
 Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Zaharia et al.
NSDI 2012

1

BigData compute
• What’s the context for Spark? (Year is 2012)

• MapReduce: based on a distributed FS (HDFS, or GFS), used disk for all the data

• Google search -> PageRank -> Graph of the web as input -> vertex ranks as output (run as infrequently as users
are willing to tolerate)

• Bulk/batch data processing that happens periodically (weekly/monthly) :: okay to be inefficient

• What’s changing?

• 64-bit OS happens around this time

• Memory grows in size (1GB -> 4GB)

• Spark: in-memory — efficiency

• Also bulk, includes complex topologies like iterative ML algos

• On-demand / interactive / lazy / ad-hoc / unscheduled / one-off :: person who is waiting for a result => efficiency
becomes a key concern

• Trending towards data science

• Context: BigData becomes more common. MR invented at Google. But… over time BigData being generated/
monetized everywhere! If you’re not Google and you want interactivity with BigData, you need efficiency.

• Systems research: new abstraction (low availability: few people) -> broaden adoption (research focus turns to
efficiency)

2

Spark key ideas
• RDD : resilient distributed datasets

• Read-only = immutable

• Created using coarse-grained operations (in contrast to DSM)

• Tranformations: RDD -> RDD

• Actions: materialization of RDD data in a specific location

• RDD iface: deps, compute, partitioning, location

• RDD lineage: connect RDD/partitions into a dep graph. Keep track of
which RDDs are available (caching), use graph for fault tolerance

• Keep RDD data in memory unserialized (or serialized memory, or on disk)

• RDD metadata is tiny (and kept at central node)
3

Big deal about immutability
• Functional!

• Immutability : never modify an RDD, create a new one

• Simplifies concurrency control: have multiple nodes working on
the same RDD without conflict (multiple nodes can read, and
create a different, independent RDD)

• Larger memory requirement (but only if materialized)

• Expression purity: operations determinism

• Building an RDD = building a description of data. Operations
on data ~ operations on description of previous operations over
data — Lazy evaluation delays computation, which allows the
compiler/runtime to make a bunch of optimizations

4

Distributed systems + Spark
• Spark’s immutability <—> distribution

• Previously: replication as a key FT mechanism

• Fault tolerance: can recompute/recover the missing data based on lineage graph

• Only pay fault tolerance cost during failure: no need for replicas that keep up with each other

• Why can’t I use immutability for consensus?

• RDD per consensus ballot, or for all consensus state?

• Lineage would provide the ordering for you (requires dep. between RDDs)

• Orthogonal? RDD captures what you should be doing, so once you have an RDD, you know what to do
(consensus decides what work should be done)

• Consensus assumes work is trivial; RDDs focus on the work part (consensus is never actually deployed
for its own sake: you use it as a means towards something else)

• CRDTs ~ immutable view on “eventual” consensus (with very different consistency semantics)

• RDD lineage graph ~ CRDT lattice (only proceed forward)

• Paxos only proceed forward with counters

• Consensus immutability = once a decision is made, any future decision must come to the same thing

5

Spark the implementation
• What do I need to realize spark (besides the abstraction)?

• “Implement 1/2 of Emerald” : RDDs encompass data; need to migrate these. Objects of compute, also have to be serialized/
migrated.

• Spark ~ take a program, compile it with knowledge about eventual deployment, deploy it/orchestrate the runtime.

• Driver that knows all the things, a worker node may need to lookup RDD state/data location from this central driver

• Integration with the Scala interpreter (no changes to compiler): packaging and shipping code to nodes

• Job scheduler: assign RDDs to nodes (efficient assignment is key)

• Move compute to data (co-location)

• Sequencing in executing stages: execute dependencies first!

• Pipelining of narrow dependency ops on the same compute node: best distributed compute is local compute (as long as you
have resources)

• Memory management: need a policy to determine with RDDs live in memory and which do not

• LRU policy for deciding RDDs in memory

• Data can be dropped entirely, since there is a lineage plan to recompute it

• Monitoring: detect faults, and recover/reassign work

• Simplest part of the entire idea (immutability + lineage gives us “free” fault tolerance)

• Debugging (tbd): Linear graphs gives you an easy view on the entire computation that you can analyze/visualize/…

6

Spark the implementation

• When is a good time/place for checkpointing (forced
materialization)?

• Paper: at wide dependencies for efficient FT

• In general: avoid high cost of recompute

• Wide dependency as a proxy ~ involves many
nodes; involves many RDDs => definitely not
pipelineable, so more costly to recompute

7

Spark eval
• Key eval criteria:

• End-to-end time to compute

• Scalability (time versus # nodes)

• Efficiency (cost of a no-op)

• Baseline:

• Hadoop (MR) : disk-based

• HadoopBinMem: materialized in-memory dataset; memory-based, but has all the other Hadoop
costs

• Spark deals with Java objects in memory (best case): formats matter!

• Discussion section: RDDs encompass MR, DryadLINQ, SQL, Pregel, iterative MR, Stream processing…

• Will we ever need processing that is not Spark-based?

• Fine-grained operations (not bulk processing)

• Non-deterministic / external inputs (sensors)

8

Next: TensorFlow

• ML-specific distributed computing framework

• How does it build on and also differ from Spark?

9

