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Course updates
• Proposal: change piazza response due time from 

24 hours before class to 18 hours before class 

• e.g., 2PM instead of 8AM the day before class 
(Vancouver time) 

• Proposal passed unanimously in class with 10 people present. 

• Update + email to schedule chat with me due 
next week on Friday (feel free to do this earlier :-)
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Machine Learning
• Application-focused paper 

• Systems pov: what are ML requirements? 

• Flexible to customize for an ML engineer (plug in different 
strategies for optimization, (a)synchrony, model types, data 
types, scale, device types, parallelism) 

• Huge data — high throughput is critical 

• Huge number of parameters that have to be updated frequently 
(amount of state to maintain) 

• ML training is less efficient on a CPU (GPUs and TPUs) 

• ML doesn’t require strong consistency (substantial flexibility)
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TF versus Spark

• Breakout chat: 

• How+why is TF similar to Spark, and how is it 
different?
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TF versus Spark
• Different designs, but with similarities! 

• Failures aren’t more/less likely in a TF cluster versus a Spark cluster. 

• Same data flow abstraction — ML as a graph versus analytics as a process 

• Fault tolerance (sec 4.3): both have a “checkpoint” mechanism. Spark achieves this primarily with RDDs 
and lineage. 

• State mutability: TF chooses mutability, Spark uses immutable RDDs. 

• Can you use TF for Spark? Yes.. if you frame everything as a tensor :-) TF dynamic control flow in a data 
graph: can reproduce anything that Spark supports 

• Dynamic control flow => materialization necessary, immutability isn’t as helpful 

• Granularity of operations: TF fine-grained, Spark coarse-grained. RDD high overhead when fine-grained. 

• ML dataset might be large (input, and parameters) — wouldn’t fit in memory! Need to use sharding (TF 
automates this), Spark uses partitions to shard RDDs.  

• Different attitudes towards failure: Spark as general-purpose compute cannot lose results or be 
inconsistent. TF by contrast can shard/lose compute as long as it works for ML. 

• Slight randomization is good for ML (e.g., compute on batches of random data)
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TF design
• Dataflow: nodes are operations, data flows on vertices from node to node, which transform it. 

• Device specialization: an implementation of an operator per device. e.g., matrix multiply for 
CPU (x86/ARM..)/GPU (Nvidia/…)/TPU (v1/v2) 

• Device abstraction: allocating memory for input/output, issuing kernel for exec, transfer 
data to/from memory. 

• Compiler selecting the implementation to use (without developer needing to make a 
choice) 

• Matching problem: mapping operators to devices — what’s a good heuristic? 

• Efficiency of operators on a specific device, data transfer to/from device 

• Concurrent executions on overlapping subgraphs (ML specific) — to support looping over a 
graph (classical data-flow operators); good for RNNs 

• Resolve writes shared state (consistency issues) 

• Resolve reads from shared state (sharding) 

• Dynamic runtime scheduling of operators on tasks 
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TF eval
• Eval criteria: 

• Throughput (data/time): training time 

• Training step time: latency per iteration 

• Efficiency (single machine); Table 1 

• Straggler mitigation (use backup workers to make up for slow nodes) 

• Sparcity : sparse versus dense vectors 

• Baselines:  

• ML frameworks: MXNet (centralized parameter server), Caffee, Neon, Torch 

• What’s missing? 

• Fault tolerance not covered 

• No comparison to Spark?! But Spark wasn’t designed for neural nets 

• Only Fig 8(a) for distributed comparison against another framework  

• Missing design evaluation — matching eval results to specific design choices
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Discussion points
• Data-flow to the rescue? Especially good match 

for big data and commodity resources (requiring 
a smart compiler)? 

• App-specific compute specialization. ML clearly 
important. Other app optimizations? BitCoin.. HFT 
(networking).. Industrial applications.. Scientific 
computing (supercomputers!) 

• Consistency has a cost; is there a more rigorous 
way to relax consistency? (TF is not very rigorous 
about relaxing consistency).
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Next: CAP theorem

• Done with distribute compute (Spark + TF) 

• Back to data consistency, this time at scale 

• Start with CAP theorem 

• Then onward to weak consistency (CRDT, OR)
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