
TensorFlow: A System for
Large-Scale Machine

Learning
Abadi et al. OSDI 2016

1

Course updates
• Proposal: change piazza response due time from

24 hours before class to 18 hours before class

• e.g., 2PM instead of 8AM the day before class
(Vancouver time)

• Proposal passed unanimously in class with 10 people present.

• Update + email to schedule chat with me due
next week on Friday (feel free to do this earlier :-)

2

Machine Learning
• Application-focused paper

• Systems pov: what are ML requirements?

• Flexible to customize for an ML engineer (plug in different
strategies for optimization, (a)synchrony, model types, data
types, scale, device types, parallelism)

• Huge data — high throughput is critical

• Huge number of parameters that have to be updated frequently
(amount of state to maintain)

• ML training is less efficient on a CPU (GPUs and TPUs)

• ML doesn’t require strong consistency (substantial flexibility)
3

TF versus Spark

• Breakout chat:

• How+why is TF similar to Spark, and how is it
different?

4

TF versus Spark
• Different designs, but with similarities!

• Failures aren’t more/less likely in a TF cluster versus a Spark cluster.

• Same data flow abstraction — ML as a graph versus analytics as a process

• Fault tolerance (sec 4.3): both have a “checkpoint” mechanism. Spark achieves this primarily with RDDs
and lineage.

• State mutability: TF chooses mutability, Spark uses immutable RDDs.

• Can you use TF for Spark? Yes.. if you frame everything as a tensor :-) TF dynamic control flow in a data
graph: can reproduce anything that Spark supports

• Dynamic control flow => materialization necessary, immutability isn’t as helpful

• Granularity of operations: TF fine-grained, Spark coarse-grained. RDD high overhead when fine-grained.

• ML dataset might be large (input, and parameters) — wouldn’t fit in memory! Need to use sharding (TF
automates this), Spark uses partitions to shard RDDs.

• Different attitudes towards failure: Spark as general-purpose compute cannot lose results or be
inconsistent. TF by contrast can shard/lose compute as long as it works for ML.

• Slight randomization is good for ML (e.g., compute on batches of random data)
5

TF design
• Dataflow: nodes are operations, data flows on vertices from node to node, which transform it.

• Device specialization: an implementation of an operator per device. e.g., matrix multiply for
CPU (x86/ARM..)/GPU (Nvidia/…)/TPU (v1/v2)

• Device abstraction: allocating memory for input/output, issuing kernel for exec, transfer
data to/from memory.

• Compiler selecting the implementation to use (without developer needing to make a
choice)

• Matching problem: mapping operators to devices — what’s a good heuristic?

• Efficiency of operators on a specific device, data transfer to/from device

• Concurrent executions on overlapping subgraphs (ML specific) — to support looping over a
graph (classical data-flow operators); good for RNNs

• Resolve writes shared state (consistency issues)

• Resolve reads from shared state (sharding)

• Dynamic runtime scheduling of operators on tasks
6

TF eval
• Eval criteria:

• Throughput (data/time): training time

• Training step time: latency per iteration

• Efficiency (single machine); Table 1

• Straggler mitigation (use backup workers to make up for slow nodes)

• Sparcity : sparse versus dense vectors

• Baselines:

• ML frameworks: MXNet (centralized parameter server), Caffee, Neon, Torch

• What’s missing?

• Fault tolerance not covered

• No comparison to Spark?! But Spark wasn’t designed for neural nets

• Only Fig 8(a) for distributed comparison against another framework

• Missing design evaluation — matching eval results to specific design choices

7

Discussion points
• Data-flow to the rescue? Especially good match

for big data and commodity resources (requiring
a smart compiler)?

• App-specific compute specialization. ML clearly
important. Other app optimizations? BitCoin.. HFT
(networking).. Industrial applications.. Scientific
computing (supercomputers!)

• Consistency has a cost; is there a more rigorous
way to relax consistency? (TF is not very rigorous
about relaxing consistency).

8

Next: CAP theorem

• Done with distribute compute (Spark + TF)

• Back to data consistency, this time at scale

• Start with CAP theorem

• Then onward to weak consistency (CRDT, OR)

9

