
Distributed Mutual Exclusion



Last time…

•
 

Synchronizing real, distributed clocks
•

 
Logical time and concurrency

•
 

Lamport
 

clocks and total-order Lamport
 clocks
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 • Vector clocks
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 • Happens-before relation



Goals of distributed mutual exclusion

•
 

Much like regular mutual exclusion
–

 
Safety:  mutual exclusion

–
 

Liveness:  progress
–

 
Fairness:  bounded wait and in-order

•
 

Secondary goals:
–

 
reduce message traffic

–
 

minimize synchronization delay
•

 
i.e., switch quickly between waiting processes

By logical
time!



Distributed mutex
 

is different

•
 

Regular mutual exclusion solved using 
shared state, e.g.
–

 
atomic test-and-set of a shared variable…

–
 

shared queue…

•
 

We solve distributed mutual exclusion with 
message passing
–

 
Note:  we assume the network is reliable but 
asynchronous…but processes might fail!



Solution 1:  A central mutex
 

server

•
 

To enter critical section:
–

 
send REQUEST to central server, wait for 
permission

•
 

To leave:
–

 
send RELEASE to central server
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Solution 1:  A central mutex
 

server

•
 

Advantages:
–

 
Simple (we like simple!)

–
 

Only 3 messages required per entry/exit
•

 
Disadvantages:
–

 
Central point of failure

–
 

Central performance bottleneck
–

 
With an asynchronous network, impossible to 
achieve in-order fairness

–
 

Must elect/select central server



Solution 2:  A ring-based algorithm

•
 

Pass a token around a ring
–

 
Can enter critical section only if you hold the 
token

•
 

Problems:
–

 
Not in-order

–
 

Long synchronization delay
•

 
Need to wait for up to N-1

 
messages, for N

 processors
–

 
Very unreliable

•
 

Any process failure breaks the ring



2’:  A fair ring-based algorithm
•

 
Token contains the time t

 
of the earliest known 

outstanding request
•

 
To enter critical section:
–

 

Stamp your request with the current time Tr

 

, wait for token
•

 
When you get token with time t

 
while waiting with 

request from time Tr

 

, compare Tr

 

to t:
–

 

If Tr

 

= t:  hold token, run critical section
–

 

If Tr

 

> t: pass token
–

 

If t

 

not set or Tr

 

< t: set token-time to Tr

 

, pass token, wait for 
token

•
 

To leave critical section:
–

 

Set token-time to null (i.e., unset it), pass token



Node A Node B Node C Node D

T[null] T[null] T[null]
T[null]

Base case: null token circulates around the system
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Solution 3: Ricart and Agrawala 
dist. mutual exclusion alg

• Relies on Lamport totally ordered clocks, having 
the following properties: 

• For any events e, e’ such that e --> e’ (causality 
ordering), T(e) < T(e’) 

• For any distinct events e, e’, T(e) != T(e’)



General idea

• When want to enter critical section (C.S.) node i 
sends time-stamped request to all other nodes. 
These other nodes reply (eventually). 

• When i receives n-1 replies, then can enter C.S. 

• Trick: Node j having earlier request doesn’t reply to 
i until after it has completed its C.S.



Node A Node B Node C

Ricart-Agrawala overview
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Notation
•  Ni = {1, 2, ..., i-1, i+1, ..., n} (n is the number of processes) 

• Message types 

• (Request, i, T): Process i requests lock with timestamp T 

• (Reply, j): Process j responds to some request for lock 

• For each node i, maintain following values: 

•  Ti(): Function that returns value of local Lamport clock 

•  should_defer: Boolean Set when process i should defer replies to requests 

•  Tr: Time stamp of pending local request 

•  R: Subset of Ni. Set of processes from which have received reply 

•  D: Subset of Ni. Set of processes for which i has deferred the reply to their requests 

• lock(), unlock(): A local mutex lock, to keep the two threads from interfering with each other
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Design
• Process i consists of two threads. One servicing 

the application, and one monitoring the network.

Application thread:
 Request()             // Request global mutex
 Wait for Notification // Wait until notified by network thread
 Critical Section      // Operate in exclusive mode
 Release()             // Release mutex
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Application functions
Request():
 lock()    // Don’t want app/network fns to step on each other
 Tr = Ti() // Get time stamp
 R = {}
 D = {}
 should_defer = true
 Send (Request, i, Tr) to each j in Ni
 unlock()

Release():
 lock()
 should_defer = false
 Send (Reply, i) to each j in D
 unlock()
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Network function
while true:
 m = Receive()
 lock()
 if m == (Request, j, T):
   if should_defer && Tr < T:
     D = D U {j} // Defer response to j
   else
     Send (Reply, i) to j
 else if m == (Reply, j):
   R = R U {j}
   if R == Ni
     Notify application
 unlock()
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Node A Node B Node C

0/6 Ricart-Agrawala close-up

Request at
logical time 1

Request at
logical time 0
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1/6 Ricart-Agrawala close-up
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2/6 Ricart-Agrawala close-up
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3/6 Ricart-Agrawala close-up
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5/6 Ricart-Agrawala close-up
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6/6 Ricart-Agrawala close-up
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Ricart and Agrawala safety
• Suppose request T1 is earlier than T2. 

• Consider how the process for T2 collects its reply 
from process for T1 

- T1 must have already been time-stamped when 
request T2 was received, otherwise the Lamport 
clock would have been advanced past time T2 

- But then the process must have delayed reply to 
T2 until after request T1 exited the critical section. 
Therefore T2 will not conflict with T1. 
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Ricart and Agrawala overview

• Advantages:  
- Fair 
- Short synchronization delay 

• Disadvantages 
- Very unreliable 
- 2(N-1) messages for each entry/exit 
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