Mace: Language Support
for Building Distributeo
Systems.

Killian et al. PLDI 2007




538B projects

* Proposals received! I'll get you comments later this week.

e Please make sure to allocate time for your projects each weak

e Next deliverable:

* Project update and an email to schedule meetings with me by




Mace paper

* How is this 2007 paper different from the RPC/Argus/Emerald papers? (meta level)
* Writing: More diagrams, more take-aways.

* More result oriented. More high-level. Argues its case continuously throughout the paper. There
IS a value-add to every sentence in the paper.

* Eval: experiences instead of experiments. There are users: novices (students), experts
(themselves). Care about lines of code/productivity (new measure) — good match to their
i prodliict




Mace compiler

* Mace is a compiler.. but how is the Mace compiler different from the Emerald compiler?

» Source to source compiler (Mace -> C++). Why not x86 output?

» Partially the goal is system comprehension. Re-use existing tools. Easier to interpret output and
integrate with other systems.

* It's hard to build a new compiler! C++ compiler already exists (and it's not bad). Smart choice! Saves
time. Faster phd. Faster publication. More papers :-)

o Written in Perl (omQ)




Mace: DSL on top of C++

» What's the problem that it is trying to solve?

Help with debugging distributed systems; help with “experience” of writing such a
system

Help link high-level and low-level spec

Help get high performance

Help with conciseness of implementation




Mace design ideas

Mace contributes key concepts for this domain

Layers ~ objects (encompass state): Relaxed encapsulation. Invoke a method
to generate an event (async invocations). Message passing between layers.

Layer/object interfaces: for constraining what can be invoked/generated by a
layer.

Events (trigger state transitions), corr

3 vﬂe Y, ()

espond to methods and allow messaging




Vlace

Impose explicit state definitions: control states and data states.

Control states: high-level protocol states. Capture the goal of my system.

Data states: lower-level implementation details that support the control states.

What is distributed state here? Not reflected in the Mace spec.

Events cause modification to state

Explicit states: make logging easier, easier to reason about critical sections.




Mace eval

* Eval: experiences instead of experiments. There are users: novices (students), experts (themselves). Care about
lines of code/productivity (new measure) — good match to their “product”.

* “Asked” novice users = ugrad students. Ethical? Informed consent && ability to opt out are minimal ethical
requirements. Highly realistic!? 4th year -> new employee at Google, not a stretch. Users studies are tricky.

* Timing result: 12 hours to write! (Effort estimate). But.. by who?
* Compare head-to-head with previous work (non-Mace systems).

* LOC ~ productivity? Doesn’t measure design effort to re-express systems in their structure. It's concise! Fits on
a page! Do they count lines before or after compilation? (Probably before). Would have been nice to know post-




MC note

 Model checking — we will discuss a model




Next: Verdl

e Verdi Is from PLDI 2015 (nice contrast to Mace

e More PL, but this time with a verification focus

A RS R D SR R




