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BigData compute
• What’s the context for Spark? (Year is 2012) 

• MapReduce: based on a distributed FS (HDFS, or GFS), used disk for all the data 

• Google search -> PageRank -> Graph of the web as input -> vertex ranks as output (run as infrequently as users 
are willing to tolerate) 

• Bulk/batch data processing that happens periodically (weekly/monthly) :: okay to be inefficient 

• What’s changing? 

• 64-bit OS happens around this time 

• Memory grows in size (1GB -> 4GB) 

• Spark: in-memory — efficiency 

• Also bulk, includes complex topologies like iterative ML algos 

• On-demand / interactive / lazy / ad-hoc / unscheduled / one-off :: person who is waiting for a result => efficiency 
becomes a key concern 

• Trending towards data science 

• Context: BigData becomes more common. MR invented at Google. But… over time BigData being generated/
monetized everywhere! If you’re not Google and you want interactivity with BigData, you need efficiency. 

• Systems research: new abstraction (low availability: few people) -> broaden adoption (research focus turns to 
efficiency)
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Spark key ideas
• RDD : resilient distributed datasets 

• Read-only = immutable 

• Created using coarse-grained operations (in contrast to DSM) 

• Tranformations: RDD -> RDD 

• Actions: materialization of RDD data in a specific location 

• RDD iface: deps, compute, partitioning, location 

• RDD lineage: connect RDD/partitions into a dep graph. Keep track of 
which RDDs are available (caching), use graph for fault tolerance 

• Keep RDD data in memory unserialized (or serialized memory, or on disk) 

• RDD metadata is tiny (and kept at central node)
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Big deal about immutability
• Functional! 

• Immutability : never modify an RDD, create a new one 

• Simplifies concurrency control: have multiple nodes working on 
the same RDD without conflict (multiple nodes can read, and 
create a different, independent RDD) 

• Larger memory requirement (but only if materialized) 

• Expression purity: operations determinism 

• Building an RDD = building a description of data. Operations 
on data ~ operations on description of previous operations over 
data — Lazy evaluation delays computation, which allows the 
compiler/runtime to make a bunch of optimizations
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Distributed systems + Spark
• Spark’s immutability <—> distribution 

• Previously: replication as a key FT mechanism 

• Fault tolerance: can recompute/recover the missing data based on lineage graph 

• Only pay fault tolerance cost during failure: no need for replicas that keep up with each other 

• Why can’t I use immutability for consensus? 

• RDD per consensus ballot, or for all consensus state? 

• Lineage would provide the ordering for you (requires dep. between RDDs) 

• Orthogonal? RDD captures what you should be doing, so once you have an RDD, you know what to do 
(consensus decides what work should be done) 

• Consensus assumes work is trivial; RDDs focus on the work part (consensus is never actually deployed 
for its own sake: you use it as a means towards something else) 

• CRDTs ~ immutable view on “eventual” consensus (with very different consistency semantics) 

• RDD lineage graph ~ CRDT lattice (only proceed forward) 

• Paxos only proceed forward with counters 

• Consensus immutability = once a decision is made, any future decision must come to the same thing
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Spark the implementation
• What do I need to realize spark (besides the abstraction)? 

• “Implement 1/2 of Emerald” : RDDs encompass data; need to migrate these. Objects of compute, also have to be serialized/
migrated. 

• Spark ~ take a program, compile it with knowledge about eventual deployment, deploy it/orchestrate the runtime. 

• Driver that knows all the things, a worker node may need to lookup RDD state/data location from this central driver 

• Integration with the Scala interpreter (no changes to compiler): packaging and shipping code to nodes

• Job scheduler: assign RDDs to nodes (efficient assignment is key) 

• Move compute to data (co-location) 

• Sequencing in executing stages: execute dependencies first! 

• Pipelining of narrow dependency ops on the same compute node: best distributed compute is local compute (as long as you 
have resources) 

• Memory management: need a policy to determine with RDDs live in memory and which do not 

• LRU policy for deciding RDDs in memory 

• Data can be dropped entirely, since there is a lineage plan to recompute it

• Monitoring: detect faults, and recover/reassign work 

• Simplest part of the entire idea (immutability + lineage gives us “free” fault tolerance)

• Debugging (tbd): Linear graphs gives you an easy view on the entire computation that you can analyze/visualize/…
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Spark the implementation

• When is a good time/place for checkpointing (forced 
materialization)? 

• Paper: at wide dependencies for efficient FT 

• In general: avoid high cost of recompute 

• Wide dependency as a proxy ~ involves many 
nodes; involves many RDDs => definitely not 
pipelineable, so more costly to recompute
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Spark eval
• Key eval criteria: 

• End-to-end time to compute 

• Scalability (time versus # nodes) 

• Efficiency (cost of a no-op) 

• Baseline:  

• Hadoop (MR) : disk-based 

• HadoopBinMem: materialized in-memory dataset; memory-based, but has all the other Hadoop 
costs 

• Spark deals with Java objects in memory (best case): formats matter! 

• Discussion section: RDDs encompass MR, DryadLINQ, SQL, Pregel, iterative MR, Stream processing… 

• Will we ever need processing that is not Spark-based? 

• Fine-grained operations (not bulk processing) 

• Non-deterministic / external inputs (sensors)
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Next: TensorFlow

• ML-specific distributed computing framework 

• How does it build on and also differ from Spark?
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