MODIST: Transparent Model
Checking of Unmodified
Distributed Systems.

Yang et al. NSDI 2009




What is model checking”

e Abstract a program, explore its states. Find errors in the abstraction, especially edge cases.

* What is a (good) model? (Expressed in some language: mathematics, traces, Promela, C++, English..)

Model what you want to check. Abstracts away detail. For example, internal program logic or certain nodes in the
system (if we don’t care about those behaviours). Yet, must reflect the underlying program.

Scope: You want to retain the detail/interesting behaviour. Must draw a line between useful and useless behaviour.

Feasibility: Should be easy enough to implement by a developer.

Property checking: Model should have enough information to check a property.



https://www.cs.cornell.edu/fbs/publications/DefLiveness.pdf

What is model checking”

* Engineering: Model checking ~ Programs as
e Sciences: Scientific method (validation) ~ Physics models

« MC is a type of validation (there are others: formal verification

* Using it to validate models




Modist MC

e How is Modist a model checker?

 Model: graph of process states, with action/event transitions
between states.

o State = uniquely defined by sequence of actions (implicit entity




Modaist choices

e |mplicit states good match for transparency. No rigid
structure (blackbox input software), therefore no
explicit state defined.

* Unlike Mace, which requires explicit state notation




Modist v. Verdil v. Mace PL

» (Reports from breakouts)

» If you're building from scratch, then use Mace! If you have formal semantics, then use Verdi! If you have an existing system, use Modist! Modist for “now”, other approaches for
“future” systems.

» Developer effort variation: Modist — lowest effort, while for others the specific language/OS requirement
» Modist has no explicit state v. Explicit state in Verdi and Mace.
e \Verdi (and Mace?) may have bugs ... in the model

» Verdithere is a distinction between model and implementation

» In Mace and Modist there is no distinction between model and implementation: any bug you find, you can “easily” reproduce and verify (no false positives)




Modist, the artitact

» OS system call API: great place for interposition/shim layering — failure injection (thin waist for applications)

» Finn said (intelligent) fuzzing, but WHY must Modist capture some of the OS semantics. Why can’t modest behave
“irrationally” at the shim layer? (i.e., why is “dumb fuzzing” a bad idea?)

» Random fuzzing mostly exercises input validation code (finds bugs in code that did not properly validate the input).
e “Must play ball mostly, and drop it 10 steps in” ~ “progress normally before doing weird things”

e But, why conform to OS semantics?

e Avoid false positives




Modist

nmodified systems, not entirely true: Mod
troduces code that changes the system




Modist eval

« Standard for MC: use existing systems, find some bugs
« Randomness is an issue: hard to guarantee determinism. Big difficulty for real tools.
o Surprising? Many bugs in deployed systems that are widely used.

* Many of these seem like they should have been caught by testing (e.g., MPS back
and forth liveness bug)

» Systems with ~172KLOC (BerkeleyDB




Next: Dapper

e Distributed tracing paper (our first “Google”
paper).

* Not the first tracing paper, but the first industry
take. Intfluential in modern distributing tracing




