
Distributed Systems

CPSC 416

Winter 2022

Jan 11 Lecture (first class!)

Online

1

Oh yeah, pandemic
• Not a great time to be taking courses

• My 2nd time teaching a large course over zoom

• Lots of resources, but this course may not be the
right one for you (timezone/workload/content/etc)

• Please consider carefully before committing

• First assignment is a litmus test

2

Oh yeah, still pandemic
• January’22: zoom for all the things

• After January: unknown

• Likely to be zoom for at least some part of Feb

• But that’s my guess

• My goal: support your learning regardless of format
and person situation

3

Course staff
• Ivan Beschastnikh, associate research professor

• At UBC since 2013

• Previous taught 416 four times (in person), and over zoom in 2021

• Research distributed systems, networks, security, program analysis

4

Course staff
• Ivan Beschastnikh, instructor

• TAs (all grad)

• Mishaal

• Mayank

• Yanze

5

416 course evolution
• 2016: 77 students (open-ended project)

• 2017: 117 students (assignment hell)

• 2018W: 160 students (assignments + projects)

• 2018F: 44 students (mix of above)

• 2021W: 160 students (assignment… hell)

• 2022W: 120 students (assignments + projects)

6

You are here

Waitlist

• Current waitlist has 61 people!

• Keep joining and working on assignments, some
people will drop, but not everyone will get in

• To others: consider dropping if you have other
courses that look more interesting

7

Basic resources
• Everything on the website, updated continuously:

https://www.cs.ubc.ca/~bestchai/teaching/cs416_2021w2/

• Use Piazza for all course-related communication

• Office hours (start next week, over zoom):

• M,W,F: with TAs

• Th: with Ivan

8

Quick zoom poll

‣ How well do you remember 317 (networking)?

‣ How well do you know Go lang?

‣ Do you want to do [assignments] in teams?

9

• Learning goals

• Go programming language (start learning!)

• Schedule (a work in progress)

• Assignment 1 likely due Jan 21

• Exam (‘just’ a final)

• Advice for doing well

• learn Go (a must to pass the course)

• don’t hack, engineer

• choose team, wisely

• reach out on Pizza for help.

• Collaboration guidelines

Course overview via the website

10

Learning goals
• Understand key principles in designing and

implementing distributed systems

• Reason about problems that involve distributed
components

• Become familiar with important techniques for
solving problems that arise in distributed contexts

• Build distributed system prototypes using the Go
programming language

11

Learning goals
• Understand key principles in designing and

implementing distributed systems

• Reason about problems that involve distributed
components

• Become familiar with important techniques for
solving problems that arise in distributed contexts

• Build distributed system prototypes using the Go
programming language (the key to all the above)

12

Some student
workload comments

from previous offerings

• The workload for this course is easily double that of
any other course I had this term.

• Ivan has very high expectations of his students.

• I love and hate the fact that this class was a "sink or
swim" approach to learning

13

14

Assignment 1:

UDP Networking with Go

• Implement a client that interactively plays the game of nim
with a server

• Goal is to help you:

• Learn Go

• Learn Go

• Learn Go

• Remember some networking

Assignments note
• Typical 416 TA rant:

15

TEST YOUR CODE ON THE UGRAD
MACHINES!!!!!!!!!!!!!!!!!!!

YOU WILL GET ZERO IF IT DOESN'T RUN OR
COMPILE. WE HAVE NO SYMPATHY FOR THESE

TYPES OF ERRORS.

… you’ve been warned

Examples of distributed
systems• What are some examples of distributed systems?

• BitCoin, Blockchains

• HDFS

• Winery with temp controls that are coordinated (IoT: sensors/actuators, cyber-physical)

• SETI: search for aliens at home: distribute compute

• Floding@home: same but for proteins

• Kafka: message system… better than a network? Distributed queues of msgs (+ policies over those messages); pub-sub

• TOR: distributed system for privacy — hide your location (IP) from others

• DNS: naming service — used for WWW; hierarchical and has weak consistency

• Load balancers: take bunch of requests, decide who to send them to

• AWS: cloud — collection of distributed systems

• Raft: Consensus protocol (algorithm; etcd that realizes this alg)

• CDNs: Global distributed systems for distributing content (dealing with flash crowds)

• Zoom: cloud-cloud system

• Git: weak consistent, async, support for disconnection operation

• DHTs: distributed hash tables (Kademlia ~ KAD in Emule..)

• BitTorrent, Cassandra (KV store)
16

Systems versus applications
• What are some examples of distributed systems?

• Why not a distributed application? (DApps on blockchains)

• More scalability/concurrency — dealing with multiple connections/
clients who request service; application services … a single
human?

• Implicated abstraction are more at the API/protocol/semantics level.

• Fault tolerance — application has downtime isn’t the end of the
world; fallout for a distributed system failure is much greater

• Scales more naturally than an application

17

Systems versus applications
• What are some examples of distributed systems?

• Why not a distributed application? (DApps on blockchains)

• Abstracted away from users

• App is for clients, internals are systems

• System provides a “service” to other programs / API

• App usually interfaces with a person

18

Why distributed?
• What makes a system distributed?

• Distributed in space — removing reliance on centralized
physical components = fault tolerance to failure of those
components

• Availability — higher for a distributed system (due to
fault tolerance); geographic distribution

• Communication/networking implicated in *every*
distributed system: semantics/guarantees of the network
are really important for every system (that you’ll build in
this course)

19

What .. distributed?
• What makes a system distributed?

• Communication (networking)

• Concurrency/async (threads/processes/machines/Pis)

• Multiple machines/decentralization

• Replication (coordination) for fault tolerance/fail over

• Division of tasks (compute)

• Scalability/high perf ~ nice to have for a dist. sys

20

Distributed system examples

• YouTube

• Videos are replicated (multiple machines host
the same video)

• Scalable wrt. client requests for videos (internally
elastic — can throw more machines at the
service to have it scale out further)

21

Distributed system examples
• DropBox (or google drive)

• Replicated content across personal devices

• Supports disconnected operation (can work
while disconnected, and synchronize when re-
connected)

• Maintaining data consistent across devices

• Supports sharing; access control policies (security!)

22

Distributed system examples

• NASDAQ

• Transactions (e.g., ACID semantics from
databases). Many DBMS concepts apply to
distributed systems!

• Strong consistency and security guarantees
(otherwise people would not trust it with money)

23

Some D.S. challenges
• Synchronizing multiple machines (protocol complexity)

• Performance (how do you define/measure it?)

• Maintaining consistency: strong models (linearizable) to
weak models (eventual) of consistency

• Failures: machine failures (range: failure stop to byzantine);
network failures (just a few: disconnections/loss/corruption/
delay/partitioning)

• Security (how to prevent malicious control of a single host
in a system escalating into control of the entire system?)

24

For Thursday

• Install Go on your personal machine

• Work through Tour of Go! and other tutorials.

• Practice Go!

25

