CRDTree

Braxton Hall

Haotian Yang

Ray Zhang

CPSC 538B 20W1: Distributed Systems Abstractions

1. Introduction

Collaborative applications allow multiple users to edit shared data, and have become a
necessity in both industry and academia. Systems like Google Docs and Git both provide
means of either real-time or asynchronous collaboration. We aim to build an available,
peer-to-peer system which supports both real-time and asynchronous collaboration.

& User 5 & User 4

-0

OO

O—M ain = - m >
/
& User 6
Fork 1

& User 7

O

o

& User 1

& User 2

Figure1. The overall conceptual view of CRDTree from user’s perspective

2. Background

2.1 Scenario: Collaborative Proposals

A document editing system allows a team to work together on a document, each with their
own editor. This may be a paper or even source code. Users are able to see changes in real
time. At some point, there may be some disagreement on how to proceed on a
subcomponent of the document. Users split into subteams, each with their own version of
the document, where they may continue to collaborate in real time with their subteam.
Eventually, the subteams reconvene to choose the “correct” subcomponent, and continue
working from that version of the document. A subteam is also eligible to be split into
subteams as competing revisions may occur for the subteams.

If a mistake is found in the document, users should be able to search the history for when
the bad revision was created. Thus all intermediate changes must be retained from
collaboration on proposals in the final document.

2.2 Requirements

1. Real time collaboration on shared data
2. Asynchronous workflows
a. Real time collaboration on data change proposals
b. Data change proposals for proposals
3. Retain intermediate changes from working drafts of proposals
4. Storage usage should be minimal

2.3 Existing Solutions

Google Docs supports real-time editing, however clients do not collaborate with each other,
but rather with a central server. This creates a worrisome truck factor, as there is a single
point of failure. This creates the requirement for a peer-to-peer system, with support for data
lookup and retrieval.

A Conflict-free Replicated Data Type (CRDT) supports peer-to-peer real-time collaboration
through its guarantee of strong eventual consistency. When dealing with collaborative
operations with multiple users, a typical protocol involving a CRDT performs all the users'
operations eagerly, merging data as soon as possible. However, one may not wish to
perform these merges as soon as they receive operations from other users. Asynchronous
collaboration becomes handy in the case where an owner of data may wish to view how
changes affect it, and preview modifications before accepting them as a merge or even
discarding them.

Simply creating a peer-to-peer Google Docs complete with change proposals, still missing is
the ability to collaborate on a proposal, or even make a proposal for a proposal. These kinds
of workflows are supported by Git.

Additionally, Git commits are made entirely manually, rather than real time. Merging changes
often creates merge conflicts which must be manually resolved. A CRDT would absolve
users from having to engage with merge conflicts, and work on shared data in real-time.

On top of Git, users are able to use an additional application like Visual Studio Live Share or
JetBrains’ Code With Me to collaborate on a branch before requesting that it be merged.
This satisfies the requirements of real time and asynchronous workflows. However,
intermediate changes from the external real-time editing application are lost upon creating a
commit and merge to the main branch. Additionally, while some history is saved in the
application underneath, Code With Me only tracks a single flat history, which causes conflict
when concurrent users attempt to undo their own edits.

3. Approach

In this section we outline our approach for CRDTree, a library for a Conflict Free Replicated
Data Type with the extension of forks and joins. We use the names fork and join, not only to
avoid the naming collision with “merge” in CRDT literature, but also because to a user, there
are no single commits, just a stream of changes.

3.1 Design

3.1.1 Assumptions

Messages will eventually be delivered if the recipient comes online
Messages will not be corrupted

Messages may be delivered out of order

There are no Byzantine faults (processes are only fail-stop)

Nodes may go offline indefinitely, or recover

New nodes may be join the system

3.1.2 CRDTree

Branches should support intentionally letting states diverge. Creating a branch should divert
state, letting different sets of collaborators work in partitions each with their own shared and
eventually consistent state.

Joins should allow for the dissolution of these partitions. In a join of branch A to branch B, all
operations from within the partition of collaborators for branch A should eventually be
propagated to the partition of collaborators for branch B where the join was accepted. If
branch B has already been merged into another branch C, then those changes should also
eventually be propagated to that corresponding partition of collaborators as well.

In a perfect network collaborating on a basic operation based CRDT object o, every process
p_i containing a replica o_i broadcasts o_i’s operations s infinitely often, allowing infinitely
many merge operations m_j on every process p_j. Under the assumption that every
message is eventually delivered, this presupposition is a direct proof of Eventual
Consistency as described in [5].

However in practice, merges may be delayed by a network partition (created by interference
or outages). Within one partition, state may accumulate, and then be delivered all at once
when the network partitioning has ceased.

Conceptually, our notion of CRDT forking resembles this temporary partitioning. An artificial
and user-controlled partition allows a set of users to collaborate on data that is not
automatically merged back to all other replicas. Their cumulative changes may be previewed
and even approved before the partition is removed.

Changes that are delivered for one branch on a process should not be reflected in the data
visible to applications on another, even though the two branches co-exist in the same
process. This means that a process, when creating a branch, creates an additional replica
with the same artificial partitioning between the originating branch and the new branch.

Creating a branch from a parent CRDT object o*y may then be seen as creating a new
CRDT object o”*x with some amount of history shared with oy, which can be independently
collaborated on as if creating an artificial network partition.

Main Main
& User 1 / -‘k / & User 1 a
Fork1 & User2 & \ & User2 X
& ."
&Userl / ‘x / otd User3 & ot sers v
_— ;
&User 2 Fork Fork H
. Network Partition N Network Partition ~ Join Network Partition
B Fork1 B Fork1 i
User 3 o 5 —_— ;
el (user3 *+—& S| (user3 *—@

local commits on Fork1 local commits en Fork1

(a) (b) ()

Figure 2.(a) CRDT Collaboration (b) CRDTree Fork Operation (¢) CRDTree Join Operation

A single branch retains all the local properties of a CRDT, and may be seen as a CRDT
collaborated on through a subnetwork within the entire CRDTree network. Additionally, they
may also be joined into each other, provided there is some common ancestor to both the
joiner and the joinee. As branches begin as clones of a CRDT object, we know that a branch
must have the same initial state s*0 and domain S. Thus all branches 0*x of oy extend
replicas of oy, and may be merged.

Accepting a join conceptually resembles dissolving an artificial network partition between
replicas in a single direction, immediately followed by restoring it. Thus it follows that, if all
branches {0"0,...0"n} are joined into some default fork replica or (i.e.: all network partitions
dissolved) and no other changes are made on {0”0,...0"n}, then we retain the same eventual
consistency and strong eventual consistency guarantees as a regular CRDT on o*'r.

Forks and joins are explicitly stored in branches’ histories as operations. Any single branch
has all the properties of a CRDT, with its own set of collaborators. It may be seen as a CRDT
collaborated on through a subnetwork of the full CRDTree network.

3.1.2.1 Storage Reduction

The naive solution of forking by creating a copy of a CRDT and redelivering operations upon
join causes every fork to duplicate the space usage on a process, which fails to meet the
requirement that storage usage should be minimal. In order to mitigate storage usage,
instead of copying history, the “initial operation” of a fork will be the fork operation, which
acts as a “pointer” to where more history can be found.

Main Fork

% >
User C

) — Pointer
Fork
» 4

Fork

Pointer

User C

—
Figure 3. The initial state of the fork is a pointer to more history, as is a join operation

A branch o”x is defined by its

1. name,

2. initial operation u_x0, which lies on the history of its parent oy

3. history of new operations u_xi following u_x0, local to o”*x
To query the extended history of 0o”x before its initial operation u_x0, the query must go
through the operation history tracked by its parent o*y.

The root of a CRDTree has no parent or initial operation.

3.1.2.1 Deleting a Branch

Say there exists some branch known by two processes. If process p_j is offline, and process
p_i were to delete their replica o_ix, there would be no node to retrieve missing operations
from when process p_j returns online. For this reason, we do not intend to support deleting a
replica from a process.

3.1.3 The CRDTree Protocol

Collaborating on a basic CRDT may be as simple as broadcasting all operations to all nodes
in the network. For CRDTree, this simple protocol would also be sufficient. However, it
comes at the cost of sending messages to processes who may not be interested. These
messages also contain operations which must be stored. Operations on a branch which a
process is not following only become relevant to that process if the remote branch has been
joined into one of the local branches.

To save both storage and bandwidth for unjoined operations to some local branch, we define
the CRDTree Protocol, which realises the artificial network partition when possible.

In addition to the data CRDTree which users interact with to store their data, the protocol
requires a second metadata CRDT. The metadata CRDT is shared by all processes, and
consists of a set of named sets. Names correspond to branch names that exist on any
process in the network. The named set for branch o”*x contains identifiers for all processes
following 0”*x, as well as any other branches 0*z which 0*x has at some point joined into,
paired with the latest join operation from o”x into o”z.

Using this metadata CRDT, and an operation for a local branch, one may recursively

compute all other processes who must learn about this operation, and broadcast the

operation only to that subset of the network. A tentative elaboration of this metadata’s
structure can be seen in Section 6.

Joins, forks, and checkouts of a branch all manipulate this shared data. As we do not
support deleting a fork, items will never be removed from any set or nested set in this shared
metadata CRDT.

3.2 Implementation

3.2.1 CRDTree Implementation
We seek to build CRDTree from the ground up in TypeScript.

3.2.2 CRDTree Protocol Library Implementation

As described in 3.1.3, whenever there is an operation u_xi on a branch o”x, our
space-saving protocol initiates a recursive message propagation to the users who are
effectively subscribed to o*x at the point u_xi falls in its history. This protocol requires each
user to connect to all other users in the network and send messages to an arbitrary subset of
users.

In a peer-to-peer network, each peer needs to discover, identify, locate, and create a
connection with other nodes. Building the peer-to-peer network is the crucial foundation of
the CRDTree Protocol Library, and instead of building it from scratch, we seek to leverage
the libp2p [7] library in Golang.

4. Evaluation

4.1 Research Questions

RQ1: Is our implemented CRDTree correct?

RQ2: Is our CRDTree performant?

RQ3: Is our CRDTree and accompanying Protocol Library usable?
RQ4: How does CRDTree compare to existing solutions?

4.2 Methodology

To test RQ1 and ensure that our implementation matches the specified merge and branch
semantics (with out-of-order message delivery), we will construct an automated test suite,
with programmatically withheld and delivered messages simulating out-of-order message
delivery.

Additionally, we will build a lightweight web application that supports document editing with
integrated branch and pull request workflows. We will then use this application over the
internet, which will answer RQ2.

Finally, we will measure the local storage as well as the commit latency of CRDTree to
compare it with GitHub, Google Docs and peer-to-peer Git, answering RQ[2,4].

5. Timeline

Milestone 1: Environment Setup, APl Design, Testing (Oct 29)

We will use this development period for further elicit the finer requirements of our
implementation, as well as create our shared repository

Requirements

e FR1: Should have a command line invokable test suite
e FR2: Should have signature and stubs for the high level API
o For CRDTree this includes merges, updates, network integration endpoints,
forks and joins
o For the CRDTree Protocol Library this includes connecting, as well as
persisting the local CRDTree
e NFR1: Should have a comprehensive test suite for CRDT as well as the CRDTree
extension. Obvious priorities include:
Should test that concurrent operations are deterministically merged
Should test that state reflects the history of operations
Should test that forks reflect the history of the tree they forked from
Should test that state reflects the history of operations that occurred on forks
joined into the current fork
e NRF2: Should have a partial test suite for the CRDTree Protocol Library
FR[1,2] may be manually evaluated.

O O O O

Milestone 2: CRDT Implementation (Nov 15)
This development period will be used to build a working CRDT that renders JSON

Requirements

e FR1: Should be able to initialize a CRDT
e FR2: Should be able to merge two CRDT given their initial states are the same
e FR3: Should be able to render a CRDTree
e NFR1: Merges should terminate in a reasonable amount of time, less than a second
e NFR2: Memory allocation should scale at worst polynomially in operations
FR[1-3] will be evaluated using our automated test suite created for Milestone 1.

Milestone 3: CRDTree Extension (Nov 29)

e FR1: Should be able to make a fork

e FR2: Should be able to join a fork

e FR3: Should be able to render a history that contains forks or joins
FR[1-3] will be evaluated using our automated test suite created for Milestone 1.

“Milestone 4”: CRDTree Protocol Library and Evaluation (Dec
21)

We have chosen to call the final report delivery “Milestone 4,” as we will be using it to deliver
further implementation. In addition to the CRDTree Protocol Library for this development
period, we will deliver our final reports
e FR1: Should be able to connect to other users
FR2: Should be able to calculate processes that are subscribed to an operation
FR3: Should send new operations to processes on the same fork
FR4: Should not send new operations to processes not on the same fork
e NFR1: Should have a complete test suite for the CRDTree Protocol Library
FR[1-3] will be evaluated using the extended automated test suite created for “Milestone 4.”

6. Appendix

Tentative CRDTree API

type CRDTreeTransport<T> = unknown;
type ID = unknown;

interface CRDTree<T> {
new (intialState: T): CRDTree<T>;
new (from: CRDTreeTransport<T>): CRDTree<T>;
render () : T;
clone () : CRDTreeTransport<T>;
merge (remote: CRDTree<T> | CRDTreeTransport<T>): ID[];

update (state: Partial<T>): void;
onUpdate (callback: (update: CRDTreeTransport<T>) => void);

ref(): ID;
listRefs(): IDI[];
fork(): ID;

join(ref: ID): wvoid;
checkout (ref: ID): void;

Tentative CRDTree Protocol Metadata Definition

interface SubscriberData {
[name: Branchl]: {
processes: Set<Process>

joinedIntoBranches: {[name: Branch]: Operation}
}i
}

function getSubscribers (data: SubscriberData, branch: Branch, operation:

Operation): Set<Process> {
const {processes, JjoinedIntoBranches} = datal[branch];
const subscribers = new Set (processes);
for (const joinedIntoBranch, joinPoint in joinedIntoBranches) {
if (operation.happensBefore(joinPoint)) {
subscribers.addAll (getSubscribers (data, joinedIntoBranch, operation));

}
}

return subscribers;

7. References

- [2] “CRDTs and the Quest for Distributed Consistency.” Web.
© CRDTs and the Quest for Distributed Consistency

- [3] Jagadeesan R., Riely J. (2018) Eventual Consistency for CRDTs. In: Ahmed A.
(eds) Programming Languages and Systems. ESOP 2018. Lecture Notes in
Computer Science, vol 10801. Springer, Cham.
https://doi.org/10.1007/978-3-319-89884-1 34

- [4] Preguica, Nuno. "Conflict-free replicated data types: An overview." arXiv preprint
arXiv:1806.10254 (2018).

- [5] Shapiro, Marc, et al. "Conflict-free replicated data types." Symposium on
Self-Stabilizing Systems. Springer, Berlin, Heidelberg, 2011.

- [6] Stoica, lon, et al. "Chord: A scalable peer-to-peer lookup service for internet
applications." ACM SIGCOMM Computer Communication Review 31.4 (2001):
149-160.

- [7] libp2p https://libp2p.io/

https://www.youtube.com/watch?v=B5NULPSiOGw
https://doi.org/10.1007/978-3-319-89884-1_34
https://libp2p.io/

