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Introduction

Machine Learning and Backend Engineer  (2020 - Current)  

Data Scientist (2017)    

MS Computer Science (2018 -2020)  => Building a distributed P2P ML system

BS Computer Science (2017)   
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Data is growing at a rapid rate ....

- Data has grown at an unprecedented rate in the last century
- Has a lot of hidden insights
- Machine Learning helps us extract insights and learn patterns from this data
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Machine Learning Systems are everywhere

- To process this data, a large number for machine learning systems have 
emerged 

- These systems track and analyze all the data they can get



What does a machine learning system do?

Training:

Learning a mathematical model 
from historical data

Inference:

Using the mathematical model to 
make predictions on unseen data 
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Why study ML from a systems perspective?

- The ML code is just a small portion of a complete ML system. 
- To be able to build ML models and run them in production, you need a lot of 

systems knowledge
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In this lecture ....

How do distributed systems play a role in building and deploying machine 
learning models ...?
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Outline

ML training

- Background
- Parameter Server
- Federated Learning 
- Peer to Peer approaches

ML Inference

- Containers
- Microservices 

Example ML System: Korbit AI
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Is it 5?

Adjust these

f(input, parameters) = output

loss(parameters) = 1/n ∑i difference(f(inputi, parameters), desiredi)

to minimize this 10

Background - What is an ML model?

A neural network



How do we train ML models?
Stochastic gradient descent => A general purpose algorithm for training

- Works for many model types (regression, neural networks etc)
-
-
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How do we train ML models?
Stochastic gradient descent => A general purpose algorithm for training

- Works for many model types (regression, softmax, deep learning)
-
-
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How do we train ML models?
Stochastic gradient descent => A general purpose algorithm for training

- Works for many model types (regression, softmax, deep learning)
-
-

13

Model
(W)

Data

Get model parameters

Get a subset of data

Compute an update to 
the model  Δw

Update the model W + Δw 

Problem:What if the model or the data does not fit on a single machine?
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Parameter Server Architecture
- Nodes divided into workers/ servers

- Workers compute updates from the data

- Server responsible for coordinating the 
training process.

- Can have multiple servers for 
migration/replication purposes 
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Parameter Server Architecture
- Nodes divided into workers/ servers

- Workers compute updates from the data

- Server responsible for coordinating the 
training process.

- Can have multiple servers for 
migration/replication purposes 
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Problem:What if the model or the data does not fit on a single machine?
         - Divide the data (data parallelism) or divide the model (model parallelism) 



Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker 
holds a subset of the 
data and a copy of 
the model itself

Step 2: Compute an 
update on the model 
and send to server

Step 3: Central 
server aggregates 
updates at end and 
shares updated 
model with workers
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Step 4: Repeat



Data parallelism
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server aggregates 
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Step 4: Repeat

Problem: Synchronization overhead?



Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker 
holds a subset of the 
data and a copy of 
the model itself

Step 2: Compute an 
update on the model 
and send to server

Step 3: Central 
server aggregates 
updates at end 
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Step 4: Repeat

Solution:
1. Asynchronous SGD
2. Reduce communication overhead by leveraging the ML model architecture



Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker 
holds a subset of the 
training data and a 
copy of the model 
itself

Step 2: Pull the 
latest model from 
the parameter server 
and compute an 
update

Step 3: Central 
server aggregates 
all updated gradients 
as the end of each 
iteration 

Asynchronous SGD/ Hogwild:

Worker does not wait for synchronization 
at each step. Can only work in some 
learning settings.

Intuition: Different updates are sparse 
i.e only affects a small subset of the 
parameters. 

Can be used with sparse SVM’s, matrix 
completion problems etc.
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Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker 
holds a subset of the 
training data and a 
copy of the model 
itself

Step 2: Pull the 
latest model from 
the parameter server 
and compute an 
update

Step 3: Central 
server aggregates 
all updated gradients 
as the end of each 
iteration 

Reduce communication overhead:

 - If updates are sparse, only transmit 
the changed parameters 

- Max pooling, Maxout units and 
convolution layers

- To encourage sparsity i.e 
making most parameters 0 

- Changes might not be feasible 
given your ML architecture!
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Data parallelism
Machine 1 Machine 2 Machine 3 Machine 4

Step 1: Each worker 
holds a subset of the 
training data and a 
copy of the model 
itself

Step 2: Pull the 
latest model from 
the parameter server 
and compute an 
update

Step 3: Central 
server aggregates 
all updated gradients 
as the end of each 
iteration 

Solution:
1. Asynchronous SGD
2. Reduce communication overhead by leveraging the ML model architecture

Problem: What if the model does not fit into memory?
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Solution:
1. Asynchronous SGD
2. Reduce communication overhead by leveraging the ML model architecture



Model parallelism

If model is huge, might not fit into 
memory/GPU of one machine.

Good idea to split model among multiple 
machines/GPU’s.

Data Data Data

Forward pass -> Compute error

The forward pass and backward pass on 
the model computes is done in serial 
across machines/GPUs

Backward pass -> Update weights

Models are generally split in a fashion 
such that there are least dependencies
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When to use data/model parallelism?

- If GPUs are not saturated and have some free capacity (not all cores are 
running), then model parallelism will be slow. Use data parallelism instead!

- If the model does not fit into memory, model parallelism is the obvious choice.

- Communication overhead can be reduced in data parallelism but not in model 
parallelism.
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- If GPUs are not saturated and have some free capacity (not all cores are 
running), then model parallelism will be slow. Use data parallelism instead!

- If the model does not fit into memory, model parallelism is the obvious choice.

- Communication overhead can be reduced in data parallelism but not in model 
parallelism.
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Problem:What if data does not fit into memory nor does the model?`

When to use data/model parallelism?



Google’s DistBelief system

Combine data, model parallelism 
and asynchronous SGD

Workers asynchronously fetch model 
parameters and push gradients to the 
parameter server.

The parameters are sharded 
across multiple parameter servers

A complex system developed for 
a specific use-case (ImageNet)
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Distributed ML training - Key takeaways

- When model/data does not fit into single machine, use data parallelism or model 
parallelism or a mixture of both. 

- Data parallelism more widely used.

- Parameter server widely used with data parallelism. 
- Though we do have architectures that distribute the aggregation task on all machines. AllReduce?

- Prefer Synchronous execution over Asynchronous execution. This is mostly due to 
concerns about model stability and convergence.
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    Pr   What if due to privacy considerations, we cannot collect the data and centralize it?

        Example: Gboard



Distributed ML training - Key takeaways

- When model/data does not fit into single machine, use data parallelism or model 
parallelism or a mixture of both. 

- Data parallelism more widely used.

- Parameter server widely used in data parallelism. 
- Though we do have architectures that distribute the aggregation task on all machines.

- Prefer Synchronous execution over Asynchronous execution. This is mostly due to 
concerns about model stability and convergence.
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    Solution:  Federated Learning
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1. Each client downloads 
model parameters from 
central server  

Federated Learning
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1. Each client downloads 
model parameters from 
central server  

2. Each client computes 
updates using their local 
data and send to server.

Federated Learning
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2. Each client computes 
updates using their local 
data and send to server.

Repeat until 
convergence.

3. Server aggregates 
users’ updates into 
a new model   

∑
1. Each client downloads 
model parameters from 
central server  

Federated Learning
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2. Each client computes 
updates using their local 
data and send to server.

Repeat until 
convergence.

3. Server aggregates 
users’ updates into 
a new model   

∑
1. Each client downloads 
model parameters from 
central server  

Data never leaves the client; as good as centralized  

Federated Learning
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2. Each client computes 
updates using their local 
data and send to server.

Repeat until 
convergence.

3. Server aggregates 
users’ updates into 
a new model   

∑
1. Each client downloads 
model parameters from 
central server  

But did we solve privacy?

Federated Learning
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∑

These updates 
contain 
privacy-sensitive
 data![1]

Problem:
● Updates to model can leak information about underlying training 

data

 
[1] Melis et al. “Exploiting unintended feature leakage in collaborative learning” IEEE S&P 19

Federated Learning - Leakage from updates



∑

These updates 
contain 
privacy-sensitive
 data!

Problem:
● Updates to model can leak information about underlying training 

data

 

Federated Learning - Leakage from updates

Leakage from updates:

- Model updates from SGD

- If adversary has a set of labelled (update, feature) pairs, then it can train a classifier to predict features from 
updates  
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Federated Learning - Leakage from updates
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Federated Learning - Leakage from updates
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Federated Learning - Leakage from updates
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∑

Solution:
● Secure Aggregation[1] => Server only observes the sum of 

updates.

 

Federated Learning - Secure aggregation
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Federated Learning - Secure aggregation
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Federated Learning - Secure aggregation
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∑

Federated Learning - Leakage from model
Model may 
remember private 
training data!

Problem:
● The model might also remember training data of the client.

 



∑

Federated Learning - Leakage from model
Model may 
remember private 
training data!

Problem:
● The model might also remember training data of the client.

 

Model inversion attack:

- Solve an optimization problem:

find the input that maximizes the returned 
confidence, subject to the classification 
also matching the target.

45



46

∑

Federated Learning - Differential privacy

+
Solution:
=> Differential Privacy - Add noise to the trained model
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∑

Federated Learning - Differential privacy

+
Solution:
=> Differential Privacy - Add noise to the trained model

 

Differential privacy:

- Amount of noise added parametrized by a privacy budget (𝝐)
- Lower (𝝐) means more noise added so more privacy
- Lower (𝝐) means more lower utility/performance of model
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∑

Federated Learning - Differential privacy

+
Solution:
=> Differential Privacy - Add noise to the trained model

 

Problems with Federated Learning:

- A centralized coordinator may not always be feasible in all use cases like healthcare, banking
- Clients may be malicious and try to harm the performance of the model.



∑

Federated Learning - Differential privacy

+
Solution:
=> Differential Privacy - Add noise to the trained model

 

        Solution: A Peer to Peer Approach
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𝚫w3

𝚫w3

𝚫w3

● Each block stores a set of updates from multiple peers and the updated model
○ Each peer computes updates using their blockchain state
○ With each block, the set of updates is added, updating the global model

Blockchain

W1 W0
 W2  W3  W4

SGD

● Much work has been done in this area (OpenMined, OasisLabs, Biscotti) but no widely 
adopted system yet 

Peer to Peer ML on the blockchain
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Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!
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Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!Why is it so time consuming?
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Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!

Problems:

- Every model has its own unique environment in which it was trained. (python versions etc.)
- Models rely on specific library versions. (scikit learn, numpy)
- Resource requirements vary across models (GPU versus no GPU)
- Different models get different traffic load.
- Scalability issues -> Cant keep user’s waiting if the model is busy
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Putting machine learning models in production

- Once a model has been trained, it’s time that other people start using it.
- You would want to deploy it, so that other people can start using it.

- Deploying machine learning models comes with its own set of challenges!
Solution => Docker containers

Sol
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What are docker containers?

- A group of processes that run in isolation on a 
single machine

- Each container has its own set of:
- Processes
- Users
- Memory

- They share the same base operating system but 
have their own set of binaries, libraries and os 
specific files
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What are containers?

- A group of processes that run in isolation on a 
single machine

- Each container has its own set of:
- Processes
- Users
- Memory

- They share the same base operating system but 
have their own set of binaries, libraries and os 
specific files

  Using containers, a machine learning model can run in its own isolated 
environment  
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How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create an API to send data and make predictions with your model
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy
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How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create an API to send data and make predictions with your model
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

- All machine learning libraries have their default save 
method.

- Or, turn it into an object and save it in a pickle file.
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How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions 
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

User

  ML Model App
What is a API?

- A piece of programming code that allows an application to talk to the 
outside world.

- Allows an application to listens for incoming requests and take 
action/respond based on the type of request 
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How to containerize ML models?
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User
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How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions 
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

What is a Dockerfile?

- Dockerfile is responsible for creating the image that’s 
used to create the container that hosts the model and 
API 

- Specify all library/model requirements and launch app
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How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions 
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

What is a Dockerfile?

- Dockerfile is responsible for creating the image that’s 
used to create the container that hosts the model and 
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How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions 
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

- Use docker to build an image from 
the dockerfile

- A image is a snapshot of the 
environment that can’t change

- Run a container from that image and 
deploy in the cloud
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How to containerize ML models?

- Step 1: Train and save your model
- Step 2: Create a API to receive data and make predictions 
- Step 3: Create a Dockerfile -> specifying the requirements
- Step 4: Create your container and deploy

- Use docker to build an image from 
the dockerfile

- A image is a snapshot of the 
environment that can’t change

- Run a container from that image and 
deploy in the cloud

Where do these containers fit into when running a complete application?
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A typical ML application
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A typical ML application

Microservice architecture =>  Application is a suite of small lightweight 
independent services
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A typical ML application

Microservice architecture =>  Application is a suite of small lightweight 
independent services

Let’s take a look at an example ….
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Exercises

Students do problem-solving 
exercises with Korbi while receiving 

instant help and feedback

Lab

Exercises

Students do lab and coding 
exercises with Korbi, while Korbi 

analyzes their solutions and 
provides guidance and feedback

Lectures

Students discuss lectures 
and text material with 
Korbi, helping Korbi to 

diagnose and repair 
knowledge gaps

Motivation & 

Metacognition

Korbi builds rapport with 
students, in order to help 
improve their motivation 
and metacognitive skills

KORBIT AI - Learning with an AI tutor
Students learn data science with Korbi through an intuitive, real-time chat interface
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Korbit AI - Demo

Click Me :)

2 MINUTES
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https://www.youtube.com/watch?v=igKCS6v5840&feature=emb_logo&ab_channel=KorbitAI


Korbit AI - Demo

Click Me :)

2 MINUTES

The ML/ data science curriculum is free for everyone => https://www.korbit.ai/
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https://www.youtube.com/watch?v=igKCS6v5840&feature=emb_logo&ab_channel=KorbitAI
https://www.korbit.ai/


Behind the scenes - A microservice architecture

- All ML models run as their own microservice running in their own isolated docker containers

- Other functionalities like email, database etc also run as stand alone microservices

- Easier to isolate issues and run bugs. 78



Projects I worked on at Korbit AI

Project 1 => Querying ML models in parallel to bring down response time for 
users

Project 2 => Predicting the optimal feedback to give to the user (ongoing)

Project 3 => Time series analysis to model psychological state of the user (just 
started)
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Conclusion

- Distributed systems play a major role when building a machine learning 
system.

- When training ML models, we use the following architectures:
- Parameter server -> When data/model is too large to fit into memory
- Federated Learning -> When we can’t centralize data but trust 
- P2P approaches -> When users collaborate together to build a ML model 

- Once trained, ML models are usually deployed in a microservice based 
architecture.

80


