
Distributed state and 
dist. snapshots

Distributed Snapshots: Determining the Global States of a Distributed System.

 1



Announcements
• Please set a zoom photo of yourself 

• Recordings and slides posted for previous 
lecture 

• Marks for piazza posts will be posted to canvas 
before this weekend 

• My document camera arrived! :-)

 2



Distributed state

• What is it? 

• Why should we care? What is it for? 

• Distributed snapshots — why bother? 

• Their algorithm… umm it’s not a real state? what!? 

• Stable properties: second time! Are they really that 
important to evaluate?

 3



What is distributed state?
• Snapshot of the system in time: what everyone is doing at 

that moment 

• Birds of flock metaphor 

• Distributed global state: State at process + State of 
channels

• Snapshot starts … snapshot ends 

• Resulting snapshotted state is in-between (potential 
state that is reachable from start, and can reach end 
state)

 4



Channels?
• Msgs might be in transmission 

• Either you capture in process, or in channel 

• So you have to capture channel 

• They capture sent but not received msgs 

• Why do we want to capture msgs?

• So they can lie to us!? 

• Snapshots ~ debugging. But, not real. Debugger is faking the view of the 
system as best as it can. You need channels to have a “consistent” view. 

• B/c messages influence state: capturing state alone is not enough. You 
want to capture whatever can influence state in the model that they use.

 5



Distributed global state
• Allows us to reason about properties of system 

• Stable property detection 

• Can use it for backup/recovery! 

• How would you use S* for recovery? 

• Recovery stage 1. reload the state on each process 

• Recovery stage 2. process msgs in all the channels 
(i.e., receive them). Make sure that you retain FIFO 
semantics.

 6



Distributed global state
• Use it for debugging. 

• Photos are useful 

• Photos of dist. systems are useful 

• Capture state before bug 

• Capture snapshot before/after some event 

• Use it for watchpoints: capture snapshot when something weird happens 
at one process 

• This answers the q. of *when* to take a snapshot 

• Can use this to make sure that processes are behaving “correctly”. That 
they received msgs that were sent.

 7



Distributed global state

• What is this thing that is being captured? 

• see whiteboard

 8



Distributed global state
• Assumptions 

• Graph of process is connected 

• Is it really distributed sys. if not connected? 

• What about disconnections, or node churn? 

• Symmetric channels? (all of their examples are like this) 

• Msgs are processed in finite time 

• Buffers are FIFO, links are reliable

 9



Distributed global state
• Reliability assumption 

• What if I don’t have reliable channels? 

• What if I just re-try? This is fine! As long as it’s finite 
time (eventually the marker gets through) 

• Can also use other (more reliable) links to deliver 
markers (this is an optimization) 

• But.. alg only terminates when marker received on 
*every* channel (uni-directional)

 10



Distributed global state

• FIFO assumption 

• Necessary for correct snapshots 

• Otherwise capture msg when should not capture 

• And this is identical to capturing node in wrong 
state

 11



Distributed global state
• Using TCP 

• Which msgs should I record (SYN/ACK/DATA)? 

• Answer 1: Only record Data (necessary) 

• SYN/ACK subsidiary msgs.. only useful for 
securing reliability (overhead!) 

• How to decide?

 12



Distributed global state
• Msging stack: TCP | HTTP 

• Do I record all HTTP msgs? How to decide? 

• A: Depends… on how to define state of process 

• Q. is about msgs, but is about state… ?! 

• msgs ~ states 

• Answer: define msg consistently with definition of state

• Important for determining level of abstraction in your system

 13



Final/closing thoughts
• Can I have a process that records another process’ state? 

• How widely observable is a process’ state? 

• Is it visible to another process? 

• In token example: token lives at only one process, or is in channel 

• When p doesn't have token 

• Then… token is in channel or in q 

• I can reason about another process based on MY local state 

• Because my state is related to the other process state (through msgs) 

• I can record it if (1) processes are correct, (2) I have a way of relating process states 
(inference to learn the state of other processes based on some info) 

• Distributed knowledge concept

 14



Final/closing thoughts
• Take to extreme: why bother with snapshot if you can reason about 

state relationships 

• In restore: this would trade off computation for storage (reconstruct 
other process state, and this requires “running” the state machine 
to compute the state after Rx msgs). Inference has a cost. 

• Use blockchain to store states! Nodes could “export” their state 
into a “ledger” that is visible to everyone else 

• Then snapshotting is easy: it’s all on the ledger 

• Cost: huge storage and bandw cost (consensus) 

• Opposite of inference

 15



Next class
• Ousterhout. The Role of Distributed State. TR 

1990. 

• The practical side of distributed state 

• Note the diff. definition of distributed state 

• Related to distributed file systems (of the late 
80s) 

• Many engineering lessons!
 16


