416 Distributed Systems

Time in distributed systems
Feb 8, 2022

Today's Lecture

* Need for time synchronization

* Time synchronization techniques

 Logical clocks
« Lamport Clocks
* Vector Clocks

Why Global Timing? “

« Suppose there were a globally consistent time
standard

* Would be handy

Who got last seat on airplane?

Who submitted final auction bid before deadline?
Did defense move before snap?

In A2:

« Did GameComplete@client1 happen before or after
ServerFailed@server2?

Impact of Clock Synchronization “

Computer on 2140 ... 2145 2146 2147 <4— Time according
which compiler ¢\ % : | to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor { ¢ ; ; to local clock
runs

output.c created

Impact of Clock Synchronization i‘.

Computer on @ ... 2145 2146 2147 <4— Time according
| | | to local clock

which compiler u . .

runs Y\ output.o created
Computer on 2142 @ 2144 2145 <«— Time according
which editor ; ; ; to local clock

runs
output.c created

* When each machine has its own clock, an event
that occurred after another event may nevertheless
be assigned an earlier time.

Replicated Database Update

i Ypdatet Update 2__ %

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

« Updating a replicated database and leaving it in
an inconsistent state

Time Standards i‘.

« UT1

 Based on astronomical observations
« ~ “Greenwich Mean Time” (GMT)
 TAI

o Started Jan 1, 1958

« Each second is 9,192,631,770 cycles of radiation emitted by
Cesium atom

« Has diverged from UT1 due to slowing of earth’s rotation

« UTC
« TAIl + leap seconds to be within 0.9s of UT1
« Currently ~37s

Comparing Time Standards

0.2
UT1 -UTC

00000000000000000000000000000000

Coordinated Universal Time

 Is broadcast from radio stations on land and satellite (e.g.,
GPS)

« Computers with receivers can synchronize their clocks
with these timing signals

« Signals from land-based stations are accurate to about
0.1-10 millisecond

« Signals from GPS are accurate to about 1 microsecond
« Why can't we use GPS receivers on all our computers?

Clocks in a Distributed System “

SN

Network

« Computer clocks are not generally in perfect agreement

Skew: the difference between the times on two clocks (at any instant)

« Computer clocks are subject to clock drift (they count time at different
rates)

Clock drift rate: the difference per unit of time from some ideal reference
clock

Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-® secs/sec).
High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

10

Clock drift visualized

Clock time, C

UTC, t

 The relation between clock time and UTC
when clocks tick at different rates.

11

Today's Lecture

Need for time synchronization

Time synchronization techniques

Lamport Clocks

Vector Clocks

12

Perfect networks

«

 Messages always arrive, with propagation delay

exactly d

{ie —

« Sender sends time T in a message

 Receiver sets clock to T+d
* Synchronization is exact

Synchronous networks i‘.

* Messages always arrive, with propagation delay
at most D

tine —>

« Sender sends time T in a message

« Receiver sets clockto T + D/2
* Synchronization error is at most D/2

Synchronization in the real world

* Real networks are asynchronous
 Message delays are arbitrary

 Real networks are unreliable
* Messages don't always arrive

Cristian’s Time Sync (‘89) “

« A time server S receives signals from a UTC source
* Process p requests time in m, and receives tin m;from S
« psetsits clock to t + Troyng-trip/2
* Accuracy = (T oung-trip/2 - mMin) :
* Where min is minimum one-way transmission delay

1

m; Time server,S

Trouna is the round trip time recorded by p
min is an estimated minimum one way delay

16

Berkeley algorithm “

 Cristian’s algorithm -
« a single time server might fail, so they suggest the use of a group of
synchronized servers
it does not deal with faulty servers

. Berkeley algorithm (also 1989)

An algorithm for internal synchronization of a group of computers
* A coordinator polls to collect clock values from the others (replicas)

* The coordinator uses round trip times to estimate the replicas’ clock
values (only coordinator computes RTT)

|t takes an average (eliminating any above average round trip time or with
faulty clocks)

» It sends the required adjustment to the replicas (better than sending the
time which depends on the round trip time)

 Failures

* |If coordinator fails, can elect a new coordinator to take over (not in bounded
time)

17

The Berkeley Algorithm (1) ™MW

e The time daemon asks Time daemon
all the other machines 3:00 / 3-:00
for their clock values. j)

3:00 @

()
O [

2:50 3:25

18

The Berkeley Algorithm (2) ™MW

« The machines 3:00 0

answer.

w0 (Dl
Compute avg: +25
+15/3=+5 _I_LI7
Adjustment:
0> +5=+5
-10 > +5=+15

+25 2> +5=-20
2:50 3:25

19

The Berkeley Algorithm (3)

 The time daemon tells 3:05 i
everyone how to 9
adjust their clock.

+15

Compute avg: l 1-20
+15/3 =+5 j r
Adjustment:

0> +5= +5 @
-10 > +5=+15

+25 2 +5=-20
3:05 3:05

20

Network Time Protocol (NTP) Y

(invented by David Mills, 1981)

« A time service for the Internet - synchronizes clients to

Reli Primars ceaniare ara rnnnactad tn | ITC
iitlepaeiay Secondary servers are synchronized to
primary servers

Synchronization subnet - lowest level servers
in users’ computers

N~
2\ 2

~ ™~

3 3 3

21

The Network Time Protocol (NTP) | 9%

Uses UDP (minimal overhead/OS stack latency)

Uses a hierarchy of time servers
« Class 1 servers have highly-accurate clocks
« connected directly to atomic clocks, etc.

» Class 2 servers get time from only Class 1 and Class 2
servers

« Class 3 servers get time from any server (usually 3)

Synchronization similar to Cristian’ s alg.

« Modified to use multiple one-way messages instead of
Immediate round-trip

Accuracy: Local ~1ms, Global ~10ms

How To Change Time

« Can't just change time
* Why not?

27

How To Change Time

« Can't just change time
* Why not?

« Change the update rate for the clock
« Changes time in a more gradual fashion -
 Prevents inconsistent local timestamps .

28

Important Lessons “.

Clocks on different systems will always behave differently
« Skew and drift between clocks

« Time disagreement between machines can result in undesirable
behavior

* Clock synchronization
* Rely on a time-stamped network messages
« Estimate delay for message transmission
« Can synchronize to UTC or to local source
» Clocks never exactly synchronized

« Often inadequate for distributed systems

* might need totally-ordered events
* might need millionth-of-a-second precision

29

Today's Lecture

Need for time synchronization

Time synchronization techniques

Lamport Clocks

Vector Clocks

30

Logical time

«

« Capture just the “happens before” relationship

between events
 Discard the infinitesimal granularity of time
* Corresponds roughly to causality

Logical time and logical clocks
(Lamport 1978)

* Events at three processes

P1 o ®

a b\
P2

» Physical

P3 o ®

time

32

Logical time and logical clocks
(Lamport 1978) “‘

Py ° » Physical
time
C (\

P3 ® e >

* Instead of syenchronizing clocks, event orfdering can be used

1. If two events occurred at the same process p; (i = 1, 2, ... N) then
they occurred in the order observed by p;, that is the definition of:

i
2. When a message, m is sent between two processes, send(m)
‘happens before’ receive(m)

3. The ‘happened before’ relation is transitive

« The happened before relation (—) is necessary for causal

ordering
33

Logical time and logical clocks
(Lamport 1978)

«

P1 o ®

» Physical

P2 o

P3 ® ®

time

- a—>b(atp,) c—>d (atp,)
b — ¢ because of m,
 also d — fbecause of m,

34

Logical time and logical clocks
(Lamport 1978) “‘

P1

P2

P3

* Not all eilents are related by —

» Physical

¢
time
C (\

f

« Consider a and e (different processes and no chain
of messages to relate them)
« they are not related by — ; they are said to be concurrent
 writtenas al| e

35

Lamport Clock (1) “.

1 2
& >
P1 a b m,
0 S 4 » Physical
2 c q time
my
1 5
P3 ® >
e f

* Alogical clock is a monotonically increasing software counter
« It need not relate to a physical clock.

« Each process p; has a logical clock, L; which can be used to apply
logical timestamps to events
* Rule 0O: initially all clocks are setto 0
* Rule 1: L; is incremented by 1 before each event at process p;
* Rule 2:
* (a) when process p,; sends message m, it piggybacks t = L;

* (b) when p, receives (m,t) it sets L; := max(L;, f) and applies rule 1 before timestamping the
event receive (m)

36

Lamport Clock (1) “.

P1

P2

P3

B
b M4
S 4 » Physical

time
C d m,
1 5
o >

e f

« each of pq, p,, p3 has its logical clock initialised to zero,
 the clock values are those immediately after the event.
* e.g. 1fora, 2forb.

« for m4, 2 is piggybacked and c gets max(0,2)+1 =3

37

Lamport Clock (1) “

& >
P1 a b m,
S 4 » Physical
P2 c g time
my
1 5
P3 ® >

e f

- e —>¢€ (e happened before €’) implies L(e)<L(€’)
(where L(e) is Lamport clock value of event e)

- The converse is not true, that is L(e)<L(e) does not
Imply e »>¢e’. What’s an example of this above?

38

Lamport Clock (1) i‘.

1

2

& >
P1 a b m,
0 S 4 » Physical

2 c q time
my
1 5

P3 ® >

e f

- e —>¢€ (e happened before €’) implies L(e)<L(€’)
- The converse is not true, that is L(e)<L(e’) does not
imply e »>¢’
- e.g.L(b)>L(e)butbll e

39

Lamport logical clocks

« Similar rules for concurrency
- L(e) =L(e’) implies el| e’ (for distinct e,e ")
- e|e’” does notimply L(e) =L(e’)

* I.e., Lamport clocks arbitrarily order some concurrent
events

Total-order Lamport clocks “

« Many systems require a total-ordering of events,
not a partial-ordering

» Use Lamport’s algorithm, but break ties using the
process ID; one example scheme:
c L(e)=M*Le)+i
e M = maximum number of processes

e i = process ID

Today's Lecture

Need for time synchronization

Time synchronization techniques

Lamport Clocks

Vector Clocks

43

Vector Clocks “.

» Vector clocks overcome the shortcoming of
Lamport logical clocks

- L(e) < L(€’) does not imply e happened before €’
* Goal

« Want ordering that matches happened before

« V(e)<V(e')ifandonlyife — €’
* Method

« Label each event by vector V(e) [cq, Cs ..., C]
* C; = # events in process i that precede e

44

Vector Clock Algorithm O\ Y

Initially, all vectors [0,0,...,0]
For event on process i, increment own ¢
Label message sent with local vector

When process j receives message with vector
[d{,d,, ..., d.]

« Set each local vector entry k to max(c,, d,)

* Increment value of ¢;

Vector Clocks “.

(1,0,0) (2,0,0)

o]
P1 a b m,
(21,0) (220 .. Physical
Py . d time
my
0.0,1) (2:22)
P3 ® -
o f

At p;
« aoccurs at (1,0,0); b occurs at (2,0,0)
-« piggyback (2,0,0) on m,
At p, on receipt of my; use max ((0,0,0), (2,0,0)) = (2, 0, 0)
and add 1 to own element = (2,1,0)

- Meaning of =, <=, max etc for vector timestamps
« compare elements pairwise

46

Vector Clocks “

(1,0,0) (2,0,0)
L >

P1

P2

P3

* Note't

a b my
2,1,0 2,20 _
() () > Pr][ysmal
ime
C d m,
(0,0,1) (2,2,2)
L >
e f

nat e — e’ implies V(e)<V(e’). The

converse Is also true

« Can you see a pair of concurrent events; Can you
infer they are concurrent from their vectors

clocks?

47

Vector Clocks “.

(1,0,0) (2,0,0)

o B
P1 a b m,
(2,1,0) (2,2,0) » Physical
P2 c g n time
(0,0,1) (2,2,2)
P3 ® >
e f
Note that e —» €’ implies V(e)<V(e’). The converse
IS also true

- Can you see a pair of concurrent events?
¢ |l e (concurrent) because neither V(c) <= V(e) nor V(e) <= V(c)

48

Implementing logical clocks “

* Positioning of logical timestamping in distributed

systems.
Application layer
Application sends message \%) : Message is delivered to application
~ Adjust local clock Adjust local clock Middleware layer
and timestamp message
Middleware sends message Message is received
Network layer

49

Distributed time “.

* Premise

* The notion of time is well-defined (and measurable) at
each single location

» But the relationship between time at different
locations is unclear

« Can minimize discrepancies, but never eliminate
them

* Reality

« Stationary GPS receivers can get global time with <
1Us error

* Few systems designed to use this; logical clocks key
mechanism for ordering

« Recent exception: (Spanner system from Google)

Important Points “

* Physical Clocks

« Can keep closely synchronized, but never perfect

 Logical Clocks

* Encode happens before relationship (necessary for
causality)

» Lamport clocks provide only one-way encoding

« Vector clocks precedence necessary for causality (but
not sufficient. could have been caused by some event

along the path, not all events)

