Implementing Remote
Procedure Calls

Birrell and Nelson

Reminders

- 538B project proposal drafts due tomorrow at
6PM Vancouver/PST time

RPC

« RPC : preserve semantics of LPC (maybe?)

« Client invokes method, args are “magically” packed into msg,
delivered to callee at server, the server unpacks the msg, and
iInvokes the function, and sends the result back, client extracts
result, and returns back to caller.

RPC

e What jumped out for you about the paper?

e Binding = naming + locating; name of interface = type + instance.
Name resolution to resolve the interface to location. Grapevine DB
~ DNS.

 RPC: abstraction that hides the remoteness. e.g., blocking without

What's not so great about RPC?

« Implementation: broad assumptions about networks (private nets at Xerox). Optimizations are highly custom.

« Design: Scalability is mentioned, but not evaluated. One RPC call at a time (per process on a Dorado). No
async RPC. Highly optimized for short calls (simple ACK strategy). May use many more packets than
necessary; probe calls for maintenance of conversation (Ali: this is necessary! Noa: Probes not optimized).

» Grapevine dependency: Inter-dependency between DB and performance/behaviour of RPC. Failure of
Grapevine?

Pl v 6

 RPC can’t deal with pointers (as args/returns). The issue is lack of shared address space
(resolved with distributed shared memory.. but this is used infrequently/few implementation exist).

e Pointers a huge win: no data copying. Pointers are ~ data structures. | need some network-
level representation for pointer-based structures.

e Sharing is a problem: a single view of a data structure is violated across machines.

* Modern solution: serialization (sort of helps with representation)

RPC ~ LPC limitations

e Jrue LPC semantics: If | truly wanted LPC.. whenever
PC fails, | would crash the caller.

 Why not? In a sense.. you can with their RPC system
depends on how you handle exception).

Remoteness

* Semantics in RPC parallel distribution concerns

* | built a distributed system.. | actively decided not to build an LPC-based system.
S0, naturally you want to use distribution to your advantage.

* Advantage: partial failures. [want partial failures, instead of total failures.

* Advantage: performance — more machines crunching away at your problem.

RPC : control flow transfer?

» Control flow at function modularity

 Can we go further: continuation transter? e.q.,
serialize and transfer all the state necessary for

e How is it done now?

e Distributed DB for coordination” Consul, etcd,

* Reality of today != vision of the RPC paper. Perhaps the
design/abstraction are very similar.

What other abstractions would you export
from local context to a remote context?

 Functions (RPC
 Continuations

* Shared data (CRDTs, shared memory

3

* Objects (Emerald: distributed objects

Next: Argus

 RPC simplifies distributed system construction,
but can we go further?

e Can programming languages support
Qe D OO B B

¥

