Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for
IN-Memory Cluster Computing

Zaharia et al.
NSDI 2012




BigData compute

* What'’s the context for Spark? (Year is 2012)
» MapReduce: based on a distributed FS (HDFS, or GFS), used disk for all the data

* Google search -> PageRank -> Graph of the web as input -> vertex ranks as output (run as infrequently as users
are willing to tolerate)

» Bulk/batch data processing that happens periodically (weekly/monthly) :: okay to be inefficient
e What's changing”?

* 64-bit OS happens around this time

‘Memory grows in size




park Key ideas

e RDD :resilient distributed datasets
e Read-only = immutable

e Created using coarse-grained operations (in contrast to DSM)

 Tranformations: RDD -> RDD

* Actions: materialization of RDD data in a specific location:



B1g deal about Immutapllity

e Functional!

e Immutability : never modity an RDD, create a new one

e Simplifies concurrency control: have multiple nodes working on
the same RDD without conflict (multiple nodes can read, and
create a different, independent RDD




Distributed systems + Spark

Spark’s immutability <—> distribution

Previously: replication as a key FT mechanism

Fault tolerance: can recompute/recover the missing data based on lineage graph

* Only pay fault tolerance cost during failure: no need for replicas that keep up with each other

Why can’t | use immutability for consensus?
* RDD per consensus ballot, or for all consensus state?

» Lineage would provide the ordering for you (require_s dep. between RDDs)




Spark the implementation

* What do | need to realize spark (besides the abstraction)?

* “Implement 1/2 of Emerald” : RDDs encompass data; need to migrate these. Objects of compute, also have to be serialized/
migrated.

* Spark ~ take a program, compile it with knowledge about eventual deployment, deploy it/orchestrate the runtime.
* Driver that knows all the things, a worker node may need to lookup RDD state/data location from this central driver
- Integration with the Scala interpreter (no changes to compiler): packaging and shipping code to nodes
* Job scheduler: assign RDDs to nodes (efficient assignment is key)

* Move compute to data (co-location)

Segueneing i execuling sfades excollic depenoencies st




Spark the implementation

 When is a good time/place for checkpointing (forced
materialization)?

e Paper: at wide dependencies for efficient FT




Spark eval

» Key eval criteria:
e End-to-end time to compute
« Scalability (time versus # nodes)

 Efficiency (cost of a no-op)

 Baseline:




Next: Tensorklow

i 3
LA

specific distributed computing framework

0. ML




