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Mid-term survey

• Posted link on Piazza 

• 8 responses so far 

• Please fill it out to let me know how things are 
going
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Dapper meta-level
• Google "experience paper”: what did they learn from the Dapper experiment? 

(Also, not peer-reviewed) 

• Relevant outside of Google? Specific to infrastructure and experiences 

• Even LOC counts are unclear in translation due to supporting infrastructure 

• Is every large-scale paper from google necessarily an interesting paper for 
the research community? (No..) 

• What is a good experiences paper (from a research pov)? 

• An experience is unique, in this case to Google! Without this, it wouldn’t be 
an interesting experience paper 

• Has influenced many later projects (span notion is now prevalent)
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Distributed tracing
• What’s the motivation for distributed tracing? Why do we need it? Why are the previous tools we’ve read about insufficient? 

• Model checking: what could have been 

• Tracing: what actually happened 

• Isn’t MC the superset of traces that you’ll observe? 

• MC: Can’t save the traces, requires a property, huge state space, … really intended to find bugs. Requires an accurate 
model! 

• If tracing is not for bug finding… then what is it for? 

• Measuring performance (e.g., high latency events; may not be bugs) 

• Capture information in production systems (real code: C++, Java) 

• What are the requirements for such a system? 

• Goal: Continuous monitoring at runtime across as many services as possible (observability) 

• Low overhead, transparency (automatic instrumentation, min impact on the SUT), scalability (many services), 
ubiquity  

• Ubiquity: I don’t know what I’m going to need/what’s important: Capture all, decide what’s relevant later 

• Is Dapper a monitoring system? If you think of monitoring as runtime verification, then Dapper is not a monitoring system 

• If monitoring is passive observation, then Dapper is a monitoring system — it’s observing from the sidelines
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Distributed tracing
• How realtime does a tracing system need to be? 

• Dapper: mostly under 15s (median) 

• Your utility determined by how realtime you are 

• Enables comprehension of the system: draw a picture of your system => You need tools (on top of data) 

• Well-defined abstraction for the data 

• An API to access/query the data (DAPI) 

• Dapper - big success… so, what can we learn to imitate dapper? 

• Adoption: transparency for existing apps (automate the hard parts for whoever the user is) 

• Adoption: a well-defined API to the data that is being collected (they can solve their own problem 
with the data) 

• General-purpose utility: solve a problem that someone has.. but don’t be overly specific (for 
systems infrastructure). There’s a tension between specificity and generality. 

• Adoption: broadly familiar sequence diagram model of execution (extensible for the power users)
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Dapper abstractions
• Trees/spans: what does dapper aim/need to represent? 

• Distributed control flow (causal relations) 

• Sequence execution diagram (blocks of exec) 

• Time: “span” of time. 

• Inter-connected intervals where things happen (tree) 

• Unique trace identity 

• Optional: user-annotations (key-value map) —- but very widely used, not 
optional? 

• (Trace ~ Google servicing a single client request) 

• Performance focused abstraction => needs realtime (not virtual/logical)
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Dapper abstractions
• It lacks many distributed abstractions because it extends the notion of a single machine trace 

• Maybe this is what makes this abstraction more intuitive (and useful) to developers

• Finn: A complex tool doesn’t mean it has to be complicated to use. An overly intelligent tool could be a 
liability — a suboptimal, but easy to understand, tool could be more useful! 

• Dapper: less intelligence in the tracing system, move the smarts to the end-user tools 

• Leads to low overhead 

• Sub-optimal, but easy to understand — low “emotional overhead”. Forces the user to do work that they are 
comfortable with doing (writing MapReduce queries :-) 

• Think about and empathize with your users — that’s the path to success! 

• Breed familiarity with a distributed execution for someone who doesn’t know distributed systems that well? 

• Totally ordered paths to represent real call stack and latency 

• Distributed tracing: take a local trace, and extend it to remote machines 

• And can customize with annotation
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Dapper design
• Mostly driven by scalability concerns (terabyte traces / day) 

• Instrument core libraries (e.g., RPC lib) 

• Store traces locally on disk, pull when necessary 

• Garbage collect locally. If not used, it never moves over the network. 

• Sampling by only tracing 1/n requests 

• Additional sampling (fraction of traces included: during collection: hash(tradeID)->[0,1], 
and give the user a knob in [0,1].  

• Adaptive sampling (work in progress): trace frequency based on load; latency is related to 
number of people who experience it (user-focused metric) 

• Tree is not always a tree: these are corner cases and can be dealt with manually 

• RPC-style construction of distributed systems is the norm, so if you support it, you 
capture most things
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Dapper experiences
• User annotations (90% of traces had at least one) 

• Indicates the dumb tracing is.. too dumb? 

• Pull in developers, and let them extend later 

• Using traces for policy enforcement/checking (privacy/security: 
service A should not talk to service B) 

• Hunted down developers who disabled Dapper and convinced 
them to re-enable it (another reason they are successful) 

• Network effect of tool adoption
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Next: BigData Compute
• We’ve covered some basic theory/abstractions, 

and tools for constructing dist. systems. Now let’s 
look at some complex systems! 

• BigData systems ~ cloud-based systems 

• First: Spark (analytics) 

• Then, TensorFlow (machine learning) 

• Both use an important abstraction, data-flow
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