
State machine
replication

Schneider. Implementing fault-tolerant services using the state machine approach: a tutorial. CSUR 1990

1

State machine replication
• What is the system model? (What is our world?)

• Deterministic state machine (with replicas): sm_i. Same seq of commands =>
same state.

• Clients: submit commands to the state machine

• Why are clients distinct from replicas?

• Clients may be non-deterministic, less stateful.

• Clients don’t have to be as powerful as replicas nor as reliable ($ argument:
many cheap clients, and a few expensive replicas)

• Output device. Generality — separate the (passive) consumer/receiver of the
state machine output. (Something that needs the notification of command
execution). Actuators.

• What types of failures do we care about?

2

State machine replication

• Challenges with achieving a deterministic state
machine. (Depends on what is a state machine)

• Concurrency (for perf)

• Correctness (correct implementation)

• Synchronization of code between replicas:
they have to run the same state machine.

3

State machine replication
• What types of failures do we care about?

• Fail-stop failures (weaker: non-paranoid). Failure in which a device either works or doesn’t.
Observable by other components (disinfect from halting failures, where observability is not
provided).

• Byzantine failures (stronger: paranoid). Some # of processes can have arbitrary behaviour.
Dangerous!

• Includes software bugs, hardware failures, cosmic rays

• “A horse that is electrocuted and falls onto the power cables, disconnecting the data center”

• Includes malicious (attacker) behaviour: hacking!

• In general failures are detected by “failure detectors”, which is a large research area.

• What about the network?

• Generally FIFO (first in first out): ordering on the wire (fairly unrealistic)

• In reality, msgs may be dropped, no set route (msgs can take different paths)

4

State machine replication

• Why do we want replication? (Another benefit of
distributed state?)

• Fault tolerance

• Better performance (maybe), e.g., use replica
closer to me (in network distance)

5

SMR+ failure model
• Assume that at most t replicas can fail; design a

system to withstand this number of failures.

• Fail-stop: need at least t + 1 replicas. Need only one
replica to be working (the other t can fail). I trust this
last remaining replica to work correctly.

• Byzantine: need at least 2t + 1 replicas. You don’t
know which t are the byz replicas. Use voting to
determine the “true” behaviour. This works because t
+ 1 are correct, and t+1 is always a majority in a set of
2t + 1.

6

State machine replication
• Agreement: All replicas receive all requests (as a set)

• Why is the paper quiet on how to achieve agreement?

• Network is FIFO… it’s also reliable.

• Order: Replicas execute requests in same relative order (this order is indep. of
client order)

• If a client issues a, then b; SMR executes a before b.

• Many ways to achieve it!

• Assume that we have IDs on requests; request stability: a request is stable if
once no request from a correct client bearing a lower id can be delivered to the
replica.

• Order can be achieved: if a replica next executes the stable request with the
smallest unique identifier

7

State machine replication
• Lamport-clock based ordering/stability algorithm. Order / stability is achieved with logical

clocks.

• The bad

• Must wait for all clients to send a message after some request (to determine it’s stability)

• If a client has no request to send… they must send a no-op (communicate timestamp to
replica)

• All-to-all connectivity. High bandwidth. Every client needs to know every replica.

• If I have many many clients (10^6), this is a terrible approach. Doesn’t scale in number
of clients.

• The good?

• No communication between replicas (they don’t need to know each other)

• It’s very simple. Replicas are trivial. Clients are more complex.

8

State machine replication
• What about physical clocks? Same structure, but instead

of lamport clocks, use assumptions about clock speed.

• Hard bounds on estimate of propagation delay
(latency between nodes)

• Hard bounds on estimate on the clock synchronization
between clients

• Then formulate stability as a mathematical formula that
constraints what timestamp can appear in the future
given a timestamp in the past.

9

State machine replication

• Replica coordination as another approach to
derive order/stability.

• This is the more tradition RSM technique

• Paxos, Raft: solve both agreement and ordering
simultaneously in an async network. (Both suffer
from the FLP result, which means that they are
not always live & safe).

10

