
Time in distributed systems
Feb 9, 2021

1

416 Distributed Systems

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Logical clocks
• Lamport Clocks
• Vector Clocks

2

Why Global Timing?

• Suppose there were a globally consistent time
standard

• Would be handy
• Who got last seat on airplane?
• Who submitted final auction bid before deadline?
• Did defense move before snap? (warning: football reference)

• In A3:
• Did WorkerResult@W1 happen after

CoordinatorWorkerResult@Coord?

Impact of Clock Synchronization

4

2140 …

Impact of Clock Synchronization

• When each machine has its own clock, an event
that occurred after another event may nevertheless
be assigned an earlier time.

5

2140 …

Replicated Database Update

• Updating a replicated database and leaving it in
an inconsistent state

6

Time Standards

• UT1 (universal time)
• Based on astronomical observations
• ~ “Greenwich Mean Time” (GMT)

• TAI (international atomic time)
• Started Jan 1, 1958
• Each second is 9,192,631,770 cycles of radiation emitted by

Cesium atom
• Has diverged from UT1 due to slowing of earth’s rotation

• UTC (coordinated universal time)
• TAI + leap seconds to be within 0.9s of UT1
• Currently ~37s

Comparing Time Standards

UT1 − UTC

Coordinated Universal Time
(UTC)

• Is broadcast from radio stations on land and satellite (e.g.,
GPS)

• Computers with receivers can synchronize their clocks
with these timing signals

• Signals from land-based stations are accurate to about
0.1-10 millisecond

• Signals from GPS are accurate to about 1 microsecond
• Why can't we use GPS receivers on all our computers?

9

Clocks in a Distributed System

• Computer clocks are not generally in perfect agreement
• Skew: the difference between the times on two clocks (at any instant)

• Computer clocks are subject to clock drift (they count time at different
rates; consider batteries)
• Clock drift rate: the difference per unit of time from some ideal reference

clock
• Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).
• High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Network

10

Clock drift visualized

• The relation between clock time and UTC
when clocks tick at different rates.

11

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

12

Perfect networks

• Messages always arrive, with propagation delay
exactly d

• Sender sends time T in a message
• Receiver sets clock to T+d

• Synchronization is exact

Synchronous networks

• Messages always arrive, with propagation delay
at most D

• Sender sends time T in a message
• Receiver sets clock to T + D/2

• Synchronization error is at most D/2

Synchronization in the real world

• Real networks are asynchronous
• Message delays are arbitrary

• Real networks are unreliable
• Messages don’t always arrive

Cristian’s Time Sync (‘89)

mr

mt

p
Time server,S

• A time server S receives signals from a UTC source
• Process p requests time in mr and receives t in mt from S
• p sets its clock to t + Tround-trip/2
• Accuracy ± (Tround-trip/2 - min) :

• Where min is minimum one-way transmission delay
• because the earliest time S puts t in message mt is min after p sent mr.
• the latest time was min before mt arrived at p
• the time by S’s clock when mt arrives is in the range [t+min, t + Tround-trip - min]

Tround is the round trip time recorded by p
min is an estimated minimum one way delay

16

Berkeley algorithm

• Cristian’s algorithm -
• a single time server might fail, so they suggest the use of a group of

synchronized servers
• it does not deal with faulty servers

• Berkeley algorithm (also 1989)
• An algorithm for internal synchronization of a group of computers
• A master polls to collect clock values from the others (slaves)
• The master uses round trip times to estimate the slaves’ clock values (only

master computes RTT)
• It takes an average (eliminating any above average round trip time or with

faulty clocks)
• It sends the required adjustment to the slaves (better than sending the

time which depends on the round trip time)
• Failures

• If master fails, can elect a new master to take over (not in bounded time)

•
17

The Berkeley Algorithm (1)

• The time daemon asks
all the other machines
for their clock values.

18

The Berkeley Algorithm (2)

• The machines
answer.

19

Compute avg:
+15 / 3 = +5

Adjustment:
0 à +5 = +5
-10 à +5 = +15
+25 à +5 = -20

The Berkeley Algorithm (3)

• The time daemon tells
everyone how to
adjust their clock.

20

Compute avg:
+15 / 3 = +5

Adjustment:
0 à +5 = +5
-10 à +5 = +15
+25 à +5 = -20

Network Time Protocol (NTP)
(invented by David Mills, 1981)

1

2

3

2

3 3

• A time service for the Internet - synchronizes clients to
UTC

Figure 10.3

Reliability from redundant paths, scalable, authenticates
time sources

Primary servers are connected to UTC
sourcesSecondary servers are synchronized to

primary servers
Synchronization subnet - lowest level servers
in users’ computers

21

The Network Time Protocol (NTP)

• Uses UDP (minimal overhead/OS stack latency)
• Uses a hierarchy of time servers

• Class 1 servers have highly-accurate clocks
• connected directly to atomic clocks, etc.

• Class 2 servers get time from only Class 1 and Class 2
servers

• Class 3 servers get time from any server (usually 3)
• Synchronization similar to Cristian’s alg.

• Modified to use multiple one-way messages instead of
immediate round-trip

• Accuracy: Local ~1ms, Global ~10ms

How To Change Time

• Can’t just change time
• Why not?

27

How To Change Time

• Can’t just change time
• Why not?

• Change the update rate for the clock
• Changes time in a more gradual fashion
• Prevents inconsistent local timestamps

28

Important Lessons

• Clocks on different systems will always behave differently
• Skew and drift between clocks

• Time disagreement between machines can result in undesirable
behavior

• Clock synchronization
• Rely on a time-stamped network messages
• Estimate delay for message transmission
• Can synchronize to UTC or to local source
• Clocks never exactly synchronized

• Often inadequate for distributed systems
• might need totally-ordered events
• might need millionth-of-a-second precision

29

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

30

Logical time

• Capture just the “happens before” relationship
between events
• Discard the infinitesimal granularity of time
• Corresponds roughly to causality

Logical time and logical clocks
(Lamport 1978)

• Events at three processes

32

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• Instead of synchronizing clocks, event ordering can be used

1. If two events occurred at the same process pi (i = 1, 2, … N) then
they occurred in the order observed by pi, that is the definition of:
® i

2. When a message, m is sent between two processes, send(m)
‘happens before’ receive(m)

3. The ‘happened before’ relation is transitive

• The happened before relation (®) is necessary for causal
ordering

33

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• a ® b (at p1) c ®d (at p2)
• b ® c because of m1

• also d ® f because of m2

34

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• Not all events are related by ®
• Consider a and e (different processes and no chain

of messages to relate them)
• they are not related by ® ; they are said to be concurrent
• written as a || e

35

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Lamport Clock (1)

• A logical clock is a monotonically increasing software counter
• It need not relate to a physical clock.

• Each process pi has a logical clock, Li which can be used to apply
logical timestamps to events

• Rule 0: initially all clocks are set to 0
• Rule 1: Li is incremented by 1 before each event at process pi
• Rule 2:

• (a) when process pi sends message m, it piggybacks t = Li
• (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies rule 1 before timestamping the

event receive (m)

36

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

• each of p1, p2, p3 has its logical clock initialised to zero,
• the clock values are those immediately after the event.
• e.g. 1 for a, 2 for b.

• for m1, 2 is piggybacked and c gets max(0,2)+1 = 3

37

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

• e®e’ (e happened before e’) implies L(e)<L(e’)
(where L(e) is Lamport clock value of event e)

• The converse is not true, that is L(e)<L(e') does not
imply e®e’. What’s an example of this above?

38

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

• e®e’ (e happened before e’) implies L(e)<L(e’)

• The converse is not true, that is L(e)<L(e') does not
imply e®e’
• e.g. L(b) > L(e) but b || e

39

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport logical clocks

• Lamport clock L orders events consistent with
logical “happens before” ordering
• If e → e’, then L(e) < L(e’)

• But not the converse
• L(e) < L(e’) does not imply e → e’

• Similar rules for concurrency
• L(e) = L(e’) implies e║e’ (for distinct e,e’)
• e║e’ does not imply L(e) = L(e’)
• i.e., Lamport clocks arbitrarily order some concurrent

events

Total-order Lamport clocks

• Many systems require a total-ordering of events,
not a partial-ordering

• Use Lamport’s algorithm, but break ties using the
process ID; one example scheme:
• L(e) = M * Li(e) + i

• M = maximum number of processes
• i = process ID

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

43

Vector Clocks

• Vector clocks overcome the shortcoming of
Lamport logical clocks
• L(e) < L(e’) does not imply e happened before e’

• Goal
• Want ordering that matches happened before
• V(e) < V(e’) if and only if e → e’

• Method
• Label each event by vector V(e) [c1, c2 …, cn]

• ci = # events in process i that precede e

44

Vector Clock Algorithm

• Initially, all vectors [0,0,…,0]
• For event on process i, increment own ci

• Label message sent with local vector
• When process j receives message with vector

[d1, d2, …, dn]:
• Set each local vector entry k to max(ck, dk)
• Increment value of cj

Vector Clocks

• At p1
• a occurs at (1,0,0); b occurs at (2,0,0)
• piggyback (2,0,0) on m1

• At p2 on receipt of m1 use max ((0,0,0), (2,0,0)) = (2, 0, 0)
and add 1 to own element = (2,1,0)

• Meaning of =, <=, max etc for vector timestamps
• compare elements pairwise

46

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks

• Note that e → e’ implies V(e)<V(e’). The
converse is also true

• Can you see a pair of concurrent events; Can you
infer they are concurrent from their vectors
clocks?

47

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks

• Note that e ® e’ implies V(e)<V(e’). The converse
is also true

• Can you see a pair of concurrent events?
• c || e (concurrent) because neither V(c) <= V(e) nor V(e) <= V(c)

48

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Implementing logical clocks

• Positioning of logical timestamping in distributed
systems.

49

Distributed time
• Premise

• The notion of time is well-defined (and measurable) at
each single location

• But the relationship between time at different
locations is unclear
• Can minimize discrepancies, but never eliminate

them
• Reality

• Stationary GPS receivers can get global time with <
1µs error

• Few systems designed to use this; logical clocks key
mechanism for ordering
• Recent exception: (Spanner system from Google)

Important Points

• Physical Clocks
• Can keep closely synchronized, but never perfect

• Logical Clocks
• Encode happens before relationship (necessary for

causality)
• Lamport clocks provide only one-way encoding
• Vector clocks precedence necessary for causality (but

not sufficient: could have been caused by some event
along the path, not all events)

