed, we have
that

eraseS(S); eraseC(C, label((t3 a3)∗; l3; φ3))
` erasee∗(e∗)
: erasetfi(ε; l1; φ1 → (t3 a3)

∗; l3; φ3)

• S; C ` localn{i; v∗} e∗ end : ε; l1; φ1 → (t2 a2)
n; l2; φ2

The premise of this rule relies on Rule Code with a non-empty return
postcondition, which we have not yet proved sound erasure for, so
instead we must derive Rule Code for the erased program.

Thus, we must show that (` v : tv)
∗ and

eraseS(S); eraseC(Sinst(i), local t∗v, return((t2 a2)n; l2; φ2))
` erasee∗(e∗)
: erasetfi(ε; l1; φ1 → (t2 a2)

n; l2; φ2)

We have Rule Code as a premise of Rule Local, which we have
assumed to hold.

Therefore, (` v : tv)
∗ trivially, since neither values nor primitive types

are affected by erasure.

We also know that

S; Sinst(i), local t∗v, return((t2 a2)
n; l2; φ2))` e∗ end

: ε; l1; φ1 → (t2 a2)
n; l2; φ2

Therefore, by the inductive hypothesis of the well-typedness of e∗, we
have that

eraseS(S); eraseC(Sinst(i), local t∗v, return((t2 a2)n; l2; φ2))
` erasee∗(e∗)
: erasetfi(ε; l1; φ1 → (t2 a2)

n; l2; φ2)
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B.2 Subject Reduction Lemmas and Proofs

Lemma 15. Inversion

1. If S; C ` t.const c : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗2 = ti∗1 (t a), l1 = l2,
and φ1, (t a), (= a (t c)) =⇒ φ2.

2. If S; C ` t.binop : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗ (t a1) (t a2),
ti∗2 = ti∗ (t a3), l1 = l2, and φ1, (t a3), (= a3 (binop a1 a2)) =⇒ φ2.

3. If S; C ` t.testop : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗ (t a1),
ti∗2 = ti∗ (i32 a2), l1 = l2, and φ1, (i32 a2), (= a2 (testop a1)) =⇒ φ2.

4. If S; C ` t.relop : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗ (t a1) (t a2),
ti∗2 = ti∗ (i32 a3), l1 = l2, and φ1, (i32 a3), (= a3 (relop a1 a2)) =⇒
φ2.

5. If S; C ` nop : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗2, l1 = l2, and
φ1 =⇒ φ2.

6. If S; C ` drop : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗0 (t a), ti∗2 = ti∗0,
l1 = l2, and φ1 =⇒ φ2.

7. If S; C ` select : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then ti∗1 = ti∗0 (t a1) (t a2) (i32 a3), ti∗2 = ti∗0; (t a), l1 = l2, and
φ1, (t a), (if(= a3 (i32 0)) (= a1 a) (= a2 a)) =⇒ φ2.

8. If S; C ` block (ti∗3; l3; φ3 → tim4 ; l4; φ4)
e∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2

then ti∗1 = ti∗0 ti
∗
3, ti∗2 = ti∗0 ti

m
4 , l1 = l3, l2 = l4, φ1 =⇒ φ3, φ4 =⇒ φ2,

and S; C, label(tim4 ; l4; φ4) ` e∗ : ti∗3; l3; φ3 → tim4 ; l4; φ4.

9. If S; C ` loop (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then ti∗1 = ti∗0 ti

n
3 , ti∗2 = ti∗0 ti

m
4 , l1 = l3, l2 = l4, φ1 =⇒ φ3, φ4 =⇒ φ2,

and S; C, label(tin3 ; l3; φ3) ` e∗ : tin3 ; l3; φ3 → tim4 ; l4; φ4.
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10. If S; C ` if (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗1 else e∗2 end : ti∗1; l1; φ1 →
ti∗2; l2; φ2, then ti∗1 = ti∗0 ti

n
3 (i32 a), ti∗2 = ti∗0 ti

m
4 , l1 = l3, l2 = l4,

φ1 =⇒ φ3, φ4 =⇒ φ2, S; C, label(tim4 ; l4; φ4) ` e∗1 : tin3 ; l3; φ3,¬(=
a (i32 0))→ tim4 ; l4; φ4, and S; C, label(tim4 ; l4; φ4) ` e∗2 : tin3 ; l3; φ3, (=
a (i32 0))→ tim4 ; l4; φ4.

11. If S; C ` labeln{e∗0}e∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗2 = ti∗1 ti
∗,

S; C ` e∗0 : ti∗3; l3; φ3 → ti∗; l2; φ2, and S; C, label (ti∗3; l3; φ3) ` e∗ :
ε; l1; φ1 → ti∗; l2; φ2

12. If S; C ` br i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗3 ti
∗, Clabel(i) =

ti∗; l1; φ3, and φ1 =⇒ φ3.

13. If S; C ` br if i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗2 (i32 a), l1 =

l2, Clabel(i) = ti∗2; l1; φ3,¬(= a (i32 0)), φ1 =⇒ φ3, and φ1, (=

a (i32 0)) =⇒ φ2.

14. If S; C ` br table i+ : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗2 (i32 a),
l1 = l2, Clabel(i) = ti∗2; l1; φ3, φ1 =⇒ φ3, and φ1 =⇒ φ2.

15. If S; C ` call i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗0 ti
∗
3, ti∗2 = ti∗0 ti

∗
4,

Cfunc(j) = ti∗3; l3; φ3 → ti∗4; l4; φ4, l2 = l1, φ1 =⇒ φ3, and φ3, φ4 =⇒
φ2.

16. If S; C ` call indirect ti∗3; l3; φ3 → ti∗4; l4; φ4 : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then ti∗1 = ti∗0 ti

∗
3, ti∗2 = ti∗0 ti

∗
4, l2 = l1, φ1 =⇒ φ3, and φ3, φ4 =⇒ φ2.

17. If S; C ` call cl : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗2 = ti∗1 ti
m
4 , l2 = l1,

φ1 =⇒ φ3, φ4 =⇒ φ2, and S ` cl : ε; tin3 (t a)n; φ3, (t a)k, (=
a (t 0))k → tim4 ; l4; φ4

18. If S; C ` localn{i; v∗l } e∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗2 =

ti∗1 ti
n, l1 = l2, S; (tin; l3; φ3) `i v∗l ; e∗ : tin; l3; φ3, and φ1, φ3 =⇒ φ2.

19. If S; C ` return : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗3 ti
∗, l1 = l3,

Creturn = ti∗; l3; φ3, and φ1 =⇒ φ3.
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20. If S; C ` get local i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗2 = ti∗1 (t a),
l1 = l2, l1(i) = (t a), and φ1, (t a2), (= a2 a) =⇒ φ2.

21. If S; C ` set local i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗2 (t a),
l2 = l1[i := (t a)], Clocal(i) = t, and φ1 =⇒ φ2.

22. If S; C ` tee local i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗ (t a),
ti∗2 = ti∗ (t a2), l2 = l1[i := (t a)], Clocal(i) = t, and φ1, (t a2), (=

a2 a) =⇒ φ2.

23. If S; C ` get global i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗2 = ti∗1 (t a),
l1 = l2, Cglobal(i) = mut? t, and φ1, (t a) =⇒ φ2.

24. If S; C ` set global i : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗2 (t a),
l1 = l2, Cglobal(i) = mut t, and φ1 =⇒ φ2.

25. If S; C ` t.load (tp_sx)? align o : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 =

ti∗ (i32 a1), ti∗2 = ti∗ (t a2), l1 = l2, Cmemory = n, 2align ≤ (|tp| <)?|t|,
and φ1, (t a2) =⇒ φ2.

26. If S; C ` t.store tp? align o : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 =

ti∗2 (i32 a1) (t a2), l1 = l2, Cmemory = n, 2align ≤ (|tp| <)?|t|, and
φ1 =⇒ φ2.

27. If S; C ` current memory : ti∗1; l1; φ1 → ti∗2; l2; φ2,
then ti∗2 = ti∗1 (i32 a), l1 = l2, Cmemory = n, and φ1, (i32 a) =⇒ φ2.

28. If S; C ` grow memory : ti∗1; l1; φ1 → ti∗2; l2; φ2, then ti∗1 = ti∗ (i32 a1),
ti∗2 = ti∗ (i32 a2), l1 = l2, Cmemory = n, and φ1, (i32 a2) =⇒ φ2.

29. If S; C ` e∗1 e2 : ti∗1; l1; φ1 → ti∗3; l3; φ3, then S; C ` e∗1 : ti∗1; l1; φ1 →
ti∗2; l2; φ2, and S; C ` e2 : ti∗2; l2; φ2 → ti∗3; l3; φ3.

Proof. Proof omitted, but follows from induction over typing derivations.

Lemma 16. Subject Reduction for Code

If S; (ti; l; φ)? ` v∗; e∗ : ti; l; φ, ` s : S, (we omit this on rules that do not
use the store) and s; v∗; e∗ ↪→ s′; v′∗; e′∗, then S; (ti; l; φ)? ` v′∗; e′∗ : ti; l; φ,
and ` s′ : S (we omit this on rules that do not change the store)
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Proof. By induction on reduction.

• Case: S; (ti∗; l; φ)? `i vj1 (t.const c) vk2 ; get local j : ti∗; l; φ
∧ vj1 (t.const c) vk2 ; get local j ↪→ (t.const c)

We want to show that S; (ti; l; φ)? `i vj1 (t.const c) vk2 ; (t.const c) :

ti∗; l; φ.

We know ` (t.const c) : (t a); ◦, (t a), (= a (t c)) and S; C ` get local j :
ε; l1; φ

j
1, ((t a), (= a (t c))), φk2 → ti∗; l; φ, because they are premises of

Rule Code that we have assumed to hold.

By Lemma Inversion on Rule Get-Local, ti∗ = (t a2), l1 = l, and
φj1, ((t a), (= a (t c))), φk2, (t a2), (= a2 a) =⇒ φ.

Now we will reconstruct the same type for vj1 (t.const c) vk2 ; (t.const c).

We have S; Sinst(i) ` (t.const c) : ε; l; φj1, ((t a), (= a (t c))), φk2 →
(t a2); l; φ

j
1, ((t a), (= a (t c))), φk2, (t a2), (= a2 (t c)) by Rule Const.

Further, ((t a), (= a (t c))), (t a2), (= a2 (t c)) =⇒ ((t a), (=

a (t c))), (t a2), (= a2 a) by =⇒ .

Then, S; Sinst(i) ` (t.const c) : ε; l; φj1, ((t a), (= a (t c))), φk2 →
(t a2); l; φ by Rule Subtyping.

Therefore, S; (ti∗; l; φ)? `i vj1 (t.const c) vk2 ; (t.const c) : ti∗; l; φ by
Rule Code.

• Case: S; (ti∗; l; φ)?`i vj1 (t.const c) vk2 ; (t.const c′) (set local j)
: ti∗; l; φ

∧ vj1 (t.const c) vk2 ; (t.const c′) set local j ↪→ vj1 (t.const c′) vk2 ; ε

We want to show that

S; (ti∗; l; φ)? `i vj1 (t.const c′) vk2 ; (t.const c′) (set local j) : ti∗; l; φ

We know ` (t.const c) : (t a); (◦, (t a), (= a (t c))), S; Sinst(i) `
(t.const c′) (set local j) : ε : l1; φ

j
1, (◦, (t a), (= a (t c))), φk2 → ti∗; l; φ,

and l1(j) = (t a), and Clocal(j) = t because they are premises of Rule
Code that we have assumed to hold.
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By Lemma Inversion on Rule Composition, S; Sinst(i) ` (t.const c′) :
ε; l1; φ

j
1, (◦, (t a), (= a (t c))), φk2 → ti∗3; l3; φ3, S; Sinst(i) ` set local j :

ti∗3; l3; φ3 → ti∗; l; φ.

Recall that t = Clocal(j), then by Lemma Inversion on Rule Set-

Local we have ti∗3 = ti∗ (t a′), l = l3[j := (t a′)], and φ3 =⇒ φ.

Then, by Lemma Inversion on Rule Const, ti∗ = ε, l1 = l3, and
φj1, (◦, (t a), (= a (t c))), φk2, (t a

′), (= a′ (t c′)) =⇒ φ3.

Now we have all the information we need to derive the same type for
(t.const c′)

We have S; Sinst(i) ` ε : ε; l; φ→ ε; l; φ by Rule Empty.

Then, S; Sinst(i) ` ε : ε; l; φj1, (◦, (t a), (= a (t c))), φk2, (t a
′), (=

a′ (t c′))→ ε; l; φ by Rule Subtyping.

Since a is fresh, φj1, φ
k
2, (t a

′), (= a′ (t c′)) =⇒ φj1, (◦, (t a), (=
a (t c))), φk2, (t a

′), (= a′ (t c′)).

Then, S; Sinst(i) ` ε : ε; l; φj1, φk2, (t a′), (= a′ (t c′)) → ε; l; φ by Rule
Subtyping.

Further, ` (t.const c′) : (t a′); ◦, (t a′), (= a′ (t c′)) by Rule Admin-

Const.

Therefore, S; (ti∗; l; φ)? `i vj1 (t.const c′) vk2 ; ε : ti∗; l; φ by Rule Code.

• Case: S; (ti∗; l; φ)? `i v∗; get global j : ti∗; l; φ
∧ s; get global j ↪→i sglob(i, j)

We want to show that S; (ti∗; l; φ)? `i v∗; sglob(i, j) : ti
∗; l; φ

We have ` v : tiv; φv)∗ and S; Sinst(i) ` get global j : ε; ti∗v; φ
∗
v →

ti∗; l; φ because they are premises of Rule Code that we have assumed
to hold.

Then, by Lemma Inversion on Rule Get-Global, ti∗ = (t a), l = l1,
Cglobal(j) = mut?t, and φ∗v, (t a) =⇒ φ.

Recall that we assume ` s : S, then we know S ` sinst(i) : C because it
is a premise of Rule Store.
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Recall that Sglobal(i, j) = mut?t, then ` sglob(i, j) : (t a1); φ1 because
it is a premise of Rule Instance that we have assumed to hold.

Now, we can show that sglob(i, j) has the appropriate type.

We have S; Sinst(i) ` t.const c : ε; l; φ∗v → (t a); l; φ∗v, (t a), (= a (t c)),
where t.const c = sglob(i, j), by Rule Const.

We also know (t a), (= a (t c)) =⇒ (t a).

Thus, S; Sinst(i) ` sglob(i, j) : ε; l; φ∗v → (t a); l; φ by Rule Subtyping.

Recall ` v : tiv; φv)∗, then S; (ti∗; l; φ)? `i v∗; sglob(i, j) : (t a); l; φ by
Rule Code, having assumed that the other premises hold.

• Case: S; (ti∗; l; φ)? ` v∗l ; (t.const c) (set global j) : ti∗; l; φ
∧ s; (t.const c) (set global j) ↪→i s

′; ε, where s′ = s with glob(i, j) =
(t.const c)

We want to show that S; (ti∗; l; φ)? ` v∗l ; ε : ti∗; l; φ.

We have ` (v∗l : tiv; φv)∗ and S; Sinst(i) ` v (set global j) : ε; ti∗v; φ
∗
v →

ti∗; l; φ because they are premises of Rule Code that we have assumed
to hold.

Further, by Lemma Inversion on Rule Composition, Rule Set-

Global, and Rule Const, ti∗ = ε, l1 = l, Cglobal(j) = mut t, and
φ∗v, (t a), (= a (t c)) =⇒ φ.

We have S; Sinst(i) ` ε : ε; l; φ→ ε; l; φ by Rule Empty.

Since a is fresh, φ∗v =⇒ φ∗v, (t a), (= a (t c)).

Thus S; Sinst(i) ` ε : ε; l; φ∗v → ε; l; φ by Rule Subtyping.

Recall that ` (v∗l : tiv; φv)∗, then S; (ti∗; l; φ)? `i v∗l ; ε : ti∗; l; φ by
Rule Code.

Now we must ensure that the new store s′ is well typed: ` s′ : S.

Recall ` s : S, then Sglob(i, j) = mut? t and sglob(i, j) = (t.const c′)
where ` (t.const c′) : (t ag); ◦, (t ag), (= ag (t c

′)) because it is a premise
of ` s : S.
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We know ` (t.const c) : (t.const c) : (t ag2); ◦, (t ag2), (= ag2 (t c)), and
therefore ` s′ : S by Rule Store.

• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) (t.load align o) : ti∗; l; φ
∧ s; (i32.const k) (t.load align o) ↪→i t.const constt(b∗),

where smem(i, k + o, |t|) = b∗

We want to show that S; (ti∗; l; φ)? `i v∗; (t.const constt(b∗)) : ti∗; l; φ

We know (` v : tiv; φv)∗ and S; C ` (i32.const k) (t.load align o) :

ε; ti∗v; φ
∗
v → ti∗; l; φ because they are premises of Rule Code which we

have assumed to hold.

Then, by Lemma Inversion on Rule Composition, Rule Const,
Rule Mem-Load, we know ti∗ = (t a), ti∗v = l, and φ∗v, (t a) =⇒ φ.

We have

S; Sinst(i)` t.const constt(b∗)
: ε; ti∗v; φ

∗
v → (t a); l; φ∗v, (t a), (= a (t c))

by Rule Const.

Then, S; Sinst(i) ` (t.const constt(b∗)) : ε; ti∗v; φ∗v → (t a); l; φ by Rule
Subtyping.

Recall (` v : tiv; φv)∗, then S; (ti∗; l; φ)? `i v∗; t.const constt(b∗) :

ti∗; l; φ by Rule Code.

• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) (t.load tpsx align o) : ti∗; l; φ
∧ s; (i32.const k) (t.load tpsx align o) ↪→i s; t.const constsxt (b∗), where
smem(i, k + o, |tp|) = b∗

Similar to above case, except with |tp| replacing |t| and constsxt (b∗)

instead of constt(b∗).

• Case: S; (ti∗; l; φ)?`i v∗; (i32.const k) (t.load tp_sx? align o)
: ti∗; l; φ

∧ s; (i32.const k) (t.load tp_sx? align o) ↪→i trap
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We know (` v : tiv; φv)∗ because it is a premise of Rule Code which
we have assumed to hold.

We have S; Sinst(i) ` trap : ε; ti∗v; φ
∗
v → ti∗; l; φ by Rule Trap.

Then, S; (ti∗; l; φ)? `i v∗; trap by Rule Code.

• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) (t.const c) (t.store align o) :

ti∗; l; φ
∧ s; (i32.const k) (t.const c) (t.store align o) ↪→i s

′; ε, where s′ =

s with mem(i, k + o, |t|) = bits|t|t (c)

We know (` v : tiv; φv)∗ and

S; Sinst(i)` (i32.const k) (t.const c) (t.store align o)
: ε; ti∗v; φ

∗
v → ti∗; l; φ

because they are premises of Rule Code which we have assumed to
hold.

Then, by Lemma Inversion on Rule Composition, Rule Const,
and Rule Mem-Store, we have ti∗ = ε, tiv = l, and φ∗v, (i32 a1), (=
a1 (i32 k)), (t a2), (= a2 (t c)) =⇒ φ.

Since a1 and a2 are fresh, φ∗v =⇒ φ.

We have S; Sinst(i) ` ε : ε; l; φ∗v → ε; l; φ∗v by Rule Empty.

Then, S; Sinst(i) ` ε : ε; tiv; φ∗v → ε; l; φ by Rule Subtyping.

Recall that (` v : tiv; φv)∗. Therefore, S; (ti∗; l; φ)? `i v∗; ε : ti∗; l; φ
by Rule Code.

Now we must ensure that the new store s′ is well typed: ` s′ : S.

Recall ` s : S, then Smem(i) = n and smem(i) = b∗ where n ≤ |b∗|
because it’s a premise of Rule Store.

Since s′ = s with mem(i, k + o, |t|) = bits|t|t (c), then |s′textmem(i) |=
|stextmem(i)|, and therefore n ≤ |s′textmem(i)|, so s′ : S by Rule
Store.
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• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) (t.const c) (t.store tp align o) :
ti∗1; l1; φ1 → ti∗2; l2; φ2 ∧ ` s : S
∧ s; (i32.const k) (t.const c) (t.store tp align o) ↪→i s

′; ε, where s′ =
s with mem(i, k + o, |tp|) = bits|tp|t (c)

Similar to above case, except with |tp| replacing |t| and constsxt (b∗)

instead of constt(b∗).

• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) (t.const c) (t.store tp? align o) :
ti∗; l; φ
∧ s; (i32.const k) (t.const c) (t.store tp? align o) ↪→i trap

We know (` v : tiv; φv)∗ because it is a premise of Rule Code which
we have assumed to hold.

We have S; Sinst(i) ` trap : ε; ti∗v; φ
∗
v → ti∗; l; φ by Rule Trap.

Then, S; (ti∗; l; φ)? `i v∗; trap by Rule Code.

• Case: S; (ti∗; l; φ)? `i v∗; current memory : ti∗; l; φ
∧ s; current memory ↪→i i32.const |smem(i, ∗)|/64Ki

We know (` v : tiv; φv)∗ and S; Sinst(i) ` current memory : ε; ti∗v; φ
∗
v →

ti∗; l; φ because they are premises of Rule Code which we have assumed
to hold.

Then, by Lemma Inversion on Rule Current-Memory, ti∗ = (i32 a),
ti∗v = l, and φ∗v, (i32 a) =⇒ φ.

Let c = |smem(i, ∗)|/64Ki. Although note that the actual value of c is
irrelevant to the rest of the proof case.

S; Sinst(i) ` i32.const c : ε; l; φ∗v → (i32 a); l; φ∗v, (i32 a), (= a (i32 c))
by Rule Const.

S; Sinst(i) ` i32.const c : ε; ti∗; φ∗v → (i32 a); l; φ by Rule Subtyping.

Recall that (` v : tiv; φv)∗. Thus, S; (ti∗; l; φ)? `i v∗; i32.const c :

ti∗; l; φ by Rule Code.

• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) grow memory : ti∗; l; φ
∧ s; (i32.const k) grow memory ↪→i s

′; i32.const |smem(i, ∗)|/64Ki,
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where s′ = s with mem(i, ∗) = smem(i, ∗)(0)k·64Ki

We have (` v : tiv; φv)∗ and S; Sinst(i) ` (i32.const k) grow memory :

ε; ti∗v; φ
∗
v → ti∗; l; φ because they are premises of Rule Code which we

have assumed to hold.

By Lemma Inversion on Rule Composition, Rule Const, and
Rule Grow-Memory, we also have ti∗ = (i32 a1), ti∗v = l, and
φφvv , (i32 a2), (= a2 (i32 k)), (i32 a1) =⇒ φ.

Further, Smem(i) ≤ |smem(i, ∗)| because it is a premise of Rule Store

on ` s : S, which we have assumed to hold.

Let c = i32.const |smem(i, ∗)|/64Ki. Although note that the actual value
of c is irrelevant to the rest of the proof case.

S; Sinst(i) ` i32.const c : ε; l; φ∗v
→ (i32 a1); l; φ∗v, (i32 a1), (= a1 (i32 c))

by Rule Const.

Since a2 is fresh, φ∗v, (i32 a1) =⇒ φ.

S; Sinst(i) ` i32.const c : ε; ti∗v; φ
∗
v → (i32 a1); l; φ by Rule Subtyping.

S; (ti∗; l; φ)? `i i32.const c : ti∗; l; φ by Rule Code.

Now we must ensure that the new store s′ is well typed: ` s′ : S.

Recall ` s : S, then Smem(i) = n and smem(i) = b∗ where n ≤ |b∗|
because it’s a premise of Rule Store.

Since s′ = s with mem(i, ∗) = smem(i, ∗)(0)k·64Ki, then |s′mem(i)| >
|smem(i)|, and therefore n ≤ |s′mem(i)|, so s′ : S by Rule Store.

• Case: S; (ti∗; l; φ)? `i v∗; (i32.const k) grow memory : ti∗; l; φ
∧ s; (i32.const k) grow memory ↪→i i32.const (−1)

Same as above case since the value of c is irrelevant (and can therefore
be -1).
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• Case: S; (ti∗; l; φ)? `j v∗0; local{i; v∗} e∗ : ti∗; l; φ
∧ s; v∗0; local{i; v∗} e∗ ↪→j s

′; v∗0; local{i; v′∗} e′∗

where s; v∗; e∗ ↪→i s
′; v′∗; e′∗

We want to show that `j s′; v∗0; local{i; v′∗} e′∗ : ti∗; l; φ.

First, we will derive the type of the body of the local block.

We have S; Sinst(j) ` local{i; v∗} e∗ : ε; ti∗v; φ
∗
v0 → ti∗; l; φ where

(` v0 : tiv; φv0)∗ because they are premises of Rule Code.

Then, S; (ti∗; l; φ) `i v∗; e∗ : ti∗; l; φ0, where φ0 =⇒ φ by Lemma
Inversion on Rule Local.

Now, we invoke the inductive hypothesis and use it to rebuild the
original type.

Since S; (ti∗; l; φ) `i v∗; e∗ : ti∗; l; φ0, s ` S and s; v∗; e∗ ↪→i s
′; v′∗; e′∗,

then by the inductive hypothesis we know that ` s′ : S and

S; (ti∗; l; φ) `i v′∗; e′∗ : ti∗; l; φ0

Thus, S; Sinst(j) ` local{i; v′∗} e′∗ : ε; ti∗v; φ
∗
v0 → ti∗; l; φ by Rule

Local.

Finally, S; (ti∗; l; φ)? `i v∗0; local{i; v′∗} e′∗ : ti∗; l; φ and ` s′ : S.

• Case: S; (ti∗; l; φ)? `i v∗; Lk[e∗] : ti∗; l; φ
∧ s; v∗; Lk[e∗] ↪→i s

′; v′∗; Lk[e′∗]
where s; v∗; e∗ ↪→i s

′; v′∗; e′∗

We want to show that S; (ti∗; l; φ)∗ `i Lk[e′∗] : ti∗; l; φ.

First, we will derive the type of the body of the local context.

We have S; C ` Lk[e∗] : ε; ti∗v; φ∗v → ti∗; l; φ,
where C = Sinst(i), local t∗v, return (ti∗; l; φ)? because it is a premise of
Rule Code.

The intuition for the proof is that there is no requirement on what
the label stack is of the module type context C under which Lk[e∗] is
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typed. Thus, we can reduce e∗ outside of Lk, but with the module type
context C as if it were inside of Lk.

The proof continues via induction on k.

– Case: k = 0

Lk[e∗] = v∗0 e
∗ e∗0.

By Lemma Inversion on Rule Composition and Rule Const

S; C ` e∗ : ti∗1; ti∗v; φ∗v, φ∗v0 → ti∗2; l2; φ2 and
S; C ` e∗0 : ti∗2; l2; φ2 → ti∗; l; φ.

Since s; v∗; e∗ reduces, e∗ can be typed with an empty stack pre-
condition. Therefore ti∗2 = ti∗1 ti

∗
3 and S; C ` e∗ : ε; ti∗v; φ∗v, φ∗v0 →

ti∗3; l2; φ2.

Since φ∗v0 only contains fresh index variables, φ∗v =⇒ φ∗v, φ
∗
v0.

S; C ` e∗ : ε; ti∗v; φ∗v → ti∗3; l2; φ2 by Rule Implies.

Then, S; (ti∗; l; φ)? `i v∗; e∗ : ti∗3; l2; φ2 by Rule Code.

Now, we invoke the Lemma Subject Reduction for Code

inductive hypothesis and rebuild the type using the reduced ex-
pression.

Since S; (ti∗; l; φ)∗ `i v∗; e∗ : ti∗3; l2; φ2, s ` S, and s; v∗; e∗ ↪→i

s′; v′; e′∗, then by the inductive hypothesis we know that ` s′ : S
and S; (ti∗; l; φ) `i v′∗; e′∗ : ti∗3; l2; φ2.
S; C ` e′∗ : ε; ti∗v′ ; φ∗v′ → ti∗3; l2; φ2 because it is a premise of Rule
Code.

S; C ` v∗0 : ε; ti∗v′ ; φ
∗
v′ → ti∗1; ti

∗
v′ ; φ

∗
v′ , φ

∗
v0 by Rule Const.

S; C ` e′∗ : ti∗1; ti∗v′ ; φ∗v′ , φ∗v0 → ti∗2; l2; φ2 by Rule Implies and
Rule Stack-Poly.

S; C ` v∗0 e′∗ e∗0 : ε; ti∗v′ ; φ
∗
v′ , φ

∗
v0 → ti∗; l; φ by Rule Composi-

tion.

Therefore, S; (ti∗; l; φ)∗ `i Lk[e′∗] : ti∗; l; φ and ` s′ : S.

– Case: k > 0

Lk[e∗] = v∗k labeln{e∗0} Lk−1[e∗] end e∗k.
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By Lemma Inversion on Rule Const and Rule Composition,
S; C ` labeln{e∗0} Lk−1[e∗] end : ti∗1; ti

∗
v; φ

∗
v, φ
∗
vk → ti∗2; l2; φ2 and

S; C ` e∗k : ti∗2; l2; φ2 → ti∗; l; φ.

By Lemma Inversion on Rule Label, ti∗2 = ti∗1 ti
∗
3, S; C ` e∗0 :

ti∗4; l4; φ4 → ti∗3; l2; φ2, and S; C, label (ti∗4; l4; φ4) ` Lk−1[e∗] :

ε; ti∗v; φ
∗
v, φ
∗
vk → ti∗3; l2; φ2.

Since φ∗vk only contains fresh index variables, φ∗v =⇒ φ∗v, φ
∗
vk.

S; C, label (ti∗4; l4; φ4) ` Lk−1[e∗] : ε; ti∗v; φ∗v → ti∗3; l2; φ2 by Rule
Implies.

S; (ti∗; l; φ)? ` v∗; Lk−1[e∗] : ti∗3; l2; φ2 by Rule Code.

Now, we invoke the inductive hypothesis on Lk−1[e∗] and rebuild
the type using the reduced expression.

Since S; (ti∗; l; φ)∗ `i v∗; Lk−1[e∗] : ti∗3; l2; φ2, s ` S, and
s; v∗; e∗ ↪→i s

′; v′; e′∗, then by the inductive hypothesis on
Lk−1[e∗] we know that ` s′ : S and
S; (ti∗; l; φ) `i v′∗; Lk−1[e′∗] : ti∗3; l2; φ2
S; C, label ` Lk−1[e′∗] : ε; ti∗v′ ; φ∗v′ → ti∗3; l2; φ2 because it is a
premise of Rule Code.

S; C ` v∗k : ε; ti∗v′ ; φ∗v′ → ti∗1; ti
∗
v′ ; φ

∗
v′ , φ

∗
vk by Rule Const.

S; C ` labeln{e∗0} Lk−1[e′∗] end : ε; ti∗v′ ; φ
∗
v′ → ti∗3; l2; φ2 by Rule

Label.

S; C ` labeln{e∗0} Lk−1[e′∗] end : ti∗1; ti
∗
v′ ; φ

∗
v′ , φ

∗
vk → ti∗2; l2; φ2 by

Rule Implies and Rule Stack-Poly.

S; C ` v∗k labeln{e∗0} Lk−1[e∗] end e∗k : ε; ti∗v′ ; φ
∗
v′ → ti∗; l; φ by

Rule Composition.

Therefore, S; (ti∗; l; φ)∗ `i Lk[e′∗] : ti∗; l; φ and ` s′ : S.

• Otherwise: we have (` (t.const c) : (t a); (◦, (t a), (= a (t c))))∗, and
S, Sinst(i) ` e∗ : ε; (t a)∗; (◦, (t a), (= a (t c)))∗ → ti; l; φ

By Lemma Subject Reduction Without Effects, we have
S, Sinst(i) ` e′∗ : ε; (t a)∗; (◦, (t a), (= a (t c)))∗ → ti; l; φ.

Then, S; (ti∗; l; φ)? ` v∗; e′∗ : ti; l; φ
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Lemma 17. Subject Reduction Without Effects

If S; C ` e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2,
` s : S (note: we omit this for cases which do not use s),
and s; v∗; e∗ ↪→ s; v∗; e′∗,
then S; C ` e′∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2

Proof. By case analysis on the reduction rules.

• S; C ` L0[trap] : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ L0[trap] ↪→ trap

This case is trivial since trap accepts any precondition and postcondition.
Thus, S; C ` trap : ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule Trap.

• S; C ` (t.const c1) (t.const c2) t.binop : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c1) (t.const c2) t.binop ↪→ t.const c where c = binop(c1, c2)

We want to show that S; C ` t.const c : ti∗1; l1; φ1 → ti∗2; l2; φ2.

We begin by reasoning about the type of the original instructions
(t.const c1) (t.const c2) t.binop

By Lemma Inversion on Rule Composition, Rule Const, and Rule
Binop, we know that ti∗2 = ti∗1(t a3), l2 = l1, and that

φ1, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2)),

(t a3), (= a3 (binop a1 a2))

=⇒ φ2

Now we will show that t.const c has the appropriate type.

By const, S; C ` t.const c : ε; l1; φ1
→ (t a3); l1; φ1, (t a3), (= a3 (t c))

.

Because c = binopt(c1, c2), then by =⇒ ,

φ1, (t a), (= a (t c)) =⇒ φ1, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2)),

(t a3), (= a3 (binop a1a2))
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Therefore, S; C ` (t.const c) : ti∗1; l1; φ1 → ti∗1 (t a3); l1; φ2, by Rule
Stack-Poly and Rule Subtyping.

• C ` (t.const c1) (t.const c2) t.binop : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c1) (t.const c2) t.binop ↪→ trap

This case is trivial since trap accepts any precondition and postcondition.
Thus, S; C ` trap : ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule Trap.

• C ` (t.const c) t.testop : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c) t.testop ↪→ i32.const c2 where c2 = testop(c)

We want to show that S; C ` i32.const c2 : ti∗1; l1; φ1 → ti∗2; l2; φ2.

First, we use our reasoning principles to get more information about
the original type.

By Lemma Inversion on Rule Composition, Rule Const, and Rule
Testop, we know that ti∗2 = ti∗1 (t a2), l2 = l1, and that

φ1, (t a1), (= a1 (t c)),

(i32 a2), (= a2 (testop a1))

=⇒ φ2

Now we show that i32.const c2 has the appropriate type.

By const, C ` i32.const c2 : ε; l1; φ1
→ (i32 a2); l1; φ1, (i32 a2), (= a2 (t c2))

.

Because c2 = testop(c), then by =⇒ ,

φ1, (t a), (= a (t c2)) =⇒ φ1, (t a1), (= a1 (t c)),

(i32 a2), (= a2 (testop a1))

Therefore, S; C ` t.const c2 : ti∗1; l1; φ1 → ti∗1 (t a2); l1; φ2, by Rule
Stack-Poly and Rule Subtyping

• S; C ` (t.const c1) (t.const c2) t.relop : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c1) (t.const c2) t.relop ↪→ t.const c where c = relop(c1, c2)
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This case is identical to the (t.const c1) (t.const c2) t.binop ↪→ t.const c
case, except that binop is replaced with relop.

• S; C ` unreachable : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ unreachable ↪→ trap

This case is once again trivial since trap accepts any precondition and
postcondition. Thus, S; C ` trap : ti∗1; l1; φ1 → ti∗2; l2; φ2 by trap.

• S; C ` nop : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ nop ↪→ ε

We want to show that S; C ` ε : ti∗1; l1; φ1 → ti∗2; l2; φ2.

This case follows from the fact that the postcondition ti∗2; l2; φ2 for nop
must be immediately reachable from the precondition ti∗1; l1; φ1.

By Lemma Inversion on Rule Nop, we know that ti∗2 = ti∗1, l2 = l1,
and φ1 =⇒ φ2.

Then, S; C ` ε : ε; l; g; φ1 → ε; l; g; φ1 by Rule Empty.

Thus, S; C ` εti∗1; l; g; φ1 → ti∗1; l; g; φ2 by Rule Stack-Poly and
Rule Subtyping.

• S; C ` (t.const c) drop : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c) drop ↪→ ε

We want to show that S; C ` ε : ti∗1; l1; φ1 → ti∗2; l2; φ2.

Like the above case, this follow from the fact that the postcondi-
tion ti∗2; l2; φ2 must be immediately reachable from the precondition
ti∗1; l1; φ1. However, there are a few extra steps since we now have to
reason about two different instructions (and therefore Rule Composi-

tion).

By Lemma Inversion on Rule Composition, Rule Const, and Rule
Drop, we know that ti∗2 = ti∗1, l2 = l1, and φ1 =⇒ φ2.

By empty, S; C ` ε : ε; l1; φ1 → ε; l1; φ1.

Thus, S; C ` εti∗1; l; g; φ1 → ti∗1; l; g; φ2 by Rule Stack-Poly and
Rule Subtyping.
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• Case: S; C ` (t.const c1) (t.const c2) (i32.const 0) select
: ti∗1; l1; φ1 → ti∗2; l2; φ2

∧ (t.const c1) (t.const c2) (i32.const 0) select ↪→ (t.const c2)

We want to show that S; C ` (t.const c2) : ti∗1; l1; φ1 → ti∗2; l2; φ2.

First, we reason about what the original type must look like.

By Lemma Inversion on Rule Composition, Rule Const, and Rule
Select, we know that ti∗2 = ti∗1 (a3 ), l2 = l1, and

φ1, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2)),

(i32 a), (= a (i32 0)),

(t a3), (if (= a (i32 0)) (= a3 a2) (= a3 a1))

=⇒ φ2

Now we show that (t.const c2) has the appropriate type.

By Rule Const,
C ` (t.const c2) : ε; l1; φ1

→ (t a3); l1; φ1, (t a3), (= a3 (t c2))

Then, S; C ` (t.const c2) : ti∗1; l1; φ1 → ti∗1 (t a3); l1; φ1, (t a3), (=
a3 (t c2)) by Rule Stack-Poly.

By =⇒ , we have

φ1, (t a3), (= a3 (t c2)) =⇒ φ1, (t a1), (= a1 (t c1)),

(t a2), (= a2 (t c2)),

(i32 a), (= a (i32 0)),

(t a3), (if (= a (i32 0))

(= a3 a2)

(= a3 a1))

Therefore, S; C ` (t.const c2) : ti∗1; l1; φ1 → ti∗2 (t a3); l1; φ2 by sub −
typing

• Case: S; C ` (t.const c)n block (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗ end :
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ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c)n block (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗ end
↪→ labelm{ε} (t.const c)n e∗ end

We want to show that labelm{ε} (t.const c)n e∗ end : ti∗1; l1; φ1 →
ti∗2; l2; φ2.

First, we reason about ti∗1; l1; φ1 → ti∗2; l2; φ2.

We know S; C` block (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗ end
: ti∗1 (t a)

n; l1; φ1, (t a)n, (= a (t c))n → ti∗2; l2; φ2
by Lemma Inversion on Rule Composition and Rule Const.

By Lemma Inversion on Rule Block, l1 = l3 and l2 = l4. We will
use l1, l2 in place of l3, l4, respectively, for the remainder of the case.

Then, S; C, label(tm4 ; l2; φ4) ` e∗ : (t a)n; l1; φ3 → tim4 ; l2; φ4 because
it is a premise of Rule Block which we have already assumed to hold.

Also, (t a)n = tin3 , ti∗2 = ti∗1 ti
m
4 , φ1, (t a)n, (= a (t c))n =⇒ φ3, and

φ4 =⇒ φ2 by Lemma Inversion on Rule Block.

Now we have all the information we need to show that
labelm{ε} (t.const c)n e∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2.

Remember that Rule Label uses the types of both the body
(t.const c)n e∗ and the stored instructions ε.

First, we show the type of the body.

We have

S; C, label(tm4 ; l2; φ4) ` (t.const c)n : ε; l1; φ1
→ (t a)n; l1; φ1, (t a)n, (= a (t c))n

by Rule Const.

Then, since φ1, (t a)n, (= a (t c))n =⇒ φ3, we have

S; C, label(tn3 ; l1; φ3) ` (t.const c)n : ε; l1; φ1 → (t a)n; l1; φ3

by Rule Subtyping.
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Recall we have S; C, label(tm4 ; l2; φ4) ` e∗ : (t a)n; l1; φ3 → tim4 ; l2; φ4.

Then S; C, label(tm4 ; l2; φ4) ` (t.const c)n e∗ : ε; l1; φ1 → tim4 ; l2; φ4 by
Rule Composition.

We have the type we want from the body. Now we get the type we
want of the stored instructions. We already have the postcondition we
want, tm4 ; l2; φ4, in the label stack, so we want the stored instruction
to just pass the information through. Since the stored instructions is ε,
this is simple to show: we have S; C ` ε : tim2 ; l2; φ4 → tim2 ; l2; φ4 by
Rule Empty and Rule Stack-Poly.

Therefore, C ` labelm{ε} (t.const c)n e∗ end : ε; l1; φ1 → tim2 ; l2; φ4 by
label.

Finally, since φ4 =⇒ φ2, S; C ` labelm{ε} (t.const c)n e∗ end :

ti∗1; l1; φ1 → ti∗1 ti
m
4 ; l2; φ2 by Rule Stack-Poly and Rule Subtyping.

• Case: S; C ` (t.const c)n loop (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗ end :

ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (t.const c)n loop tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗ end
↪→ labeln{loop tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗ end} (t.const c)n e∗ end

We want to show that labeln {loop tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗ end}
(t.const c)n e∗ end : ti∗1; l1; φ1 → ti∗2; l2; φ2

This rule is similar to the above one, except that we must reason a
little more about the stored instructions since we are storing the loop.

We start by figuring out what ti∗1; l1; φ1 → ti∗2; l2; φ2 looks like.

We know

S; C ` loop tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗ end
: ti∗1 (t a)

n; l1; φ1, (t a)n, (= a (t c))n → ti∗2; l2; φ2

by Lemma Inversion on Rule Composition and Rule Const.

By Lemma Inversion on Rule Loop, l1 = l3 and l2 = l4. We will use
l1, l2 in place of l3, l4, respectively, for the remainder of the case.
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Then, S; C, label(tm4 ; l2; φ4) ` e∗ : (t a)n; l1; φ3 → tim4 ; l2; φ4 because
it is a premise of Rule Loop which we have already assumed to hold.

Also, (t a)n = tin3 , ti∗2 = ti∗1 ti
m
4 , φ1, (t a)n, (= a (t c))n =⇒ φ3, and

φ4 =⇒ φ2 by Lemma Inversion on Rule Loop.

Now we have all the information we need to show that

S; C ` labeln{loop tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗ end} (t.const c)n e∗ end
: ti∗1; l1; φ1 → ti∗2; l2; φ2

We have S; C, label(tn3 ; l1; φ3) ` (t.const c)n : ε; l1; φ1 →
(t a)n; l1; φ1, (t a)n, (= a (t c))n by Rule Const.

Then, since φ1, (t a)n, (= a (t c))n =⇒ φ3, we have

S; C, label(tn3 ; l1; φ3) ` (t.const c)n : ε; l1; φ1 → (t a)n; l1; φ3

by Rule Subtyping.

Recall that S; C, label(tn3 ; l1; φ3) ` e∗ : tin1 ; l1; φ3 → tim2 ; l1; φ4.

Then S; C, label(tn3 ; l1; φ3) ` (t.const c)n e∗ : ε; l1; φ1 →
tim4 ; l2; φ4 by composition.

We have the type we want from the body. Now we get the type we want
of the stored instructions, which in this case is the loop. Since we already
have the necessary type information of the body, we then have that
S; C ` loop tfi e∗ end : (t a)n; l1; φ1, (t a)n, (= a (t c))n → tim4 ; l2; φ4
by Rule Loop.

Therefore, S; C ` labelm{loop tfi e∗ end} vn e∗ end : ε; l1; φ1 →
tim4 ; l2; φ4 by Rule Label.

Finally, since φ4 =⇒ φ2, S; C ` labelm{ε} (t.const c)n e∗ end :

ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule Stack-Poly and Rule Subtyping.

• Case: S; C ` (i32.const 0) if (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗1 else e∗2 end :

ti∗1; l1; φ1 → ti∗2; l2; φ2
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∧ (i32.const 0) if tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗1 else e∗2 end
↪→ block tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗2 end

We want to show that

block tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗1 end : ti∗1; l1; φ1 → ti∗2; l2; φ2

First, we reason about ti∗1; l1; φ1 → ti∗2; l2; φ2.

We know

S; C` if tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗1 else e∗2 end
: ti∗1 (t a); l1; φ1, (t a)

n, (= a (t 0))n → ti∗2; l2; φ2

by Lemma Inversion on Rule Composition and Rule Const.

Then, we have S; C, label(tim4 ; l4; φ4) ` e∗2 : tin3 ; l3; φ3, (= a (i32 0))→
tim4 ; l4; φ4 because it is a premise of Rule If which we have assumed to
hold.

By Lemma Inversion on Rule If, ti∗1 = ti∗0 ti
n
3 and ti∗2 = ti∗0 ti

m
4

for some ti∗0, l1 = l3, l2 = l4, φ1, (i32 a), (= a (i32 0)) =⇒ φ3, and
φ4 =⇒ φ2.

Now, we show that block tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗1 end : ti∗1; l1; φ1 →
ti∗2; l2; φ2

S; C ` block tin3 ; l3; φ3, (= a (i32 0)) → tim4 ; l4; φ4 e∗2 end by Rule
Block.

Since a is fresh after reduction, φ1 =⇒ φ1, (i32 a), (= a (i32 0)) by
=⇒ .

Therefore, S; C ` block tin3 ; l3; φ3, (= a (i32 0))→ tim4 ; l4; φ4 e∗2 end :

ti∗0 ti
n
3 ; l1; φ1, (t a), (= a (i32 0)) → s ti∗0 ti

m
4 ; l2; φ2 by Rule Stack-

Poly and Rule Subtyping.
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• Case: S; C ` (i32.const k + 1) if (tin3 ; l3; φ3 → tim4 ; l4; φ4) e∗1
else e∗2
end

: ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (i32.const k + 1) if tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗1 else e∗2 end
↪→ block tin3 ; l3; φ3 → tim4 ; l4; φ4 e∗1 end

This case is the same as above, except with e2 instead of e1 and k + 1

instead of 0.

• Case: S; C ` labeln{e∗} vn end : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ labeln{e∗} vn end ↪→ vn

We want to show that vn : ti∗1; l1; φ1 → ti∗2; l2; φ2

We first figure out what ti∗1; l1; φ1 → ti∗2; l2; φ2 looks like.

By Lemma Inversion on Rule Label, we know ti∗2 = ti∗1 ti
n
4 .

S; C ` vn : ε; l1; φ1 → tin4 ; l2; φ2 because it is a premise of Rule Label

which we have assumed to hold.

Now we can show that vn has the same type.

Therefore, S; C ` vn : ti∗1; l1; φ1 → ti∗1 ti
n
4 ; l1; φ2 by Rule Stack-Poly.

• Case: S; C ` labeln{e∗} trap end : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ labeln{e∗} trap end ↪→ trap

Trivially, C ` trap : ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule Trap since trap
accepts any precondition and postcondition.

• Case: S; C ` labeln{e∗} Lj [(t.const c)n (br j)] end : ti∗1; l1; φ1 →
ti∗2; l2; φ2
∧ labeln{e∗} Lj [(t.const c)n (br j)] ↪→ (t.const c)n e∗

We want to show that vn e∗ : ti∗1; l1; φ1 → ti∗2; l2; φ2.

Intuitively, this proof works because the premise of Rule Br assumes
that Clabel(i) is the precondition (tin1 ; l3; φ5, as we will soon see) of the
stored instructions e∗ in the i + 1th label, and the postcondition of
the label block is immediately reachable from the postcondition of e∗.
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Meanwhile, that assumptions is ensured by Rule Label, which ensures
that e∗ has the same precondition as the i+1th branch postcondition on
the label stack and the same postcondition as the label block instruction.

By Lemma Inversion on Rule Label, ti∗2 = ti∗1 ti
∗
4 for some ti∗4.

Also, S; C, label(tin1 ; l3; φ5)j ` (t.const c)n (br j) : ε; l3; φ3 → ti∗∅; l∅; φ∅
for some l3 and φ3, where φ5 = φ3, (t a)

n, (= a (t c))n, by Lemma
Inversion on Rule Label and Rule Br.

Then, S; C, label(tin1 ; l3; φ5)j ` (br j) : tin1 ; l3; φ5 → ti∗∅; l∅; φ∅, by
Lemma Inversion on Rule Composition and Rule Const.

Then, S; C, label(tin1 ; l3; φ5)j ` (t.const c)n : ε; l3; φ3 → tin1 ; l3; φ5
since it is a premise of composition which we have assumed to hold.

Further, S; C ` e∗ : tin1 ; l3; φ5 → ti∗2; l2; φ4 since it is a premise of Rule
Label which we have assumed to hold, and φ4 =⇒ φ2 by Lemma
Inversion on Rule Label.

Then, S; C ` (t.const c)n e∗ : ε; l1; φ1 → ti∗2; l2; φ4 by Lemma Lift-

Consts and Rule Composition.

Finally, C ` (t.const c)n e∗ : ti∗1; l1; φ1 → ti∗1 ti
∗
4; l2; φ2 by Rule Stack-

Poly and Rule Subtyping.

• Case: S; C ` (i32.const 0) (br if j) : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (i32.const 0) (br if j) ↪→ ε

In the case that br if does not branch, it acts exactly like drop (consumes
(i32.const 0) and reduces to the empty sequence). Thus, this case is the
same as the drop case.

• Case: S; C ` (i32.const k + 1) (br if j) : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ (i32.const k + 1) (br if j) ↪→ br j

We want to show that S; C ` br j : ti∗1; l1; φ1 → ti∗2; l2; φ2

We know S; C ` br table j : ti∗1 (i32 a); l1; φ1, (t a), (= a (i32 k)) →
ti∗2; l2; φ2 by Lemma Inversion on Rule Composition and Rule
Const.
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Then we know Clabel(j) = (ti∗3; l1; φ3), where ti∗1 = ti∗0 ti
∗
3, ti∗2 = ti∗0 ti

∗
3,

and φ1, (t a),¬(= a (i32 0)) =⇒ φ3 by Lemma Inversion on Rule
Br-Table.

Now we can show that S; C ` br j : ti∗0 ti
∗
3; l1; φ1 → ti∗0 ti

∗
3; l2; φ2.

We have S; C ` br j : ti∗3; l1; φ3 → ti∗3; l2; φ2 by Rule Br.

Then, S; C ` br j : ti∗3; l1; φ1, (t a),¬(= a (i32 0)) → ti∗3; l2; φ2, and
therefore S; C ` br j : ti∗3; l1; φ1, (t a), (= a (i32 k)) → ti∗3; l2; φ2 by
Rule Subtyping

Because a is fresh after reduction, φ1 =⇒ φ1, (i32 a), (= a (i32 k)).

Therefore, C ` br j : ti∗0 ti
∗
3; l1; φ1 → ti∗0 ti

∗
3; l2; φ2 by Rule Stack-

Poly and Rule Subtyping.

• Case: S; C ` (i32.const k) (br table jk1 j j
∗
2) : ti

∗
1; l1; φ1 → ti∗2; l2; φ2

∧ (i32.const k) (br table jk1 j j
∗
2) ↪→ br j

We want to show that S; C ` br j : ti∗1; l1; φ1 → ti∗2; l2; φ2

This case is similar in structure to the (i32.const k + 1) (br if j) case.

We know

S; C ` br table jk1 j j
∗
2 : ti∗1 (i32 a); l1; φ1, (t a), (= a (i32 k))

rightarrowti∗2; l2; φ2

by Lemma Inversion on Rule Composition and Rule Const.

Then we know Clabel(j) = (ti∗3; l1; φ3), where ti∗1 = ti∗0 ti
∗
3, ti∗2 = ti∗0 ti

∗
3,

and φ1, (t a),¬(= a (i32 0)) =⇒ φ3 by Lemma Inversion on Rule
Br-Table.

Now we can show that S; C ` br j : ti∗0 ti
∗
3; l1; φ1 → ti∗0 ti

∗
3; l2; φ2.

We have S; C ` br j : ti∗3; l1; φ3 → ti∗3; l2; φ2 by Rule Br.

Then, S; C ` br j : ti∗3; l1; φ1, (t a), (= a (i32 k))→ ti∗3; l2; φ2 by Rule
Subtyping.

Because a is fresh after reduction, φ1 =⇒ φ1, (i32 a), (= a (i32 k)).
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Therefore, C ` br j : ti∗0 ti
∗
3; l1; φ1 → ti∗0 ti

∗
3; l2; φ2 by Rule Stack-

Poly and Rule Subtyping.

• Case: C ` (i32.const k + n) (br table jk1 j) : ti
∗
1; l1; φ1 → ti∗2; l2; φ2

∧ (i32.const k + n) (br table jk1 j) ↪→ br j

Same as above.

• Case: S; C ` call j : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ s; call j ↪→i call sfunc(i, j)

We want to show that call sfunc(i, j) : ti
∗
1; l1; φ1 → ti∗2; l2; φ2.

By Lemma Inversion on Rule Call, we know that l2 = l1, ti∗1 = ti∗0 ti
∗
3,

ti∗2 = ti∗0 ti
∗
4, φ1 =⇒ φ3, and φ3, φ4 =⇒ φ2, where ti∗3; l3; φ3 →

ti∗4; l4; φ4 = Cfunc(j).

We also know S ` sinst(i) : C since it is a premise of ` s : S which we
have assumed to hold.

Then we know S ` sfunc(i, j) : ti
∗
3; l3; φ3 → ti∗4; l4; φ4 because it is a

premise of S ` sinst(i) : C.

Therefore, S; C ` call sfunc(i, j) : ti
∗
3; l3; φ3 → ti∗4; l4; φ4 by Rule Call-

Cl.

Thus, S; C ` call sfunc(i, j) : ti∗0 ti
∗
3; l1; φ1 → ti∗0 ti

∗
4; l2; φ2 by Rule

Stack-Poly and Rule Subtyping.

• Case: S; C ` (i32.const j) call indirect ti∗3; l3; φ3 → ti∗4; l4; φ4
: ti∗1; l1; φ1 → ti∗2; l2; φ2

∧ s; (i32.const j) call indirect ti∗3; l3; φ3 → ti∗4; l4; φ4 ↪→i call stab(i, j)

where stab(i, j)code = (func tfi0 local t∗ e∗) and tfi0 <: ti
∗
3; l3; φ3 →

ti∗4; l4; φ4

We want to show that call stab(i, j) : ti
∗
1; l1; φ1 → ti∗2; l2; φ2.

By Lemma Inversion on Rule Composition, Rule Const, and Rule
Call-Indirect, we know that ti∗1 = ti∗0 ti

∗
3 and ti∗2 = ti∗0 ti

∗
4 for some

ti∗0, l1 = l)2, φ1 =⇒ φ3, and φ4 =⇒ φ2.
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We know S ` stab(i, j) : tfi0 since it is a premise of ` s : S which we
have assumed to hold.

Then, S; C ` call stab(i, j) : tfi0 by Rule Call-Cl.

S; C ` call stab(i, j) : ti
∗
3; l1; φ3 → ti∗4; l2; φ4 by Rule Subtyping.

Therefore, S; C ` call stab(i, j) : ti
∗
0 ti
∗
1; l1; φ1 → ti∗0 ti

∗
1; l2; φ2 by Rule

Stack-Poly.

• Case: S; C ` (i32.const j) call indirect tfi : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ s; (i32.const j) call indirect tfi ↪→i trap.

Trivially, S; C ` trap : ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule Trap.

• Case: S; C ` vn call cl : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ s; vn call cl ↪→i localm {i; vn (t.const 0)k}

block (ε; tin3 (t a)n; φ3, (t a)k, (= a (t 0))k

→ tim4 ; l4; φ4)
e∗

end
end

where clcode = func (tin3 ; ε; φ3 → tim4 ; l4; φ4) local tk e∗ and clinst = i

Let

tfi0 = ti∗1; l1; φ1 → ti∗2; l2; φ2,
tfi1 = ε; tin3 (t a)n; φ3, (t a)k, (= a (t 0))k → tim4 ; l4; φ4, and
tfi2 = tin3 ; ε; φ3 → tim4 ; l4; φ4

We want to show that

S; C `i localm {i; vn (t.const 0)k}
block ε; tin3 (t2 a2)

n; φ3 → tim4 ; l4; φ4 e∗ end
end

: ti∗1; l1; φ1 → ti∗2; l2; φ2

By Lemma Inversion on Rule Composition, Rule Const, and Rule
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Call-Cl, we know l2 = l1, ti∗2 = ti∗1 ti
m
4 , φ1, (t2 a2), (eq a2 (t2 c)) =⇒

φ3, φ4 =⇒ φ2, and S ` cl : tfi1.

We also know that

S; C ` (t2.const c)n : ti∗1; l1; φ1 → ti∗1 ti
n
5 ; l1; φ1, (t2 a2), (= a2 (t2 c))

where vn = (t2.const c)n, and

S; C ` call cl : ti∗1 ti
n
5 ; l1; φ1, (t2 a2)n, (= a2 (t2 c))

n → ti∗ tim2 ; l2; φ2

because they are premises of Rule Composition which we have assumed
to hold.

We have C ` func tfi2 local tk e∗ : tfi2 because it is a premise of
S ` cl : tfi2.

Then,

S; C, local tn2 t
k, label (tim4 ; l4; φ4), return (tim4 ; l4; φ4) ` e∗ : tfi1

because it is a premise of the above derivation.

We can now reconstruct the type after reduction.

S; C, local tn2 tk, return (tim4 ; l4; g4; φ4) ` block tfi1 e∗ end : tfi1 by
Rule Block.

` v : (t2 a2); ◦, (t2 a2), (eq a2 (t2 c)))
n by Rule Admin-Const, and

(` (tconst 0) : (t a); ◦, (t a), (eq a (t 0)))k by Rule Admin-Const.

Then, S; (tim4 ; l4; φ4) ` vn (tconst 0)k; block tfi2 e∗ end : tim4 ; l4; φ4
by Rule Code.

Recall that φ4 =⇒ φ2.

Then, S; (tim4 ; l4; φ4) ` vn (tconst 0)k; block tfi2 e∗ end : tim4 ; l4; φ2
by Rule Subtyping.

S; C ` localm{j; vn (t.const 0)k} block tfi2 e∗ end end : ε; l1; φ1 →
ε tim4 ; l1; φ1, φ2 by Rule Local.
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S; C ` localm{j; vn (t.const 0)k} block tfi2 e∗ end end : tfi0 by Rule
Stack-Poly.

• Case: S; C ` localn{i; v∗l } trap end : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ localn{i; v∗l } trap end ↪→ trap

Trivially, S; C ` trap : ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule Trap.

• Case: S; C ` localn{i; v∗l } Lk[(t.const c)n return] end : ti∗1; l1; φ1 →
ti∗2; l2; φ2
∧ localn{i; v∗l } Lk[(t.const c)n return] end ↪→j (t.const c)n

We want to show that (t.const c)n : ti∗1; l1; φ1 → ti∗2; l2; φ2

This proof is similar to the br case above, but with a few extra steps.

First, we derive the type of (t.const c)n from the precondition of return.

ti∗2 = ti∗1 tin, l1 = l2, S; (tin3 ; l2; φ3) `i v∗l ; Lk[(t.const c)n return] :

tin3 ; l2; φ3, and φ1, φ3 =⇒ φ2 by Lemma Inversion on Rule Local.

(` vl : til; φl)∗ and S; Cl ` Lk[(t.const c)n return] : ε; ti∗l ; φ
∗
l →

tin; l3; φ3, where Cl = Sinst(i), local t∗, return (tin; l3; φ3), because
they are premises of Rule Code that we have assumed to hold.

ti∗l = (tl al)
∗ because it is a premise of Rule Admin-Const which we

have assumed to hold.

By Lemma Inversion on Rule Composition and Rule Return,
S; Cl ` (t.const c)n : ti∗4; l4; φ4 → tin3 ; l3; φ3, and S; Cl ` return :

tin3 ; l3; φ3 → ti∗∅; l∅; φ∅.

By Lemma Inversion on Rule Const, l4 = l3 and φ4, (t a)
n, (=

a (t c))n =⇒ φ3.

Now we can show that (t.const c)n : ti∗1; l1; φ1 → ti∗2; l2; φ2

We have S; C ` (t.const c)n : ε; l3; φ4 → tin3 ; l3; φ4, (t a)n, (= a (t c))n

by Rule Const.

Then, S; C ` (t.const c)n : ε; ti∗l ; φ
∗
l → tin3 ; l3; φ4, (t a)n, (= a (t c))n

by Lemma Lift-Consts.
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By Lemma Inversion on Rule Const, φ∗l =⇒ φ4. Further, since a∗l
are fresh, ◦ =⇒ φ∗l .

Thus, S; C ` (t.const c)nε; ti∗l ; ◦ → tin3 ; l3; φ4, (t a)n, (= a (t c))n by
Rule Subtyping.

We know then that (t a)n, (= a (t c))n =⇒ φ4, (t a)
n, (= a (t c))n by

Lemma Inversion on Rule Const, and therefore that φ4 only contains
constraints on fresh variables.

Then, S; C ` (t.const c)n : ε; l1; φ1 → tin3 ; l1; φ1, (t a)n, (= a (t c))n by
Rule Const.

Then, S; C ` (t.const c)n : ε; l1; φ1 → tin3 ; l2; φ1, φ4, (t a)n, (= a (t c))n,
S; C ` (t.const c)n : ε; l1; φ1 → tin; l2; φ1, φ3, and finally S; C `
(t.const c)n : ε; l1; φ1 → tin; l2; φ2 by Rule Subtyping.

Therefore, S; C ` (t.const c)n : ti∗1; l1; φ
∗
l → ti∗2; l2; φ2 by Rule Stack-

Poly.

• Case: S; C ` v (tee local j) : ti∗1; l1; φ1 → ti∗2; l2; φ2
∧ v (tee local j) ↪→ v v (set local j)

Note: We can include tee local here because it does not actually need
to reason about locals since it gets reduced to a set local , so we only
have to do the reasoning in the set local case.

We want to show that v v (set local j) : ti∗1; l1; φ1 → ti∗2; l2; φ2.

As usual, we start by figuring out what ti∗1; l1; φ1 → ti∗2; l2; φ2 looks
like.

By Lemma Inversion on Rule Composition, we know that S; C ` v :

ti∗1; l1; φ1 → ti∗3; l3; φ3, and S; C ` tee local j : ti∗3; l3; φ3 → ti∗2; l2; φ2.

By Lemma Inversion on Rule Tee-Local, we also know that ti∗3 =
ti∗ (t a), ti∗2 = ti∗ (t a2), l2 = l3[j := (t a)], and φ3, (t a2), (= a2 a) =⇒
φ2.

Then, by Lemma Inversion on Rule Const, t.const c = v, ti∗1 = ti∗,
l3 = l1, and φ1, (t a), (= a (t c)) =⇒ φ3.
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Now, we can show that v v (set local j) : ti∗1; l1; φ1 → ti∗2; l2; φ2.

We have S; C ` v v : ε; l1; φ1 → (t a2) (t a); l1; φ1, (t a2), (=

a2 (t c)), (t a), (= a (t c)) by Rule Const.

We also have (t a2), (= a2 (t c)), (t a), (= a (t c)) =⇒ (t a2), (=

a2 a), (t a), (= a (t c)) by =⇒ .

Then, S; C ` v v : ε; l1; φ1 → (t a2) (t a); l1; φ2 by Rule Subtyping.

We have S; C ` set local j : (t a); l1; φ2 → ε; l1[j := (t a)]; φ2 by Rule
Set-Local.

Therefore, S; C ` v v (set local j) : ti∗1; l1; φ1 → ti∗2; l2; φ2 by Rule
Composition and Rule Stack-Poly.
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