Optimistic Replication

Saito and Shapiro, CSUR 2005

f (&
e
7 b
z ‘4
VI

O.R. and CRDTs

e Breakout discussion:

iw"i.
RN
; PSR
SRR
SRR

e

FGee IR
A SATA B AN
-"’am.l*\

R

O.R. and CRDTs

O e e CRDIS i ane @)= 7

e Multi-master

* Op-based and state-based

O.R. and CRDTs

o Fow do CBBis fit iato). R ¢

* No error resolution since they don't need it

e You can introduce errors explicitly as part of your semantics

O.R. and CRDTs

* e cle GRS itinie O R 2

e Consistency guarantees — SEC!

e 5.2.2 and 5.2.3 hint at CRDT design — commutativity and semantic
scheduling to resolve “conflicts” automatically with a canonical ordering

* Are CRDTs syntactic or semantic?

Single v. Multi-master

Active directory,
Refdbms, Bayou, Usenet, Coda,

DNS, NIS, lceCube, Clearinghouse,
WWW/FTP Operational Roam, Ficus,
mirroring transformation Palm

< —>
Single master Multi master -

More masters = more concurrent updates = more conflicts = more divergence
between replicas

Irrelevant to CRDT. commutativity resolve conflicts regardless of number of conflicts.
Single-master CRDT would provide strong consistency
SEC consistency would vary in its eventuality depending on # of masters

Multi-master has higher availability: CRDTs can live with n-1 failures!

Definition of operations

Usenet, DNS, Coda, Refdbms, lceCube,
Clearinghouse, Roam, Bayou, 4 Operational
Palm ESDS - transformation
| — .
Syntactic Semantic
State transfer Operation transfer

State Coda is a file system: much larger than CRDTs (many optimizations
in O.R for handling large state)

DT ~ state, but it's abstract and transfer/merging is defined on all of state

CRDT — can | decompose large state into several CRDTs, and can |
coordinate CRDTs to derive SEC across all of my state?

Immutability helps to freeze state and make it easier to splinter off during
conflict resolution/transfers

Contlict handling

Shrink objects Two App-specific
Single master Thomas Quick propagation timestamps preconditions
write rule App-specific ordering Vector Canonical ordering
Divergence bounding timestamp Commuting updates
< -
Syntactic Semantic
Prohibit Ignore Reduce Detect&repair

« CRDTs define conflict away; by defn. no conflict could occur
« Do CRDTs detect + repair?

« CRDTs to some degree ignore conflicts like Thomas write rule

Operation propagation

4
Degree
of =
synchrony
\

Pushing
Hybrid

Pulling

A -
Active Directory Usenet
DNS, Coda Refdbms Clearinghouse
2-tier replication,
PDAS Roam Bayou
\/ - -
Star Semi-structured Ad-hoc
~—_ v -
Topology

CRDT paper: updates are generated by replicas that distribute them ~ push

CRDT topology is ad-hoc (undefined): works for any topology

CRDTs could use a different synchrony model if you want to get something
stronger/weaker than just push

CRDT permissive of multiple implementations/realizations (env)

Consistency guarantees

Coda,
TACT, DNS, Active IceCube, Clearinghouse,
ESDS Session directory, Refdbms, Roam, Ficus,
HTTP prox '
-’ guarantees proxy 4 Bayou Palm pilot -
Single-copy Bounded Eventual
serializability divergence consistency

« CRDTs provide Strong eventual consistency

« CRDTs choose AP as a baseline, so strongly available. Therefore
have to sacrifice some of C(onsistency)

Could design “CRDTs” that live further to the left of SEC, but they
wouldn’t be CRDTs any longer

e Note: Single-master CRDT would provide strong consistency

O.R. and CRDTS

* View: CRDT is a mechanism, so fits into survey
 Could rewrite the survey to accommodate CRDTs

 They don't fit neatly into the existing dimensions outlined
INn the paper

* View: CRDT abstraction, therefore doesn't fit into survey

« CRDT are data types; while paper surveys systems that
are specific instantiations

e View: CRDT abstraction, would fit into survey once
Implemented

Optimistic Replication

* CVS -> SVN -> Git

Optimistic v. Pessimistic

e Faulty duality? (Conflict focused)

Weird choice of wording

Could also reframe in terms of availability (CAP)

What is the relationship between CAP and O. v. P split?

CAP

it's complicated; So, is O v. P reductionist?

Next: Distributed Hash
Tables (DHTs

* How do we achieve global scale in distributed
systems? How to coordinate/manage nodes?

« DHTs (overlay networks) provide an answer

e Will read about the Chord D

