
 Chord: A Scalable Peer-
to-peer Lookup Service
for Internet Applications

Ion Stoica et al. TON 2003
Transactions on Networking

1

Chord

• Breakout discussion:

• What sorts of WAN P2P challenges does Chord
have to deal with? And, how does it deal with
them?

2

Chord
• What sorts of WAN P2P challenges does Chord have to deal with? And, how does it deal with them?

• Scalability ~ 10^8 nodes, Privacy, Simplicity <=> No central service (e.g., RSM)

• Scale => limit the amount of change that must happen during a node join/leave

• Limit number of keys that must be moved (are moved from nearby nodes)

• Limit the number of routing updates

• Scale => Time complexity of lookup/join must be minimized

• O(log N) space

• Scale => P2P nodes are sometimes “volunteers”, minimize their resource usage (want to be inclusive of nodes: decrease
bar for participation)

• O(log N) space

• Scale => Diversity of nodes => highly dynamic behaviours (nodes Churn)

• Focus on join/leave protocol

• Make node failures and leave the same; efficient

• Joins of new nodes; must know an existing node to join (bootstrap problem)

• Diversity => Node failures (fail stop)

• WAN => Reachability between nodes unclear

• Routing protocol needs to account for this

3

Chord
• What sorts of WAN P2P challenges does Chord have to deal

with? And, how does it deal with them?

• Scale => Fair to different nodes => Load balancing: no central
point of control to distribute resources/nodes

• Fair: O(log N) storage per node and identical routing state
per node

• Security: more powerful nodes do not carry more of the load

• Free riding is limited

• Incentive-compatibility as a design goal (not in Chord)

• Must be completely distributed
4

Chord and WAN
• WAN: wide area networking (versus LAN/data centre)

• Network heterogeneity (TCP/IP stack mostly resolves this)

• Topology and Reachability

• Asymmetry and non-transitivity (Chord assumes these away)

• Symmetry: A->B => B->A

• Transitivity : A->B->C ==> A->C

• Geo-distribution of nodes is all over (the world)

• Orders of magnitude difference in latency (delay) between nodes

• Routing must account for latency, not just # of hops

• Solve this in the allocation of nodes to circle

• Why not: system susceptible to geo-attacks (country, org)

• Or, solve it in the finger table (Chord solves in the finger table)
5

Chord
• Iterative versus recursive routing

• Iterative: bounce from node to source over and o ver
again

• Advantage: Full visibility from the source node

• Recursive: nodes I route to, route on my behalf

• Advantage: 1/2 the latency on average; no bounce
back to source on each hop

• Disadvantage: failures / black holes (difficulty of
diagnosing)

6

Chord
• Basic setup:

• Ring with successors pointers

• Finger tables with exponential hops away

• Keys assigned to successors on the ring

• Consistent hashing for balancing nodes and
keys

• Use the same ring for both (key-space)
7

Chord
• Advanced functionality:

• Instead of 1 successor => K successors

• Fault tolerance (ring connectivity)

• Useful for replication (sets a constant replication factor; easy to find the item).
Replicate items close to each other in the key space: efficiency of co-location in
key space between replicas.

• Virtual nodes: further load balancing — make the complexity work in your favour (100
nodes may be not enough X 100 virtual nodes/node => 10,000). Virtual scaling => load
balance better

• Higher storage (linear in virtual nodes)

• Take care with replication (“many” (in a probabilistic sense) virtual replicas could
be on same physical host)

• Self-stabilization

• Chord is an example of a Self-* system (self-regulating / self-repairing)
8

Chord
• Things the paper doesn’t deal with:

• Design for incentives to encourage high P2P participation

• Security

• Byzantine failures

• Attack surface is huge: many more types of attacks! Routing, DDoS,
introducing asymmetry, sybils

• P2P-specific: taking advantage of mis-designed incentive in the system
(BitTorrent)

• Bootstrapping new nodes (knowing existing node)

• Setting RPC/communication timeout

• Asymmetry and non-transitivity
9

Chord
• What it can be used to provide:

• File storage (CFS): store replicas of data at successor nodes

• Anti-censorship (Tor): fault-tolerant routing can be used to get around
routing blocks (route my request to any in Chord and try to get to the
resource); nodes live all over the world (diversity in routing that is available
to a node)

• By contrast, on Internet: path cannot be controlled by source &&
hierarchy means you get consistent path that can be controlled by local
authorities.

• Overlay networks: application-level routing instead of physical route —
physical route does not reflect my ultimate destination

• Only works with recursive routing

• Privacy (Tor, Bitcoin)
10

Chord and correctness
• Model Chord and prove that it is incorrect (given

some “reasonable” discrete time model)

• Using Lightweight Modeling To Understand
Chord, by Pamela Zave (related readings
posted on schedule)

• There are sequences of joins/leaves/failures/
self-stabilization that lead to broken Chord rings

• Model checking-style methodology
11

Next: BitTorrent and Bitcoin

• Loosely structured P2P systems

• File transfer: BitTorrent

• E-money: BitCoin

• Note: these two papers are short and of
questionable quality, good examples of how not
to write a paper (sorry)

12

