
Dapper, a Large-Scale
Distributed Systems

Tracing Infrastructure.
Sigelman et al.

Google TR 2010

1

Mid-term survey

• Posted link on Piazza

• 8 responses so far

• Please fill it out to let me know how things are
going

2

Dapper meta-level
• Google "experience paper”: what did they learn from the Dapper experiment?

(Also, not peer-reviewed)

• Relevant outside of Google? Specific to infrastructure and experiences

• Even LOC counts are unclear in translation due to supporting infrastructure

• Is every large-scale paper from google necessarily an interesting paper for
the research community? (No..)

• What is a good experiences paper (from a research pov)?

• An experience is unique, in this case to Google! Without this, it wouldn’t be
an interesting experience paper

• Has influenced many later projects (span notion is now prevalent)

3

Distributed tracing
• What’s the motivation for distributed tracing? Why do we need it? Why are the previous tools we’ve read about insufficient?

• Model checking: what could have been

• Tracing: what actually happened

• Isn’t MC the superset of traces that you’ll observe?

• MC: Can’t save the traces, requires a property, huge state space, … really intended to find bugs. Requires an accurate
model!

• If tracing is not for bug finding… then what is it for?

• Measuring performance (e.g., high latency events; may not be bugs)

• Capture information in production systems (real code: C++, Java)

• What are the requirements for such a system?

• Goal: Continuous monitoring at runtime across as many services as possible (observability)

• Low overhead, transparency (automatic instrumentation, min impact on the SUT), scalability (many services),
ubiquity

• Ubiquity: I don’t know what I’m going to need/what’s important: Capture all, decide what’s relevant later

• Is Dapper a monitoring system? If you think of monitoring as runtime verification, then Dapper is not a monitoring system

• If monitoring is passive observation, then Dapper is a monitoring system — it’s observing from the sidelines

4

Distributed tracing
• How realtime does a tracing system need to be?

• Dapper: mostly under 15s (median)

• Your utility determined by how realtime you are

• Enables comprehension of the system: draw a picture of your system => You need tools (on top of data)

• Well-defined abstraction for the data

• An API to access/query the data (DAPI)

• Dapper - big success… so, what can we learn to imitate dapper?

• Adoption: transparency for existing apps (automate the hard parts for whoever the user is)

• Adoption: a well-defined API to the data that is being collected (they can solve their own problem
with the data)

• General-purpose utility: solve a problem that someone has.. but don’t be overly specific (for
systems infrastructure). There’s a tension between specificity and generality.

• Adoption: broadly familiar sequence diagram model of execution (extensible for the power users)

5

Dapper abstractions
• Trees/spans: what does dapper aim/need to represent?

• Distributed control flow (causal relations)

• Sequence execution diagram (blocks of exec)

• Time: “span” of time.

• Inter-connected intervals where things happen (tree)

• Unique trace identity

• Optional: user-annotations (key-value map) —- but very widely used, not
optional?

• (Trace ~ Google servicing a single client request)

• Performance focused abstraction => needs realtime (not virtual/logical)

6

Dapper abstractions
• It lacks many distributed abstractions because it extends the notion of a single machine trace

• Maybe this is what makes this abstraction more intuitive (and useful) to developers

• Finn: A complex tool doesn’t mean it has to be complicated to use. An overly intelligent tool could be a
liability — a suboptimal, but easy to understand, tool could be more useful!

• Dapper: less intelligence in the tracing system, move the smarts to the end-user tools

• Leads to low overhead

• Sub-optimal, but easy to understand — low “emotional overhead”. Forces the user to do work that they are
comfortable with doing (writing MapReduce queries :-)

• Think about and empathize with your users — that’s the path to success!

• Breed familiarity with a distributed execution for someone who doesn’t know distributed systems that well?

• Totally ordered paths to represent real call stack and latency

• Distributed tracing: take a local trace, and extend it to remote machines

• And can customize with annotation

7

Dapper design
• Mostly driven by scalability concerns (terabyte traces / day)

• Instrument core libraries (e.g., RPC lib)

• Store traces locally on disk, pull when necessary

• Garbage collect locally. If not used, it never moves over the network.

• Sampling by only tracing 1/n requests

• Additional sampling (fraction of traces included: during collection: hash(tradeID)->[0,1],
and give the user a knob in [0,1].

• Adaptive sampling (work in progress): trace frequency based on load; latency is related to
number of people who experience it (user-focused metric)

• Tree is not always a tree: these are corner cases and can be dealt with manually

• RPC-style construction of distributed systems is the norm, so if you support it, you
capture most things

8

Dapper experiences
• User annotations (90% of traces had at least one)

• Indicates the dumb tracing is.. too dumb?

• Pull in developers, and let them extend later

• Using traces for policy enforcement/checking (privacy/security:
service A should not talk to service B)

• Hunted down developers who disabled Dapper and convinced
them to re-enable it (another reason they are successful)

• Network effect of tool adoption

9

Next: BigData Compute
• We’ve covered some basic theory/abstractions,

and tools for constructing dist. systems. Now let’s
look at some complex systems!

• BigData systems ~ cloud-based systems

• First: Spark (analytics)

• Then, TensorFlow (machine learning)

• Both use an important abstraction, data-flow
10

