Dapper, a Large-Scale
Distributed Systems
Tracing Infrastructure.

Sigelman et al.
Google TR 2010




Mid-term survey

e Posted link on Plazza

3 .Jﬁ"?{%k i

¢
&

SO




Dapper meta-level

e Google "experience paper”: what did they learn from the Dapper experiment?
(Also, not peer-reviewed)

* Relevant outside of Google” Specific to infrastructure and experiences

e Even LOC counts are unclear in translation due to supporting infrastructure

e S every /ar_ge—sca/e paper

_ /fr‘om goog/e ne_cessari/y an intere_stin‘g paper for

IN




Distributed tracing

What's the motivation for distributed tracing? Why do we need it? Why are the previous tools we've read about insufficient?

* Model checking: what could have been

* Tracing: what actually happened

Isn't MC the superset of traces that you'll observe?

MC: Can't save the traces, requires a property, huge state space, ... really intended to find bugs. Requires an accurate
model!

If tracing is not for bug finding... then what is it for?

* Measuring performance (e.g., h/gh,/aten_cy events; may not be bugs) .




Distributed tracing

« How realtime does a tracing system need to be?
» Dapper: mostly under 15s (median)
 Your utility determined by how realtime you are

* Enables comprehension of the system: draw a picture of your system => You need tools (on top of data)
» Well-defined abstraction for the data

~» An API to access/query the data

DAPI)




Dapper abstractions

* Trees/spans: what does dapper aim/need to represent?

Distributed control flow (causal relations

Sequence execution diagram (blocks of exec

* Time: “span” of time.




Dapper abstractions

It lacks many distributed abstractions because it extends the notion of a single machine trace

Maybe this is what makes this abstraction more intuitive (and useful) to developers

Finn: A complex tool doesn’t mean it has to be complicated to use. An overly intelligent tool could be a
liability — a suboptimal, but easy to understand, tool could be more useful!

Dapper: less intelligence in the tracing system, move the smarts to the end-user tools

* Leads to low overhead

imal, but easy t w “emotional overhead”. Forces the user to do work that they are




Dapper design

Mostly driven by scalability concerns (terabyte traces / day)

Instrument core libraries (e.g., RPC lib)

Store traces locally on disk, pull when necessary

« Garbage collect locally. If not used, it never moves over the network.

Sampling by only tracing 1/n requests




Dapper experiences

e User annotations (90% of traces had at least one

* |ndicates the dumb tracing is.. too dumb?

* Pull in developers, and let them extend later




Next: BigData Comput

* We've covered some basic theory/abstractions,

and tools for constructing dist. systems. Now let’s
look at some complex systems!

* BigData systems ~ cloud-based systems




