
ZooKeeper
Hunt et al. ZooKeeper: Wait-free coordination for Internet-

scale systems. ATC 2010

1

Plan for today
• 1st hour: Discuss ZooKeeper

• last 30 minutes : 4m breakout room project chats

• Reminder:

• Post your project ideas to piazza/slack.

• Proposal drafts due next Friday (Oc 9th)

2

ZooKeeper + (Paxos and
RSMs)

• What is the relationship between ZooKeeper
and Paxos/RSMs?

• Uses something like Paxos (no details on how
different)

• ABcast for ordering operations from leader to
replicas

• Paxos vs. Virtual synchrony (ABcast): ISIS

3

ZooKeeper
• What’s the provided abstraction?

• “Coordination service” ~ “Creative File System service”, “MultiCore Data
Structure Service”

• Hierarchical tree of znodes with concurrency control

• znodes are read in full, and written in full (atomic read/write operations)

• Ephemeral znodes: depend on lifetime of clients; they are removed
when the client session is terminated (always leaf nodes)

• e-znodes exposes failure of the corresponding session to everyone

• Create/delete/exist/getData/setData/getChildren/sync / watch (callback)

4

ZooKeeper
• Reads handled by node that client connected to

• Writes sent to leader, which distributes to
followers using ABCast (ZAB)

• Reads may be stale (“wait free!”; multicore term)

• Ordering constraints using zxid

• Writes carry zxid and detect if operating on stale
data

5

ZooKeeper
• Stale reads — good? Ok? Bad?

• ZK designed for read heavy workloads

• 80% reads => stale data chance is low

• Make up for stale reads with sync

• Design idea: build simple first, build for common case, more complexity can
be optionally added on top (not used by all clients), don’t impose on all clients!

• ZK is built for use by developers; make it easy for them use! And make it fast.

• Con: this is unexpected for people who assume a “file system” like thing

• Doesn’t work that great with heavy write workload

6

ZooKeeper
• What can you build with it? (Layers of synchronization over some state)

• General abstraction (can do all the things): not as efficient as a more precise abstraction
(e.g., lock server)

• Group membership (track who is in the group). Choose znode G for group. A node starts,
creates an e-znode below G. Member leaves => e-znode deleted. Nodes can watch for
changes/updates (e.g., nodes can watch an e-znode for the leader node)

• Config management: Store config in a znode C. Nodes watch C and detect changes.
(Generalizes to hierarchical config)

• Herd: group of nodes that all do the same thing. (All attempt to lock)

• Lock herd effect management: sequence of watches where each node watches on a
previous node’s e-znode, which notifies them when they should do their operation (grab
lock). Creates a ordered queue of nodes.

• Note: all of these require a friendly developer that knows how to structure their application

7

ZooKeeper

• Generic abstraction = microkernel for distributed
systems?

• Pushes logic to clients/applications

8

ZooKeeper
• Implementation/design

• “Fuzzy snapshots” — but note, these are not distributed snapshots.
Used for faster boot-up of new replicas that might have failed + replay
message on top of the snapshot

• Idempotent operations — node translates an API call into an
idempotent op before sending to leader (NFS style). Relax re-
transmission guarantees: okay to retransmit ops.

• Write ahead logging for recovery (classic DB technique)

• Writes don’t return unless (1) majority nodes know about the write, (2)
the write is reflected on disk at each of those nodes

• => rationale for separating read and write paths

9

ZooKeeper
• Evaluation

• More servers => closer ABcast => slower writes (lower write
throughput)

• Fewer nodes => less potential for stale data

• Staleness is a function of the network

• Fewer nodes => less fault tolerance (can handle f out of 2f+1 failures:
same as Paxos)

• Fewer nodes => slower reads (lower read throughput)

• Want: evaluate the stale reads — how often are read stales for
different mixes of reads/writes

10

Next paper: PBFT
• Practical Byzantine fault tolerance system

• Another “big system” paper

• Handles byzantine faults!

• Influenced all future generations of BFT systems

• Barbara Liskov — Turing Award winner :-)

11

Project speed-dating
• I’ll create random breakout rooms, 2 people each for 4-5 min

• First person presents their idea

• I’ll send a global msg => signal to switch

• Second person presents their idea

• I’ll send a global msg => signal to switch

• Mutual discussion

• End break out room => rejoin global session

• Repeat, until end of class.

12

