Distributed

Programming In Argus

Barbara Liskov, CACM 1988




538B projects

 Thank you for the proposal drafts

e Finalized project proposals due Friday at bpm
~ Vancouver time

X e M
3 ¢ 3 o b
ey A% W R LB W0 ) L .
RIAR Ly % n X bl 13‘}'-".«' Ly N R T R R S
il el RO kO i3] 2l i ) i
4 3 ¥ AN o



Argus apstractions

 CLU (CLUsters) introduced : iterators, exceptions, parallel assignment,
abstract data type, objects, parametrized types.

 What about C++7? Earlier/Later depends on private/public. Eventually
merged in many of the same concepts

» Argus builds on CLU, and adds : better state management, message
passmg guard|a objects (actors W/th fault tolerance), actlon with strict




Argus

» What’s hard or ridiculous about Argus?

» Deadlocks : Argus doesn'’t prevent deadlocks, and doesn'’t detect them... so they'll just happen when programmers make
mistakes.

* Well, locks are the same!

* e.g., why not have Argus detect deadlocks like Go?

» What are the locks/how many locks in an Argus program? EVERY data object that you can reference (read or mutate) has a
lock.




More generally

» The central question: how much concurrency control do you introduce into a language/compiler? And how much distribution control?

e Pros of introducing more:

* less code to write (less boilerplate)

e compiler does more work for you (can optimize common cases)

* handles the complexity (correctness! Only implement once, correctly by construction)

» global compiler reasoning over the entire system, compiler can choose appropriate optimizations (can even target networking environments)
» Cons of introducing more:

. néed"a-'re@{/y complex compiler




Argus implementation/
design

» Strict two phase locking: concurrency within a guardian handler.

e Nested Two phase commit: once or zero semantics for actions (including top-actions, sub-actions)

Requires all nodes to commit (no notion of quorum)

Runs on all the replicas hosting guardians that are involved in a distributed transaction (servicing an action)

Safe but not live: coordinator failure in a particular state causes the transaction to stall until coordinator comes back up
(top action, or the caller of the action)

There is no view change (not like PBFT/Paxos)




Argus

 |sn’t weird how it sort of looks like a database built into a PL?

* Argus = enriched SQL

* Argus = SQL notions (of txns) built into a general purpose
Pl (CL



http://bloom-lang.net/
http://bloom-lang.net/

Next: Emerald

A more fleshed out object-based distributed
‘programming system. Perhaps the culmination




