
Distributed Mutual Exclusion

Last time…

•

Synchronizing real, distributed clocks
•

Logical time and concurrency

•

Lamport

clocks and total-order Lamport
 clocks

Ivan Beschastnikh
 • Vector clocks

Ivan Beschastnikh
 • Happens-before relation

Goals of distributed mutual exclusion

•

Much like regular mutual exclusion
–

Safety: mutual exclusion

–

Liveness: progress
–

Fairness: bounded wait and in-order

•

Secondary goals:
–

reduce message traffic

–

minimize synchronization delay
•

i.e., switch quickly between waiting processes

By logical
time!

Distributed mutex

is different

•

Regular mutual exclusion solved using
shared state, e.g.
–

atomic test-and-set of a shared variable…

–

shared queue…

•

We solve distributed mutual exclusion with
message passing
–

Note: we assume the network is reliable but
asynchronous…but processes might fail!

Solution 1: A central mutex

server

•

To enter critical section:
–

send REQUEST to central server, wait for
permission

•

To leave:
–

send RELEASE to central server

Client 1 Server

Request

OK

Client 2

OK
Request

Release

Release

Waiting

Critical
Section

Critical
Section

Solution 1: A central mutex

server

•

Advantages:
–

Simple (we like simple!)

–

Only 3 messages required per entry/exit
•

Disadvantages:
–

Central point of failure

–

Central performance bottleneck
–

With an asynchronous network, impossible to
achieve in-order fairness

–

Must elect/select central server

Solution 2: A ring-based algorithm

•

Pass a token around a ring
–

Can enter critical section only if you hold the
token

•

Problems:
–

Not in-order

–

Long synchronization delay
•

Need to wait for up to N-1

messages, for N

 processors
–

Very unreliable

•

Any process failure breaks the ring

2’: A fair ring-based algorithm
•

Token contains the time t

of the earliest known

outstanding request
•

To enter critical section:
–

Stamp your request with the current time Tr

, wait for token
•

When you get token with time t

while waiting with

request from time Tr

, compare Tr

to t:
–

If Tr

= t: hold token, run critical section
–

If Tr

> t: pass token
–

If t

not set or Tr

< t: set token-time to Tr

, pass token, wait for
token

•

To leave critical section:
–

Set token-time to null (i.e., unset it), pass token

Node A Node B Node C Node D

T[null] T[null] T[null]
T[null]

Base case: null token circulates around the system

Node A Node B Node C Node D

T[]

1/2 Simple case: one request

T[]
T[]

T[]
=

Request @ time

Critical
Section

Node A Node B Node C Node D

T[]

2/2 Simple case: one request

T[]
T[]

T[]
=

Request @ time

T[null] T[null] T[null]
T[null]

Critical
Section

Node A Node B Node C Node D

T[]

1/2 Competing requests:

T[]

T[]
T[]

=

Request @ time Request @ time

<

<

Critical
Section

Node A Node B Node C Node D

T[] T[]

T[]
T[]

=

Request @ time

T[null] T[null]

Request @ time

<

T[]
T[]

T[] T[] =

2/2 Competing requests: <

Critical
Section

Critical
Section

Node A Node B Node C Node D

T[]

1/2 Competing requests:

T[]

T[]
T[]

Request @ time Request @ time

<

<

<
T[]

T[]

Critical
Section

=

Node A Node B Node C Node D

T[]

2/2 Competing requests:

T[]

T[]
T[]

Request @ time Request @ time

<

<

<
T[]

T[]

Critical
Section

T[null]
T[null]

Critical
Section

T[]
T[] T[]

T[]=

Solution 3: Ricart and Agrawala
dist. mutual exclusion alg

• Relies on Lamport totally ordered clocks, having
the following properties:

• For any events e, e’ such that e --> e’ (causality
ordering), T(e) < T(e’)

• For any distinct events e, e’, T(e) != T(e’)

General idea

• When want to enter critical section (C.S.) node i
sends time-stamped request to all other nodes.
These other nodes reply (eventually).

• When i receives n-1 replies, then can enter C.S.

• Trick: Node j having earlier request doesn’t reply to
i until after it has completed its C.S.

Node A Node B Node C

Ricart-Agrawala overview

Critical
Section

Request
Request

Response

Response

Notation
• Ni = {1, 2, ..., i-1, i+1, ..., n} (n is the number of processes)

• Message types

• (Request, i, T): Process i requests lock with timestamp T

• (Reply, j): Process j responds to some request for lock

• For each node i, maintain following values:

• Ti(): Function that returns value of local Lamport clock

• should_defer: Boolean Set when process i should defer replies to requests

• Tr: Time stamp of pending local request

• R: Subset of Ni. Set of processes from which have received reply

• D: Subset of Ni. Set of processes for which i has deferred the reply to their requests

• lock(), unlock(): A local mutex lock, to keep the two threads from interfering with each other

Ivan Beschastnikh

Design
• Process i consists of two threads. One servicing

the application, and one monitoring the network.

Application thread:
 Request() // Request global mutex
 Wait for Notification // Wait until notified by network thread
 Critical Section // Operate in exclusive mode
 Release() // Release mutex

Ivan Beschastnikh

Application functions
Request():
 lock() // Don’t want app/network fns to step on each other
 Tr = Ti() // Get time stamp
 R = {}
 D = {}
 should_defer = true
 Send (Request, i, Tr) to each j in Ni
 unlock()

Release():
 lock()
 should_defer = false
 Send (Reply, i) to each j in D
 unlock()

Ivan Beschastnikh

Network function
while true:
 m = Receive()
 lock()
 if m == (Request, j, T):
 if should_defer && Tr < T:
 D = D U {j} // Defer response to j
 else
 Send (Reply, i) to j
 else if m == (Reply, j):
 R = R U {j}
 if R == Ni
 Notify application
 unlock()

Ivan Beschastnikh

Node A Node B Node C

0/6 Ricart-Agrawala close-up

Request at
logical time 1

Request at
logical time 0

Node A Node B Node C

1/6 Ricart-Agrawala close-up

Req(1)
Req(1)

D={B}

Req_1
Req_0

Node A Node B Node C

2/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
D={B}

Req(0)

Req_1
Req_0

Node A Node B Node C

3/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
R={ }, D={B}

Req(0)

Req_1
Req_0

Reply
R={A}, D={ }

Node A Node B Node C

4/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
R={ }, D={B}

Req(0)

Req_1
Req_0

Reply

Reply
R={A}, D={ }

R={A}, D={B}

Node A Node B Node C

5/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
R={ }, D={B}

Req(0)

Req_1
Req_0

Reply

Reply
R={A}, D={ }

R={A}, D={B}

Reply
R={A,B}, D={B}

Critical
Section

Node A Node B Node C

6/6 Ricart-Agrawala close-up

Req(1)
Req(1)

Req(0)
R={ }, D={B}

Req(0)

Req_1
Req_0

Reply

Reply
R={A}, D={ }

R={A}, D={B}

Reply
R={A,B}, D={B}

Critical
Section

R={A,B}, D={ }

Ivan Beschastnikh

Ivan Beschastnikh
C

Ricart and Agrawala safety
• Suppose request T1 is earlier than T2.

• Consider how the process for T2 collects its reply
from process for T1

- T1 must have already been time-stamped when
request T2 was received, otherwise the Lamport
clock would have been advanced past time T2

- But then the process must have delayed reply to
T2 until after request T1 exited the critical section.
Therefore T2 will not conflict with T1.

Ivan Beschastnikh

Ricart and Agrawala overview

• Advantages:
- Fair
- Short synchronization delay

• Disadvantages
- Very unreliable
- 2(N-1) messages for each entry/exit

	Distributed Mutual Exclusion
	Last time…
	Goals of distributed mutual exclusion
	Distributed mutex is different
	Solution 1: A central mutex server
	Solution 1: A central mutex server
	Solution 2: A ring-based algorithm
	2’: A fair ring-based algorithm
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 4: Ricart and Agrawala
	Solution 4: Ricart and Agrawala
	Ricart and Agrawala safety
	Solution 4: Ricart and Agrawala
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5’: Dealing with deadlock
	Solution 6: Maekawa voting
	Solution 6: Maekawa voting

