
Verdi:A Framework for
Implementing and Formally

Verifying Distributed Systems.
Wilcox et al. PLDI 2015

1

Verdi, unpacked
• What are the languages / stack / process?

• Coq : not an automated theorem prover

• Need to provide (dependently types functional programs):

• A specification (formula): safety property (over state)

• An implementation: “Coq language”

• A manual proof (in Coq theorem prover that implementation
satisfies the specification), possibly using tactics (proof ~ type
checking)

• Coq extracts to OCaml (functional) dialect of ML, which can be
compiled, and deployed/executed

2

Verdi, the guarantees
• At end of day: get a system that is fault tolerant

• Verdi adds fault tolerance automagically

• “Formally verifying” = implementation consistent with
spec (satisfies the safety property, in a mathematical
sense)

• Axioms/Assuming (“what am I trusting to get above?”): trust Coq,
extraction, trust OCaml compiler, trust Verdi shims
(OCaml piece to provide I/O)

• Trust their network semantics!

3

Verdi, the point
• Who doesn’t want correctness? Distributed systems are

difficult, let’s prove them correct!

• Contribution (reusable Coq parts)

• Formalize network semantics (good to have!)

• Modularity of semantics that can be layered, with little
effort on the human side

• Output code that runs! (This is a recent trend in
verification: get a real system at end of process). SEL4
for OS (20 person years)

4

Verdi
• Network semantics.. are these right?? (Do they reflect reality?)

• Disjoint semantics.. but doesn’t transformer solves this? Composability - layer these
semantical layers on top of one another.

• S1 -> S2 -> S3 (to satisfy both msg duplication, and dropping)

• Abstractions: “bag of packets for in-flight”, “abstract data types, not bits”, “no modelling
of time” ~ small-step semantics, “set of failing nodes”, “nodes atomically transition to/
from failure”

• Real systems send buffers of bits, they contains real-time timeouts, packet reordering
occurs on nearby packets, node failures take time (to detect and to occur)

• Solid attempt! Mismatches reality, because reality != math

• Real q: is this the right level at which to stop modelling distributed systems? (A
domain expert expert — i.e., distributed systems engineers)

• (Finn: fyi, integers are a tree in Coq)

5

Verdi transformers!
• VST: for free transform model written for 1 net semantics into model written for a different

semantics && transform the property into an updated property && automates the process of
proving the updated property based on original proof

• Not having to re-prove is a huge win!

• Counter-intuitive: Go from stronger semantics (reliable delivery) to weaker semantics (drops &&
re-orderings) for free.

• Builds on the intuition that you make up for weaker network semantics (dozens of years of
experimental evidence)

• Cherry on top: do this automatically && retain the proof

• Two types of failures — network, node

• Primary-backup VST: magic automatic replication (to a single node)

• Raft replication VST = consensus VST: SMR for free with linearalizability guarantees

• First paper to show linearalizability for Raft (Paxos same)

6

OCaml
• General purpose PL

• Not generally used for (distributed) systems

• OCaml ~ Haskell: same ballpark, high abstraction,
maintained by INRIA?

• Academically focused

• Biggest project using OCaml is Coq (Junfeng)

• JaneStreet hires OCaml devs (trick to hire smart people)

7

Linearalizability
• Sequential consistency (serializability) weaker

than Lin.

• R/W ops on an object

• (Section 7.2) Operation O corresponding to a
request that arrives at time T cannot be
ordered before any operation that was already
made visible to a client prior to T.

8

Verdi eval
• Table 2 VST numbers are additional LOC (on top of existing spec/impl that the

developer provided)

• Metrics

• Proof effort (LOC), but no comparison and no time estimate (person years)

• Proof v. Spec LOC comparison

• Leave out proof time for their proofs

• Throughput and latency against etcd (open source KV store)

• Ballpark numbers, demonstrates “not inefficient”?

• Etcd is much more feature-full, production-level, different lang

• 100 reqs sent (total!?) ~ 3s of runtime …. Not a great eval to demonstrate
perf.

9

Verdi v. Mace PL
• Both aim to reduce effort

• Both introduce abstractions! (Both PLDI papers)

• Objects/aspects/layers in Mace

• Network semantics and VST in Verdi

• Verdi focus on composability (for proof!). Mace is focused on layered architecture (composability?).

• Verdi for verification (debug your model)

• Proof that the things it generates are correct (Coq)

• High effort

• Mace restricts designers to a structure that helps with reasoning (leads to potential tools to support development, like model
checking, logging, causal tracing).

• There is no proof that it actually helps. Just anecdotal evidence.

• Lower effort than Verdi (but perhaps higher than typical C++)

• Expressiveness

• Granularity: Mace is fine-grained and Verdi is coarse grained (netw. semantics swap in/out as a module)

10

Next: MODIST
• MODIST is a blackbox model checker:

ambitious!

• What’s the trade-off with Verdi+Mace in MODIST:
guarantees / effort / other?

• NSDI 2009 (a top networked systems
conference)

• If you know Vaastav’s (MSc grad) Dara work: it’s inspired by MODIST

11

