Verdi:A Framework for
Implementing and Formally
Veritying Distributed Systems.

Wilcox et al. PLDI 2015




Verdi, unpackeo

 What are the languages / stack / process?
 CoQ : notan automated theorem prover

* Need to provide (dependently types functional programs):

» A specification (formula): safety property (over state




Verdl, the guarantees

At end of day: get a system that is fault tolerant

e \Verdi adds fault tolerance automagically

 “Formally veritying” = implementation consistent with
spec (satisfies the safety property, in a mathematical




Verdl, the point

 Who doesn’t want correctness”? Distributed systems are
difficult, let's prove them correct!

o Contribution (reusable Coq parts

e Formalize network semantics (good to have!




Verdi

Network semantics.. are these right?? (Do they reflect reality?)

Disjoint semantics.. but doesn’t transformer solves this? Composability - layer these
semantical layers on top of one another.

« S1->S2 -> S3 (to satisfy both msg duplication, and dropping)

» Abstractions: “bag of packets for in-flight”, “abstract data types, not bits”, “no modelling
of time” ~ small- step semantics, “set of falllng nodes”, nodes atomically transition to/

from failure”




Verdl transtormers!

* VST. for free transform model written for 1 net semantics into model written for a different
semantics && transform the property into an updated property && automates the process of
proving the updated property based on original proof

* Not having to re-prove is a huge win!

* Counter-intuitive: Go from stronger semantics (reliable delivery) to weaker semantics (drops &&
re-orderings) for free.
* Builds on the intuition that you make up for weaker network semantics (dozens of years of




OCaml

 General purpose PL

* Not generally used for (distributed) systems

« OCaml ~ Haskell: same ballpark, high abstraction,




|_inearalizability

* Sequential consistency (serializability) weaker
than Lin.

 R/W ops on an object




Verdl eval

e Table 2 VST numbers are additional LOC (on top of existing spec/impl that the
developer provided)

e Metrics

e Proof effort (LOC), but no comparison and no time estimate (person years)

* Proof v. Spec LOC comparison




Verdl v. Mace PL

» Both aim to reduce effort
» Both introduce abstractions! (Both PLDI papers)
» Objects/aspects/layers in Mace
* Network semantics and VST in Verdi

» Verdi focus on composability (for proof!). Mace is focused on layered architecture (composability?).

 Verdi for verification (debug your model)




Next: MODIST

 MODIST is a blackbox model checker:
ambitious!

e \What'’s the trade-off with Verdi+Mace in MODIST:




