Distributed Systems

CPSC 416
Winter 2022

Oh yeah, pandemic

* Not a great time to be taking courses
My 2nd time teaching a large course over zoom

* |Lots of resources, but this course may not be the
right one for you (timezone/workload/content/etc)

* Please consider caretully before committing

* First assignment is a litmus test

Oh yeah, still pandemic

e January'22: zoom for all the things
e After January: unknown
* Likely to be zoom for at least some part of Feb

* But that's my guess

My goal: support your learning regardless of format
and person situation

Course staff

e lvan Beschastnikh, associate research professor
At UBC since 2013
* Previous taught 416 four times (in person), and over zoom in 2021

* Research distributed systems, networks, security, program analysis

Course staff

e Jvan Beschastnikh, instructor

 TAs (all grad)

e Mishaal

 Mayank

e Yanze

416 course evolution

2016: 77 students (open-ended project)

2017: 117 students (assignment hell)

2018W: 160 students (assignments + projects)
2018F: 44 students (mix of above)

2021W: 160 students (assignment... hell)

2022W: 120 students (assignments + pProjects) «——wwaen

6

Waitlist

e Current waitlist has 61 people!

 Keep joining and working on assignments, some
people will drop, but not everyone will get in

* Jo others: consider dropping if you have other
courses that look more interesting

Basic resources

Everything on the website, updated continuously:
https://www.cs.ubc.ca/~bestchai/teaching/cs416_2021w2/

Use Pilazza for all course-related communication
Office hours (start next week, over zoom):
e MW F: with TAs

e Th:with lvan

Quick zoom poll

» How well do you remember 317 (networking)?
» How well do you know Go lang”

» Do you want to do [assignments] in teams?

Course overview via the website

e | earning goals
e GO programming language (start learning!)
e Schedule (a work in progress)
e Assignment 1 likely due Jan 21
e Exam (‘Jjust’ a final)

e Advice for doing well
* |earn Go (a must to pass the course)
e don't hack, engineer
 choose team, wisely
e reach out on Pizza for help.

e Collaboration guidelines

10

L earning goals

Understand key principles in designing and
implementing distributed systems

Reason about problems that involve distributed
components

Become familiar with important techniques for
solving problems that arise In distributed contexts

Build distributed system prototypes using the Go
programming language

11

L earning goals

Understand key principles in designing and
implementing distributed systems

Reason about problems that involve distributed
components

Become familiar with important techniques for
solving problems that arise In distributed contexts

Build distributed system prototypes using the Go
orogramming language (the key to all the above)

12

Some student
workload comments
from previous offerings

e [he workload for this course is easily double that of
any other course | had this term.

e |van has very high expectations of his students.

e [|ove and hate the fact that this class was a "sink or
swim" approach to learning

Assignment 1.
UDP Networking with Go

 Implement a client that interactively plays the game of nim
with a server

« (Goal is to help you:
 Learn Go
 Learn Go
o Learn Go

« Remember some networking

14

Assignments note

e Jypical 416 TA rant:

TEST YOUR CODE ON THE UGRAD

YOU WILL GET ZERO IF IT DOESN'T RUN OR
COMPILE. WE HAVE NO SYMPATHY FOR THESE
TYPES OF ERRORS.

... you've been warned

15

Examples of distributed
e aunssens. O Y STEIMS

 BitCoin, Blockchains
e HDFS
« Winery with temp controls that are coordinated (loT: sensors/actuators, cyber-physical)
« SETI: search for aliens at home: distribute compute
» Floding@home: same but for proteins
« Kafka: message system... better than a network? Distributed queues of msgs (+ policies over those messages); pub-sub
« TOR: distributed system for privacy — hide your location (IP) from others
¢ DNS: naming service — used for WWW,; hierarchical and has weak consistency
» Load balancers: take bunch of requests, decide who to send them to
 AWS: cloud — collection of distributed systems
» Raft: Consensus protocol (algorithm; etcd that realizes this alQ)
« CDNs: Global distributed systems for distributing content (dealing with flash crowds)
e Zoom: cloud-cloud system
« Git: weak consistent, async, support for disconnection operation
« DHTs: distributed hash tables (Kademlia ~ KAD in Emule..)

 BitTorrent, Cassandra (KV store)

16

Systems versus applications

* What are some examples of distributed systems?

¢ Why ﬂOt d dlSt”bUted appﬁcatiOn? (DApps on blockchains)

More scalability/concurrency — dealing with multiple connections/
clients who request service; application services ... a single
human?

Implicated abstraction are more at the APl/protocol/semantics level.

Fault tolerance — application has downtime isn't the end of the
world; fallout for a distributed system failure is much greater

Scales more naturally than an application

17

Systems versus applications

 What are some examples of distributed systems?
* Why not a distributed application’ oapps on biockehains)
* Abstracted away from users
 App is for clients, internals are systems
e System provides a “service” to other programs / AP

* App usually interfaces with a person

18

Why distributed?

 WWhat makes a system distributed?’

e Distributed in space — removing reliance on centralized
physical components = fault tolerance to failure of those
components

* Availability — higher for a distributed system (due to
fault tolerance); geographic distribution

 Communication/networking implicated in *every*
distributed system: semantics/guarantees of the network
are really important for every system (that you'll build in
this course)

19

What .. distributed”?

 WWhat makes a system distributed?’
o Communication (networking)
» Concurrency/async (threads/processes/machines/Pis)
* Multiple machines/decentralization
* Replication (coordination) for fault tolerance/tail over
* Division of tasks (compute)

o Scalability/high perf ~ nice to have for a dist. sys

20

Distributed system examples

e Youlube

* Videos are replicated (multiple machines host
the same video)

* Scalable wrt. client requests for videos (internally

elastic — can throw more machines at the
service to have it scale out further)

21

Distributed system examples

* DropBox (or google drive)
* Replicated content across personal devices
* Supports disconnected operation (can work
while disconnected, and synchronize when re-
connected)
* Maintaining data consistent across devices

e Supports sharing; access control policies (security!)

22

Distributed system examples

* NASDAQ

* Transactions (e.g., ACID semantics from
databases). Many DBMS concepts apply to
distributed systems!

e Strong consistency and security guarantees
(otherwise people would not trust it with money)

23

Some D.S. challenges

Synchronizing multiple machines (protocol complexity)
Pertormance (how do you define/measure it?)

Maintaining consistency: strong models (linearizable) to
weak models (eventual) of consistency

Failures: machine failures (range: failure stop to byzantine);
network failures (just a few: disconnections/loss/corruption/
delay/partitioning)

Security (how to prevent malicious control of a single host
iNn a system escalating into control of the entire system?)

24

For Thursday

* Install Go on your personal machine
 Work through Tour of Go! and other tutorials.

 Practice Go!

25

