TensorFlow: A System for Large-Scale Machine Learning

Abadi et al. OSDI 2016
Course updates

• *Proposal*: change piazza response due time from 24 hours before class to 18 hours before class

• e.g., 2PM instead of 8AM the day before class (Vancouver time)

• *Proposal passed unanimously in class with 10 people present.*

• Update + email to schedule chat with me due next week on Friday (feel free to do this earlier :-)
Machine Learning

- Application-focused paper

- Systems pov: what are ML requirements?

 - Flexible to customize for an ML engineer (plug in different strategies for optimization, (a)synchrony, model types, data types, scale, device types, parallelism)

 - Huge data — high throughput is critical

 - Huge number of parameters that have to be updated frequently (amount of state to maintain)

- ML training is less efficient on a CPU (GPUs and TPUs)

- ML doesn’t require strong consistency (substantial flexibility)
TF versus Spark

• Breakout chat:

 • How+why is TF similar to Spark, and how is it different?
TF versus Spark

• Different designs, but with similarities!
 • Failures aren’t more/less likely in a TF cluster versus a Spark cluster.
 • Same data flow abstraction — ML as a graph versus analytics as a process.

• Fault tolerance (sec 4.3): both have a “checkpoint” mechanism. Spark achieves this primarily with RDDs and lineage.

• State mutability: TF chooses mutability, Spark uses immutable RDDs.

• Can you use TF for Spark? Yes.. if you frame everything as a tensor :-) TF *dynamic* control flow in a data graph: can reproduce anything that Spark supports
 • Dynamic control flow => materialization necessary, immutability isn’t as helpful

• Granularity of operations: TF fine-grained, Spark coarse-grained. RDD high overhead when fine-grained.

• ML dataset might be large (input, and parameters) — wouldn’t fit in memory! Need to use sharding (TF automates this), Spark uses partitions to shard RDDs.

• Different attitudes towards failure: Spark as general-purpose compute cannot lose results or be inconsistent. TF by contrast can shard/lose compute as long as it works for ML.
 • Slight randomization is good for ML (e.g., compute on batches of random data)
TF design

- **Dataflow**: nodes are operations, data flows on vertices from node to node, which transform it.

- **Device specialization**: an implementation of an operator per device. e.g., matrix multiply for CPU (x86/ARM..)/GPU (Nvidia/…)/TPU (v1/v2)
 - **Device abstraction**: allocating memory for input/output, issuing kernel for exec, transfer data to/from memory.
 - Compiler selecting the implementation to use (without developer needing to make a choice)
 - Matching problem: mapping operators to devices — what’s a good heuristic?
 - Efficiency of operators on a specific device, data transfer to/from device
 - Concurrent executions on overlapping subgraphs (ML specific) — to support looping over a graph (classical data-flow operators); good for RNNs
 - Resolve writes shared state (consistency issues)
 - Resolve reads from shared state (sharding)
 - Dynamic runtime scheduling of operators on tasks
TF eval

• Eval criteria:
 • Throughput (data/time): training time
 • Training step time: latency per iteration
 • Efficiency (single machine); Table 1
 • Straggler mitigation (use backup workers to make up for slow nodes)
 • Sparcity: sparse versus dense vectors

• Baselines:
 • ML frameworks: MXNet (centralized parameter server), Caffee, Neon, Torch

• What’s missing?
 • Fault tolerance not covered
 • No comparison to Spark?! But Spark wasn’t designed for neural nets
 • Only Fig 8(a) for distributed comparison against another framework
 • Missing design evaluation — matching eval results to specific design choices
Discussion points

• Data-flow to the rescue? Especially good match for big data and commodity resources (requiring a smart compiler)?

• App-specific *compute* specialization. ML clearly important. Other app optimizations? BitCoin.. HFT (networking).. Industrial applications.. Scientific computing (supercomputers!)

• Consistency has a cost; is there a more rigorous way to relax consistency? (TF is not very rigorous about relaxing consistency).
Next: CAP theorem

- Done with distribute compute (Spark + TF)
- Back to data consistency, this time at scale
- Start with CAP theorem
- Then onward to weak consistency (CRDT, OR)