
Distributed Machine Learning

CPSC 416
Muhammad Shayan

25 March 2021

1

Introduction

Machine Learning and Backend Engineer (2020 - Current)

Data Scientist (2017)

MS Computer Science (2018 -2020) => Building a distributed P2P ML system

BS Computer Science (2017)

2

3

Data is growing at a rapid rate

- Data has grown at an unprecedented rate in the last century
- Has a lot of hidden insights
- Machine Learning helps us extract insights and learn patterns from this data

4

Machine Learning Systems are everywhere

- To process this data, a large number for machine learning systems have
emerged

- These systems track and analyze all the data they can get

What does a machine learning system do?

Training:

Learning a mathematical model
from historical data

Inference:

Using the mathematical model to
make predictions on unseen data

5

Why study ML from a systems perspective?

- The ML code is just a small portion of a complete ML system.
- To be able to build ML models and run them in production, you need a lot of

systems knowledge

6

In this lecture

How do distributed systems play a role in building and deploying machine
learning models ...?

7

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

8

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

9

0

0.5

0.5

1

1

1

0.9

Is it 5?

Adjust these

f(input, parameters) = output

loss(parameters) = 1/n ∑i difference(f(inputi, parameters), desiredi)

to minimize this 10

Background - What is an ML model?

A neural network

How do we train ML models?
Stochastic gradient descent => A general purpose algorithm for training

- Works for many model types (regression, neural networks etc)
-
-

11

Model
(W)

Data

Get model parameters

Get a subset of data

How do we train ML models?
Stochastic gradient descent => A general purpose algorithm for training

- Works for many model types (regression, softmax, deep learning)
-
-

12

Model
(W)

Data

Get model parameters

Get a subset of data

Compute an update
(gradient) to the model
Δw

Update the model W + Δw

How do we train ML models?
Stochastic gradient descent => A general purpose algorithm for training

- Works for many model types (regression, softmax, deep learning)
-
-

13

Model
(W)

Data

Get model parameters

Get a subset of data

Compute an update to
the model Δw

Update the model W + Δw

Problem:What if the model or the data does not fit on a single machine?

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

14

Parameter Server Architecture
- Nodes divided into workers/ servers

- Workers compute updates from the data

- Server responsible for coordinating the
training process.

- Can have multiple servers for
migration/replication purposes

15

Parameter Server Architecture
- Nodes divided into workers/ servers

- Workers compute updates from the data

- Server responsible for coordinating the
training process.

- Can have multiple servers for
migration/replication purposes

16

Problem:What if the model or the data does not fit on a single machine?
 - Divide the data (data parallelism) or divide the model (model parallelism)

Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker
holds a subset of the
data and a copy of
the model itself

Step 2: Compute an
update on the model
and send to server

Step 3: Central
server aggregates
updates at end and
shares updated
model with workers

17

Step 4: Repeat

Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker
holds a subset of the
data and a copy of
the model itself

Step 2: Compute an
update on the model
and send to server

Step 3: Central
server aggregates
updates at end

18

Step 4: Repeat

Problem: Synchronization overhead?

Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker
holds a subset of the
data and a copy of
the model itself

Step 2: Compute an
update on the model
and send to server

Step 3: Central
server aggregates
updates at end

19

Step 4: Repeat

Solution:
1. Asynchronous SGD
2. Reduce communication overhead by leveraging the ML model architecture

Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker
holds a subset of the
training data and a
copy of the model
itself

Step 2: Pull the
latest model from
the parameter server
and compute an
update

Step 3: Central
server aggregates
all updated gradients
as the end of each
iteration

Asynchronous SGD/ Hogwild:

Worker does not wait for synchronization
at each step. Can only work in some
learning settings.

Intuition: Different updates are sparse
i.e only affects a small subset of the
parameters.

Can be used with sparse SVM’s, matrix
completion problems etc.

20

Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker
holds a subset of the
training data and a
copy of the model
itself

Step 2: Pull the
latest model from
the parameter server
and compute an
update

Step 3: Central
server aggregates
all updated gradients
as the end of each
iteration

Reduce communication overhead:

 - If updates are sparse, only transmit
the changed parameters

- Max pooling, Maxout units and
convolution layers

- To encourage sparsity i.e
making most parameters 0

- Changes might not be feasible
given your ML architecture!

21

Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker
holds a subset of the
training data and a
copy of the model
itself

Step 2: Pull the
latest model from
the parameter server
and compute an
update

Step 3: Central
server aggregates
all updated gradients
as the end of each
iteration

Solution:
1. Asynchronous SGD
2. Reduce communication overhead by leveraging the ML model architecture

Problem: What if the model does not fit into memory?

22

Solution:
1. Asynchronous SGD
2. Reduce communication overhead by leveraging the ML model architecture

Model parallelism

If model is huge, might not fit into
memory/GPU of one machine.

Good idea to split model among multiple
machines/GPU’s.

Data Data Data

Forward pass -> Compute error

The forward pass and backward pass on
the model computes is done in serial
across machines/GPUs

Backward pass -> Update weights

Models are generally split in a fashion
such that there are least dependencies

23

When to use data/model parallelism?

- If GPUs are not saturated and have some free capacity (not all cores are
running), then model parallelism will be slow. Use data parallelism instead!

- If the model does not fit into memory, model parallelism is the obvious choice.

- Communication overhead can be reduced in data parallelism but not in model
parallelism.

24

- If GPUs are not saturated and have some free capacity (not all cores are
running), then model parallelism will be slow. Use data parallelism instead!

- If the model does not fit into memory, model parallelism is the obvious choice.

- Communication overhead can be reduced in data parallelism but not in model
parallelism.

25

Problem:What if data does not fit into memory nor does the model?`

When to use data/model parallelism?

Google’s DistBelief system

Combine data, model parallelism
and asynchronous SGD

Workers asynchronously fetch model
parameters and push gradients to the
parameter server.

The parameters are sharded
across multiple parameter servers

A complex system developed for
a specific use-case (ImageNet)

26

Distributed ML training - Key takeaways

- When model/data does not fit into single machine, use data parallelism or model
parallelism or a mixture of both.

- Data parallelism more widely used.

- Parameter server widely used with data parallelism.
- Though we do have architectures that distribute the aggregation task on all machines. AllReduce?

- Prefer Synchronous execution over Asynchronous execution. This is mostly due to
concerns about model stability and convergence.

27

Distributed ML training - Key takeaways

- When model/data does not fit into single machine, use data parallelism or model
parallelism or a mixture of both.

- Data parallelism more widely used.

- Parameter server widely used in data parallelism.
- Though we do have architectures that distribute the aggregation task on all machines.

- Prefer Synchronous execution over Asynchronous execution. This is mostly due to
concerns about model stability and convergence.

28

 Pr What if due to privacy considerations, we cannot collect the data and centralize it?

 Example: Gboard

Distributed ML training - Key takeaways

- When model/data does not fit into single machine, use data parallelism or model
parallelism or a mixture of both.

- Data parallelism more widely used.

- Parameter server widely used in data parallelism.
- Though we do have architectures that distribute the aggregation task on all machines.

- Prefer Synchronous execution over Asynchronous execution. This is mostly due to
concerns about model stability and convergence.

29

 Solution: Federated Learning

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

30

1. Each client downloads
model parameters from
central server

Federated Learning

31

32

1. Each client downloads
model parameters from
central server

2. Each client computes
updates using their local
data and send to server.

Federated Learning

33

2. Each client computes
updates using their local
data and send to server.

Repeat until
convergence.

3. Server aggregates
users’ updates into
a new model

∑
1. Each client downloads
model parameters from
central server

Federated Learning

34

2. Each client computes
updates using their local
data and send to server.

Repeat until
convergence.

3. Server aggregates
users’ updates into
a new model

∑
1. Each client downloads
model parameters from
central server

Data never leaves the client; as good as centralized

Federated Learning

35

2. Each client computes
updates using their local
data and send to server.

Repeat until
convergence.

3. Server aggregates
users’ updates into
a new model

∑
1. Each client downloads
model parameters from
central server

But did we solve privacy?

Federated Learning

36

∑

These updates
contain
privacy-sensitive
 data![1]

Problem:
● Updates to model can leak information about underlying training

data

[1] Melis et al. “Exploiting unintended feature leakage in collaborative learning” IEEE S&P 19

Federated Learning - Leakage from updates

∑

These updates
contain
privacy-sensitive
 data!

Problem:
● Updates to model can leak information about underlying training

data

Federated Learning - Leakage from updates

Leakage from updates:

- Model updates from SGD

- If adversary has a set of labelled (update, feature) pairs, then it can train a classifier to predict features from
updates

37

Federated Learning - Leakage from updates

38

Federated Learning - Leakage from updates

39

Federated Learning - Leakage from updates

40

∑

Solution:
● Secure Aggregation[1] => Server only observes the sum of

updates.

Federated Learning - Secure aggregation

41

42

Federated Learning - Secure aggregation

43

Federated Learning - Secure aggregation

44

∑

Federated Learning - Leakage from model
Model may
remember private
training data!

Problem:
● The model might also remember training data of the client.

∑

Federated Learning - Leakage from model
Model may
remember private
training data!

Problem:
● The model might also remember training data of the client.

Model inversion attack:

- Solve an optimization problem:

find the input that maximizes the returned
confidence, subject to the classification
also matching the target.

45

46

∑

Federated Learning - Differential privacy

+
Solution:
=> Differential Privacy - Add noise to the trained model

47

∑

Federated Learning - Differential privacy

+
Solution:
=> Differential Privacy - Add noise to the trained model

Differential privacy:

- Amount of noise added parametrized by a privacy budget (𝝐)
- Lower (𝝐) means more noise added so more privacy
- Lower (𝝐) means more lower utility/performance of model

48

∑

Federated Learning - Differential privacy

+
Solution:
=> Differential Privacy - Add noise to the trained model

Problems with Federated Learning:

- A centralized coordinator may not always be feasible in all use cases like healthcare, banking
- Clients may be malicious and try to harm the performance of the model.

∑

Federated Learning - Differential privacy

+
Solution:
=> Differential Privacy - Add noise to the trained model

 Solution: A Peer to Peer Approach

49

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

50

𝚫w3

𝚫w3

𝚫w3

● Each block stores a set of updates from multiple peers and the updated model
○ Each peer computes updates using their blockchain state
○ With each block, the set of updates is added, updating the global model

Blockchain

W1 W0
 W2 W3 W4

SGD

● Much work has been done in this area (OpenMined, OasisLabs, Biscotti) but no widely
adopted system yet

Peer to Peer ML on the blockchain

51

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

52

Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!

53

Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!

54

Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!Why is it so time consuming?

55

Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!

Problems:

- Every model has its own unique environment in which it was trained. (python versions etc.)
- Models rely on specific library versions. (scikit learn, numpy)
- Resource requirements vary across models (GPU versus no GPU)
- Different models get different traffic load.
- Scalability issues -> Cant keep user’s waiting if the model is busy

56

Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!
Solution => Docker containers

Sol

57

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

58

What are docker containers?

- A group of processes that run in isolation on a
single machine

- Each container has its own set of:
- Processes
- Users
- Memory

- They share the same base operating system but
have their own set of binaries, libraries and os
specific files

59

What are containers?

- A group of processes that run in isolation on a
single machine

- Each container has its own set of:
- Processes
- Users
- Memory

- They share the same base operating system but
have their own set of binaries, libraries and os
specific files

 Using containers, a machine learning model can run in its own isolated
environment

60

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create an API to send data and make predictions with your model
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

61

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create an API to send data and make predictions with your model
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

62

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create an API to send data and make predictions with your model
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

- All machine learning libraries have their default save
method.

- Or, turn it into an object and save it in a pickle file.

63

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

User

 ML Model App
What is a API?

- A piece of programming code that allows an application to talk to the
outside world.

- Allows an application to listens for incoming requests and take
action/respond based on the type of request

64

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

User

 ML Model App
What is a API?

- A piece of programming code that allows an application to talk to the
outside world.

- Allows an application to listens for incoming requests and take
action/respond based on the type of request

65

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

What is a Dockerfile?

- Dockerfile is responsible for creating the image that’s
used to create the container that hosts the model and
API

- Specify all library/model requirements and launch app
66

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

What is a Dockerfile?

- Dockerfile is responsible for creating the image that’s
used to create the container that hosts the model and
API

- Specify all library/model requirements and launch app
67

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

- Use docker to build an image from
the dockerfile

- A image is a snapshot of the
environment that can’t change

- Run a container from that image and
deploy in the cloud

68

How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

- Use docker to build an image from
the dockerfile

- A image is a snapshot of the
environment that can’t change

- Run a container from that image and
deploy in the cloud

Where do these containers fit into when running a complete application?

69

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

70

A typical ML application

71

A typical ML application

Microservice architecture => Application is a suite of small lightweight
independent services

72

A typical ML application

Microservice architecture => Application is a suite of small lightweight
independent services

Let’s take a look at an example ….

73

Outline

ML training

- Background
- Parameter Server
- Federated Learning
- Peer to Peer approaches

ML Inference

- Containers
- Microservices

Example ML System: Korbit AI

74

Exercises

Students do problem-solving
exercises with Korbi while receiving

instant help and feedback

Lab

Exercises

Students do lab and coding
exercises with Korbi, while Korbi

analyzes their solutions and
provides guidance and feedback

Lectures

Students discuss lectures
and text material with
Korbi, helping Korbi to

diagnose and repair
knowledge gaps

Motivation &

Metacognition

Korbi builds rapport with
students, in order to help
improve their motivation
and metacognitive skills

KORBIT AI - Learning with an AI tutor
Students learn data science with Korbi through an intuitive, real-time chat interface

75

Korbit AI - Demo

Click Me :)

2 MINUTES

76

https://www.youtube.com/watch?v=igKCS6v5840&feature=emb_logo&ab_channel=KorbitAI

Korbit AI - Demo

Click Me :)

2 MINUTES

The ML/ data science curriculum is free for everyone => https://www.korbit.ai/

77

https://www.youtube.com/watch?v=igKCS6v5840&feature=emb_logo&ab_channel=KorbitAI
https://www.korbit.ai/

Behind the scenes - A microservice architecture

- All ML models run as their own microservice running in their own isolated docker containers

- Other functionalities like email, database etc also run as stand alone microservices

- Easier to isolate issues and run bugs. 78

Projects I worked on at Korbit AI

Project 1 => Querying ML models in parallel to bring down response time for
users

Project 2 => Predicting the optimal feedback to give to the user (ongoing)

Project 3 => Time series analysis to model psychological state of the user (just
started)

79

Conclusion

- Distributed systems play a major role when building a machine learning
system.

- When training ML models, we use the following architectures:
- Parameter server -> When data/model is too large to fit into memory
- Federated Learning -> When we can’t centralize data but trust
- P2P approaches -> When users collaborate together to build a ML model

- Once trained, ML models are usually deployed in a microservice based
architecture.

80

