
Distributed
Programming in Argus

Barbara Liskov, CACM 1988

1

538B projects

• Thank you for the proposal drafts

• Finalized project proposals due Friday at 6pm
Vancouver time

• Happy to chat about the project proposal

• Please share a version I can edit/comment on

2

Argus abstractions
• CLU (CLUsters) introduced : iterators, exceptions, parallel assignment,

abstract data type, objects, parametrized types.

• What about C++? Earlier/Later depends on private/public. Eventually
merged in many of the same concepts

• Argus builds on CLU, and adds : better state management, message
passing, guardian objects (actors with fault tolerance), action with strict
distributed consistency and atomicity guarantees, top-action to
coordinate nested distributed transaction using 2 phase commit (2PC)

• Stable keyword: explicitly denotes state that will persist across failures
(at top of guardian definition)

• Argus … ahead of its time! Influenced a ton of work in the PL +
distributed system space.

3

Argus
• What’s hard or ridiculous about Argus?

• Deadlocks : Argus doesn’t prevent deadlocks, and doesn’t detect them… so they’ll just happen when programmers make
mistakes.

• Well, locks are the same!

• e.g., why not have Argus detect deadlocks like Go?

• What are the locks/how many locks in an Argus program? EVERY data object that you can reference (read or mutate) has a
lock.

• Fine-grained locking in Argus increases chance of deadlocks

• Optimistic: create as many locks as may ever be necessary

• Pessimistic: many locks!

• Is deadlocking proclivity a fair criticism?

• Deadlocks escape the abstraction : which makes them the programmer’s problem, and difficult to deal with (unlike
machine failures : handled as part of the abstractions in Argus).

• Humans have to reason about deadlocks: reason about the compiler’s locking strategy + many many locks

• Really loads the human capacity for reasoning about concurrency

• Finn Trivia: Java supports synchronized. The intent behind these was to introduce locks to implement synchronized. The reality of the implementation is not to do this.

4

More generally
• The central question: how much concurrency control do you introduce into a language/compiler? And how much distribution control?

• Pros of introducing more:

• less code to write (less boilerplate)

• compiler does more work for you (can optimize common cases)

• handles the complexity (correctness! Only implement once, correctly by construction)

• global compiler reasoning over the entire system, compiler can choose appropriate optimizations (can even target networking environments)

• Cons of introducing more:

• need a really complex compiler

• compilers must generalize (it will never be as fast as special purpose custom code; but requires really smart human for this specialization)

• bottleneck to a compiler is expressiveness of the language (the more you can convey, the better, but this makes the language complex)

• Junfeng: Can we separate the concurrency/distribution notions from the PL, and integrate them independently into libraries/tools to benefit all PLs? PonyLang language with
actors

• ZooKeeper (written in Java)? Chubby? Kafka? Spark? MapReduce? …

• OR just wait for C++ v1024 (or Perl v10) ?

• Why isn’t ZooKeeper written in something like Argus?

• It needs open source developers that know the language

• It needs ability to use the “best” compiler and evolve over time

• Bottomline: language popularity determined by features, libraries, familiarity, crowd effects, supported platforms (see JavaScript)

5

Argus implementation/
design

• Strict two phase locking: concurrency within a guardian handler.

• Nested Two phase commit: once or zero semantics for actions (including top-actions, sub-actions)

• Requires all nodes to commit (no notion of quorum)

• Runs on all the replicas hosting guardians that are involved in a distributed transaction (servicing an action)

• Safe but not live: coordinator failure in a particular state causes the transaction to stall until coordinator comes back up
(top action, or the caller of the action)

• There is no view change (not like PBFT/Paxos)

• Fault tolerant objects that are coordinated by 2PC (via nested actions)

• What about ordering? Does it provide an ordering that a client would actually want?

• Serializable ordering : looks like a linear sequence of events against a collections of objects.

• Bad ordering:

1. accounts.total() called by clientA at 1PM

2. For ac in accounts : ac.deposit(1) by clientB…clientZ at 1:01PM (this might take a long time)

• The eventual ordering: reverse of the above (deposits finish first, total finishes last).

• Very much like distributed database operations (e.g., SQL-like): commands issued to an ACID database have the same
ordering concerns

6

Argus
• Isn’t weird how it sort of looks like a database built into a PL?

• Argus = enriched SQL

• Argus = SQL notions (of txns) built into a general purpose
PL (CLU)

• Doesn’t really come close to SQL (declarative, and isn’t
backed by a relational algebra); pales in comparison?

• Modern research languages that are declarative and DB-like
for constructing distributed systems (e.g., Bloom http://
bloom-lang.net/)

7

http://bloom-lang.net/
http://bloom-lang.net/

Next: Emerald

• A more fleshed out object-based distributed
programming system. Perhaps the culmination
of such systems (late 80s).

• Focus on mobility and compilation

8

