
 Conflict-free
Replicated Data Types

Shapiro et al. TR 2011

1

Project updates due tmrw
• By tomorrow at 6pm Vancouver time:

1. Send me a project update (2 page max)

2. Email me to schedule a chat (unless we
already have regular meetings)

(This is 10% of your mark, please don’t be late)

2

CAP and CRDTs

• Paper: CAP is a problem. We have a solution.

• Breakout discussion:

• So, do CRDTs “solve CAP”? Why or why not?

3

CAP and CRDTs
• So, do CRDTs “solve CAP” ? Why or why not?

• Doesn’t solve it because the C in CAP is not the C (SEC) that CRDTs provide!

• Perhaps a solution to a “theoretical” notion of CAP. Mathematical guarantee that does not reflect
reality.

• Makes assumptions that may not be true in practice: eventual delivery

• Performance is also a practical issue

• But, makes progress on CAP! Allows automagic convergence without user involvement. Perhaps
useful in contexts where strong consistency is not necessary

• Start of paper: you need to choose AP, so how much C can you get? CRDTs meaningful, but
paper overclaiming?

• A point on the spectrum of C, so a solution if you consider a well defined set of choices for C,A,P

• CRDTs designed for apps that are okay with a window of inconsistency

• CRDTs provide semantics that withstand weaker consistency (more resistant to async of the
underlying network/world)

• Similarities with multi-core data structures (e.g., GC must avoid inconsistencies)
4

SE versus SEC
• Defined used linear temporal operators (circle, square), part of temporal logic

• Square: always

• Rhombus: eventually

• Netw assumption: Eventually all updates delivered to all replicas

• EC: eventual consistency (def 2.2)

• Always the case (square), if two replicas have same set of states, then eventually (rhombus)
always (square) their state will be the same.

• There is an unspecified/unbounded delay between when the two replicas’ sets synchronize
and when they achieve identical states

• (There is no simple m that automates the merging)

• SEC: strong eventual consistency (def 2.3)

• There is no delay: when two replicas have identical sets of states, they (at that instant) have
identical states.

• Instantaneity is achieved with the m function (merge)
5

CRDT “object” defn
• Assumptions for both state based an op based CRDTS

• Eventual delivery of all updates

• Termination of all the operations

• Applications use CRDTs through the exposed API (ADT
abstraction)

• Set: add/remove/union/intersection

• Graph: add_v/add_arc/remove_v/remove_arc

• Counter: increment/decrement

• List: add/remove/len
6

CvRDT “object” defn
• CvRDT (state based / convergent)

• Object states (values), order on states of the object

• State merge method: m(s1,s2) => s3 (LUB)

• Update method: monotonic, non-decreasing

• How is a CvRDT object implemented?

• Record states resulting from updates to the object

• Share (send) all the states to all the other nodes

• When you receive states, merge them with whatever you have locally

• Merge is a compaction routine m(m(m(s1,s2),s3),s4) => s5 (LUB of s1,s2,s3,s4)

• Propagation of the LUB is critical, but can be summarized with merge
7

CmRDTs
• Requirement: causally-ordered broadcast protocol

• CmRDT (operation based / commutative)

• Operation

• t: prepare-update (side-effect-free) method — runs once, at the source of the operation

• u: effect-update method (side-effects)

• At the source the execution requires u to immediately follow t: (t,u) applied as a unit at
the source

• At other nodes, only u is applied

• P: pre-condition/guard that constrains when you can apply u, the update (receiving nodes)

• P eventually enabled

• Commutativity of operations: (t,u) and (t’,u’)

• Order of applying commutative updates doesn’t matter => identical to a merge
behaviour, since LUB is the same regardless of ordering of the set of inputs

8

CmRDTs

• Why the separation of t (side-effect free, prepare
update) from u (side-effect, update)?

9

CRDT examples
• Vector clocks are CRDTs

• Counters: set of increments, and a set of
decrements. Merge: \sum over the increments -
\sum over decrements

• Graph with sets of vertices (V) and arcs (A)

• Define commutativity on V, and separately on A,
and between operations on V and ops on A

10

CRDT tradeoffs
• Error handling: how do “ask” or tell an application about

a conflict that I want the application to resolve?

• You can’t (or shouldn’t): conflict resolution must
happen inside of the CRDT and it must be consistent
across all replicas

• CvRDTs are space inefficient

• You want CmRDTs in practice. But, CmRDTs have
strong networking requirements

• Network eventually delivers all states/operations: still
reliant on the network to satisfy this condition

11

Next: Optimistic Replication
(OR)

• In some ways, a pre-cursor to CRDTs. A broad area of
distributed coordination algorithms that “assume the best”

• Similar to optimistic concurrency control mechanism
like software transactional memory

• Optimistic replication deploys algorithms not seen in
traditional “pessimistic” systems.

• Instead of synchronous replica coordination, an optimistic
algorithm propagates changes in the background,
discovers conflicts after they happen and reaches
agreement on the final contents incrementally

12

