
Logical time
and Vector Clocks

Fundamentals of Distributed Computing: A Practical Tour of Vector Clock Systems.

Announcements
• Please set a zoom photo of yourself

• Make sure you’re on Piazza

• Project details coming soon, but good to start
thinking about what you may want to work on

• Project speed-dating in class (bring 2 ideas)

• Long project proposal stage (lots of writing)

Intro
• vClocks used to address causality problem

• is a causally related to b? i.e., can a influence b or vice versa

• Why do we care about time?

• To determine global state of the system, we need time. Without it, we don't know the
ordering of events that shape the global state of the system.

• Dist systems are hard to program. Trad. reality (?) expects certain order or invariants. Dist.
systems don’t have this. So manipulating time helps to generate abstractions that match
this context.

• If you don't know time, you can override recent changes made by another node (tracking
changes)

• Distinguishing old and new … tracking events!

• Dist. System = CODE + ENVIRONMENT. ENV is typically non-deterministic => ordering of
events is unreliable/cannot be predicted ahead of time.

Intro
• vClocks used to address causality problem.

Determine global order across all processes.

• vClock is a timestamp

• vClock is a record of a processor’s point of view
of what it could have been influenced by

• vClock is local knowledge of other processes
execution “time” (# steps)

Intro
• vClock is a record of a processor’s point of view of what it

could have been influenced by

• Upsetting issues:

• Scalability: vClocks require linear space in nodes in the
system

• More nodes => bigger vClock

• bigger vClock => more bandwidth

• Can’t offload the bandwidth cost off of the node

Logical clocks

• What are they, and why do we need them?

Logical clocks
• Why logical and not physical?

• Logical clock requires less space (?)

• Msg latency is a problem: phys clocks measure real time intervals.
Msgs “use” real time, but an indeterminate amount => if you
broadcast a phys timestamp then (1) it will be wrong on receipt
(late), and (2) unpredictably late.

• Phys clocks could order local events. If I only have one local phys
clock, I can use it to order local non-deterministic events (multi
threaded/multi core).

• You can synchronize the p. clocks! But then you have to decide on
accuracy (have to decide what is good enough)

Logical clocks

• If my activity has a faster resolution than my p.
clock, then I'm in trouble (won’t get an exact
timestamp)

•

Application of v. clocks
• Causal bcast, message stability, message pattern detection

• Writing consistency: Perfect examples to illustrate why v clocks useful

• What are these white and black events? Black events are ones that you care about (e.g.,
you only care about database operations). I only want to reason about the ordering
between DB ops. Choosing the right logical time abstraction for the problem.

• Why is this pattern thing a debugging scenario? Pattern ~ mental model of what should
happen. Pattern detection ~ testing your mental model against what happened. Imagine
facebook with person logs in -> DB logs -> analytics system (relating triples of events)

• v clocks reduce the complexity of the system to an abstraction && also reduce
complexity to comparison between v clocks.

• MC is the immediate past of events for an event

• Q: what if the middle event is / is not a communication event, would you use the same
alg? (Ivan: this doesn't matter).

Application of v. clocks
• Causal bcast, message stability

• Causal b cast ~ TCP multicast

• Do you implement bcast at application layer or not?

• TCP cast : transport abstraction

• Causal b cast : application-level abstraction

• Do we need causal bcast? (when would you use it, would you ever use it, what would use it
for?)

• msgs from different nodes arrive in same order

• Example: Google docs editing — edits should be ordered the same across all of our Gdoc
sessions (Google uses operational transform: https://en.wikipedia.org/wiki/
Operational_transformation)

• More fault tolerance systems: all processes need to know state of other processes (alive or
dead)

https://en.wikipedia.org/wiki/Operational_transformation
https://en.wikipedia.org/wiki/Operational_transformation

Application of v. clocks
• Msg is stable if every node has received it

• This is an essential part of (reliable msging) protocols like TCP

• Use v clocks that every node has received a msg from some processor

• Why? Their motivation: determine when to run discard(m) : frees up m
from the msg buffer

• Keep msg until you know for sure that no one else needs the msg. If
some node needs a msg, make sure that the msg exists in the system
(and can be delivered to that node).

• Don’t I hold onto it forever? There is a separate protocol that re-sends
msgs to nodes that have missed them. It’s not in the paper. Nice
exercise: add this protocol to msg stability description.

Closing thoughts
• Theoretical concept? NO! But.. yes, sort of.

• Libraries that implement it: https://github.com/
DistributedClocks -> Use to inspect/visualize the
resulting log https://bestchai.bitbucket.io/shiviz/

• Used to associate timestamps with data objects
and operations on data

• Key takeaway: Partial ordering view of distributed
systems.

https://github.com/DistributedClocks
https://github.com/DistributedClocks
https://bestchai.bitbucket.io/shiviz/

