
Optimistic Replication
Saito and Shapiro, CSUR 2005

1



O.R. and CRDTs

• Breakout discussion: 

• How do CRDTs fit into O.R.? 

• What is their “classification”?

2



O.R. and CRDTs
• How do CRDTs fit into O.R.? 

• Multi-master 

• op-based and state-based 

• commutativity in op-based for conflict handling 

• Vclocks for ordering (scheduling): causal 
broadcast 

• Comm topology/prorogation are not discussed
3



O.R. and CRDTs
• How do CRDTs fit into O.R.? 

• No error resolution since they don’t need it 

• You can introduce errors explicitly as part of your semantics 

• A CRDT must encode all the rules for resolving semantic 
mismatch 

• State based CRDT may end up growing indefinitely 
(tombstones for deletion) 

• CmRDTs (op) include many more aspects of O.R. than 
CvRDTs (state)

4



O.R. and CRDTs
• How do CRDTs fit into O.R.? 

• Consistency guarantees — SEC! 

• 5.2.2 and 5.2.3 hint at CRDT design — commutativity and semantic 
scheduling to resolve “conflicts” automatically with a canonical ordering 

• Are CRDTs syntactic or semantic? 

• Semantic by construction and point of view of the O.R. survey. But, 
internally could be rather syntactic in the definition. 

• Contrasting viewpoint: O.R. much broader than CRDT — include more 
aspects 

• CRDT is a data type abstraction. It doesn’t have any knowledge of 
the distribution, just knowledge of semantics of the data.

5



Single v. Multi-master

• More masters = more concurrent updates = more conflicts = more divergence 
between replicas 

• Irrelevant to CRDT: commutativity resolve conflicts regardless of number of conflicts. 

• Single-master CRDT would provide strong consistency 

• SEC consistency would vary in its eventuality depending on # of masters 

• Multi-master has higher availability: CRDTs can live with n-1 failures!
6

10 · Y. Saito and M. Shapiro

Multi master

Usenet, Coda, 
Clearinghouse,
Roam, Ficus,
Palm

DNS, NIS,
WWW/FTP 
mirroring

Active directory, 
Refdbms, Bayou, 
IceCube, 
Operational 
transformation

Single master

Fig. 2. Single vs. multi-master

Choice Description Effects
Number of writers Which replicas can submit updates?

Defines the system’s ba-
sic complexity, avail-
ability and efficiency.

Definition of
operations

What kinds of operations are
supported, and to what degree is a
system aware of their semantics?

Scheduling How does a system order
operations?

Defines the system’s
ability to handle
concurrent operations.Conflict

management
How does a system define and
handle conflicts?

Operation
propagation
strategy

How are operations exchanged
between sites?

Defines networking
efficiency and the speed of
replica convergence

Consistency
guarantees

What does a system guarantee about
the divergence of replica state?

Defines the transient quality
of replica state.

3.1 Number of writers: single-master vs. multi-master
Figure 2 shows the choice regarding where an update can be submitted and how it is propa-
gated. Single-master systems designate one replica as the master (i.e.,M = 1). All updates
originate at the master and then are propagated to other replicas, or slaves. They may also
be called caching systems. They are simple but have limited availability, especially when
the system experiences frequent updates.
Multi-master systems let updates be submitted at multiple replicas independently (i.e.,

M � 1) and exchange them in the background. They are more available but significantly
more complex. In particular, operation scheduling and conflict management are issues
unique to these systems. Another potential problem with multi-master systems is their
limited scalability due to increased conflict rate. According to Gray et al. [1996], a naı̈ve
multi-master system would encounter concurrent updates at the rate of O(M2), assuming
that each master submits operations at a constant rate. The system will treat many of
these updates as conflicts and resolve them. On the other hand, pessimistic or single-
master systems with the same aggregate update rate would experience an abortion rate of
only O(M), as most concurrent operations can be serialized using local synchronization
techniques, such as two-phase locking [Bernstein et al. 1987]. Still, there are remedies to
this scaling problem, as we discuss in Section 7.
ACM Computing Surveys, Vol. V, No. N, 3 2005.

Caching..

CRDTs 
(No mention of masters..)



Definition of operations

• State Coda is a file system: much larger than CRDTs (many optimizations 
in O.R for handling large state) 

• DT ~ state, but it’s abstract and transfer/merging is defined on all of state 

• CRDT — can I decompose large state into several CRDTs, and can I 
coordinate CRDTs to derive SEC across all of my state? 

• Immutability helps to freeze state and make it easier to splinter off during 
conflict resolution/transfers

7

Optimistic replication · 11

State transfer

Usenet, DNS, Coda, 
Clearinghouse, Roam, 
Palm

Refdbms, 
Bayou, 
ESDS

IceCube, 
Operational 
transformation

Fig. 3. Definition of operations

3.2 Definition of operations: state transfer vs. operation transfer
Figure 3 illustrates the main design choices regarding the definitions of operations. State-
transfer systems limit an operation either to read or to overwrite the entire object. Opera-
tion transfer systems describe operations more semantically. A state-transfer system can be
seen as a degenerate form of operation transfer, but there are some qualitative differences
between the two types of systems.
State transfer is simple, because maintaining consistency only involves sending the

newest replica contents to other replicas. Operation-transfer systems must maintain (or re-
construct) a history of operations and have replicas agree on the set of operations and their
order. On the other hand, they can be more efficient, especially when objects are large and
operations are high level. For example, a state-transfer file system might transfer the entire
file (or directory) contents every time a byte is modified [Kistler and Satyanarayanan 1992].
An operation-transfer file system, in contrast, could transfer an operation that produces the
desired effect, sometimes as high-level as “cc foo.c”, resulting in the reduction of net-
work traffic by a factor of a few hundreds [Lee et al. 2002]. Operation transfer also allow
for more flexible conflict resolution. For example, in a bibliography database, updates that
modify the authors of two different books can both be accommodated in operation-transfer
systems (semantically, they do not conflict), but it is difficult to do the same when a system
transfers the entire database contents every time [Golding 1992; Terry et al. 1995].

3.3 Scheduling: syntactic vs. semantic
The goal of scheduling is to order operations in a way expected by users and to produce
equivalent states across replicas. Scheduling policies can be classified into syntactic and
semantic policies (Figure 3). Syntactic scheduling sorts operations based only on infor-
mation about when, where and by whom operations were submitted. Timestamp-based
ordering is the most popular example. Semantic scheduling exploits semantic properties,
such as commutativity or idempotency of operations, to reduce conflicts or the frequency
of roll-back. Semantic scheduling is used only in operation-transfer systems, since state-
transfer systems are oblivious to operation semantics by nature.
Syntactic methods are simpler but may cause unnecessary conflicts. Consider, for ex-

ample, a system for reserving some equipment on loan, where the pool initially contains
a single item. Three requests are submitted concurrently: (1) User A requests an item,
(2) User B requests an item, and (3) User C adds an item to the pool. If a site schedules
the requests syntactically in the order 1, 2, 3, then request 2 will fail (B cannot borrow
from an empty pool). Using semantic scheduling, the system could order 1, 3, then 2, thus
satisfying all the requests.
Semantic scheduling is also seen in replicated file systems: writing to two different files

commutes, as does creating two different files in the same directory. File systems can
ACM Computing Surveys, Vol. V, No. N, 3 2005.

CmRDTsCvRDTs



Conflict handling

• CRDTs define conflict away; by defn. no conflict could occur 

• Do CRDTs detect + repair? 

• CRDTs to some degree ignore conflicts like Thomas write rule
8

12 · Y. Saito and M. Shapiro

Shrink objects
Quick propagation
App-specific ordering

Thomas 
write rule

Two 
timestamps
Vector 

App-specific 
preconditions
Canonical ordering

Single master

Fig. 4. Design choices regarding conflict handling.

schedule these operations in any order and still let replicas converge [Balasubramaniam
and Pierce 1998; Ramsey and Csirmaz 2001]. We will discuss techniques for operation
ordering in more detail in Sections 4 and 5.

3.4 Handling conflicts
Conflicts happen when some operations fail to satisfy their preconditions. Figure 4 presents
taxonomy of approaches for dealing with conflicts.
The best approach is to prevent conflicts from happening altogether. Pessimistic algo-

rithms prevent conflicts by blocking or aborting operations as necessary. Single-master
systems avoid conflicts by accepting updates only at one site (but allow reads to happen
anywhere). These approaches, however, come at the cost of lower availability as discussed
in Section 1. Conflicts can also be reduced, for example, by quickening propagation or by
dividing objects into smaller independent units.
Some systems ignore conflicts: any potentially conflicting operation is simply overwrit-

ten by a newer operation. Such lost updatesmay not be an issue if the loss rate is negligible,
or if users can voluntarily avoid lost updates. A distributed name service is an example,
where usually only the owner of a name may modify it [Demers et al. 1987; Microsoft
2000].
The user experience is improved when a system can detect conflicts, as discussed in

Section 1.3.5. Conflict detection policies are also divided into syntactic and semantic poli-
cies. In systems with syntactic policies, preconditions are not explicitly specified by the
user or the application. Instead, they rely on the timing of operation submission and con-
servatively declare a conflict between any two concurrent operations. Section 4 introduces
various techniques for detecting concurrent operations. Systems with semantic knowledge
of operations can often exploit that to reduce conflicts. For instance, in a room-booking
application, two concurrent reservation requests to the same room object could be granted,
as long as their duration does not overlap.
The trade-off between syntactic and semantic conflict detection parallels that of schedul-

ing: syntactic policies are simpler and generic but cause more conflicts, whereas semantic
policies are more flexible, but application specific. In fact, conflict detection and schedul-
ing are closely related issues: syntactic scheduling tries to preserve the order of non-
concurrent operations, whereas syntactic conflict detection flags any operations that are
concurrent. Semantic policies are attempts to better handle such concurrent operations.

3.5 Propagation strategies and topologies
Local operations must be transmitted and executed at remote sites. Each site will record
(log) its changes while disconnected from others, decide when to communicate with others,
and exchange changes with other sites. Propagation policies can be classified along two
ACM Computing Surveys, Vol. V, No. N, 3 2005.

CRDTsCvRDTs?



Operation propagation

• CRDT paper: updates are generated by replicas that distribute them ~ push 

• CRDT topology is ad-hoc (undefined): works for any topology 

• CRDTs could use a different synchrony model if you want to get something 
stronger/weaker than just push 

• CRDT permissive of multiple implementations/realizations (env)
9

Optimistic replication · 13

Pushing

Pulling

Ad-hocSemi-structured

2-tier replication,
PDAs

UsenetActive Directory

Refdbms ClearinghouseDNS, Coda

Star

Bayou

Hybrid

Roam

Topology

Degree
of 

synchrony

Fig. 5. Design choices regarding operation propagation.

Fig. 6. Choices regarding consistency guarantees

axes, communication topology and the degree of synchrony, as illustrated in Figure 5.
Fixed topologies, such as a star or spanning tree can be very efficient, but work poorly

in dynamic, failure-prone network environments. At the other end of the spectrum, many
optimistic replication systems rely on epidemic communication that allows operations to
propagate through any connectivity graph even if it changes dynamically [Demers et al.
1987].
The degree of synchrony shows the speed and frequency by which sites communicate

and exchange operations. At one end of the spectrum, pull-based systems demand that
each site poll other sites either manually (e.g., PDAs) or periodically (e.g., DNS) for new
operations. In push-based systems, a site with new updates proactively sends them to oth-
ers. In general, the quicker the propagation, the less the degree of replica inconsistency and
the rate of conflict, but more the complexity and overhead, especially when the application
is write intensive.

3.6 Consistency guarantees
In an optimistic replication system, the states of replicas may diverge somewhat. A consis-
tency guarantee defines how much divergence a client application may observe. Figure 6
shows some common choices.
Single-copy consistency, or linearizability, ensures that a set of accesses to an object on

multiple sites produces an effect equivalent to some serial execution of them on a single
site, compatible with their order of execution in the history of the run [Herlihy and Wing
1990]. At the other end of the spectrum, eventual consistency guarantees only that the state
of replicas will eventually converge. In the meantime, applications may observe arbitrarily
stale state, or even incorrect state. We define eventual consistency more precisely in Sec-

ACM Computing Surveys, Vol. V, No. N, 3 2005.

CRDTs



Consistency guarantees

• CRDTs provide Strong eventual consistency 

• CRDTs choose AP as a baseline, so strongly available. Therefore 
have to sacrifice some of C(onsistency) 

• Could design “CRDTs” that live further to the left of SEC, but they 
wouldn’t be CRDTs any longer 

• Note: Single-master CRDT would provide strong consistency
10

Optimistic replication · 13

Pushing

Pulling

Ad-hocSemi-structured

2-tier replication,
PDAs

UsenetActive Directory

Refdbms ClearinghouseDNS, Coda

Star

Bayou

Hybrid

Roam

Topology

Degree
of 

synchrony

Fig. 5. Design choices regarding operation propagation.

Fig. 6. Choices regarding consistency guarantees

axes, communication topology and the degree of synchrony, as illustrated in Figure 5.
Fixed topologies, such as a star or spanning tree can be very efficient, but work poorly

in dynamic, failure-prone network environments. At the other end of the spectrum, many
optimistic replication systems rely on epidemic communication that allows operations to
propagate through any connectivity graph even if it changes dynamically [Demers et al.
1987].
The degree of synchrony shows the speed and frequency by which sites communicate

and exchange operations. At one end of the spectrum, pull-based systems demand that
each site poll other sites either manually (e.g., PDAs) or periodically (e.g., DNS) for new
operations. In push-based systems, a site with new updates proactively sends them to oth-
ers. In general, the quicker the propagation, the less the degree of replica inconsistency and
the rate of conflict, but more the complexity and overhead, especially when the application
is write intensive.

3.6 Consistency guarantees
In an optimistic replication system, the states of replicas may diverge somewhat. A consis-
tency guarantee defines how much divergence a client application may observe. Figure 6
shows some common choices.
Single-copy consistency, or linearizability, ensures that a set of accesses to an object on

multiple sites produces an effect equivalent to some serial execution of them on a single
site, compatible with their order of execution in the history of the run [Herlihy and Wing
1990]. At the other end of the spectrum, eventual consistency guarantees only that the state
of replicas will eventually converge. In the meantime, applications may observe arbitrarily
stale state, or even incorrect state. We define eventual consistency more precisely in Sec-

ACM Computing Surveys, Vol. V, No. N, 3 2005.

CRDTs
Can we 

Move here?

CRDTs 
(With a single master..)



O.R. and CRDTS
• View: CRDT is a mechanism, so fits into survey 

• Could rewrite the survey to accommodate CRDTs 

• They don’t fit neatly into the existing dimensions outlined 
in the paper 

• View: CRDT abstraction, therefore doesn’t fit into survey 

• CRDT are data types; while paper surveys systems that 
are specific instantiations 

• View: CRDT abstraction, would fit into survey once 
implemented

11



Optimistic Replication

• CVS -> SVN -> Git 

• Git is multimaster, with automatic conflict handling 
(to an extent)

12



Optimistic v. Pessimistic
• Faulty duality? (Conflict focused) 

• Weird choice of wording 

• Could also reframe in terms of availability (CAP) 

• What is the relationship between CAP and O. v. P split? 

• CAP = it’s complicated; So, is O v. P reductionist? 

• Pessimistic: CA, or CP; Optimistic: AP 

• “Optimism about partitions” — CA system most optimistic? 

• Which ones are more realistic/usable/practical/…? 

• When should you use one versus other? 

• Scale: global scale pushes design towards high availability => optimistic design 

• CAP and O. vs. P encode assumptions about env/use of the systems => design choices

13



Next: Distributed Hash 
Tables (DHTs)

• How do we achieve global scale in distributed 
systems? How to coordinate/manage nodes? 

• DHTs (overlay networks) provide an answer 

• Will read about the Chord DHT 

• One of the most cited papers in Computer Science 

• Will follow-up with loosely structured P2P systems 

• BitTorrent and BitCoin

14


