
Hyperledger fabric: a distributed operating
system for permissioned blockchains

Androulaki et al.

1

Fabric
• Passive versus active replication

• Active: the proposal/command is sent to the entire RSM and each node
executes the command locally (each replica is “active”) ~ similarity to
op-based CRDT

• Passive: the command is executed at a single node (primary), the
side-effects (updates) of the execution are sent to the each RSM
replica. The replicas install the new state that they receive from the
primary (“passive”) ~ similarity to state-based CRDT

• Fabric hybrid:

• Active in the sense that multiple endorsers execute the same chain
code

• Passive in the sense that matching endorser side-effects get
distributed to rest of system (but only if they match!)

2

Fabric
• A “distributed OS” for permissioned blockchains: general

and modular

• More a framework than an OS? Much higher level than
a distributed OS

• Modularity: different consensus pieces, different PLs
that can be used for smart contracts, different
endorsement policies

• Alternative approach: execute-order-verify

• Separate trust in application from trust in consensus/
ordering

3

Why execute-order-verify?
• (In contrast to order-[execute-verify])

• Throughput: Wasteful for everyone to execute chaincode = smart contract. Constrain set of nodes that execute, then use
passive replication on side-effects to KVS to distribute exec. results.

• Trad. blockchain combine trust with consensus: delegating nodes for execution adds complexity

• execute-verify stage in BitCoin is cheap: simple DSL, and txns are easy to “execute” (e.g., validate)

• Non-determinism = bad = bugs = good to discover early. Execute first means you get to fail fast! You don’t want non-
determinism to be discovered late in the processing of a txn/invocation.

• Public bchain:

• Problem with scaling to a large network: endorsement doesn’t scale.

• Who is trusted to provide endorsement? Someone could provide incorrect endorsement.

• How do you incentivize other nodes to execute and endorse — in a public bchain this will need some fee

• Perhaps this solution to non-determinism is overkill: emulate the execution (multiple times) and compare the output to check
for non-det.

• Non-det checking modularity: endorsement policy for non-det checking (default: all endorsements should match)

• Trade-off: high contention of ops to same keys => client may not be able to satisfy endorsement policy

• Mismatch because of non-det in code (good to catch)

• Mismatch because of inconsistent state at the endorsement nodes (BAD!) ~ systemic race condition (by design)

• High load is a problem for consistency checking of my non-det element (NO PROGRESS GUARANTEE)

4

Fabric design
• Networking protocols:

• BitCoin: use gossip txns and blocks (trust no one; no privacy)

• Fabric: use gossip distribution of blocks (public state of the chain)

• Use point-to-point for endorser set (execute stage) based on policy: only target
the endorsers you need — this provide privacy for invocations).

• Ordering:

• BitCoin: Any full node can be an ordering node: if they are first to a PoW + head of
chain + other nodes believe them.

• Ordering is algorithmic: [longest chain wins + chain is a chain + …]; and
everyone agrees on this algo

• Fabric: Uses orderer nodes (OSN): stateless, can be swapped out (for different
variants), centralized (multiple for redundancy)

• Ordering is in a single (trusted) place + application-unaware
5

Fabric evaluation
• FabCoin ~ BitCoin => transactions are light-weight; trivial smart contracts

(chaincode)

• What is a fair Fabric comparison system?

• Comparison with an order-execute system! (Previous systems are the
expected baseline)

• Lacking: Experiment with high load to same key, varying the time between txns
to the key: from 1ms between access to 1s — measure txns throughput or
endorsement failure (for a strict policy); Could also evaluate different policies

• No evaluation of key trade-offs being “sold” in the paper: No focus on
modularity + other design elements

• WAN deployment compared against LAN (1 DC) ~ good proxy for multiple orgs
that coordinate

• Strange to see SSD vs. RAM eval?
6

Closing discussion

• Breakout discussion:

• Consider the papers we read in the course,
which paper/topic was your favourite and why?

7

Next: project presentations!
• Project presentations schedule finalized

• 12m talk + 5m Q/A

• Time must be split evenly between all group members

• Project report+code due December 11th by 6PM PT

• Report as pdf via email. Instructions on homepage:

• https://www.cs.ubc.ca/~bestchai/teaching/cs538b_2020w1/final-report.html

• Code as link to a public repository, or a private repo shared
with my GitHub id bestchai

8

