416 Distributed Systems

Time in distributed systems
Feb 9, 2021

Today's Lecture

* Need for time synchronization

* Time synchronization techniques

 Logical clocks
« Lamport Clocks
* Vector Clocks

Why Global Timing? “

« Suppose there were a globally consistent time
standard

* Would be handy

Who got last seat on airplane?

Who submitted final auction bid before deadline?
Did defense move before snap?

In A3:

» Did WorkerResult@W1 happen after
CoordinatorWorkerResult@Coord?

Impact of Clock Synchronization “

Computer on 2140 ... 2145 2146 2147 <4— Time according
which compiler ¢\ % : | to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor { ¢ ; ; to local clock
runs

output.c created

Impact of Clock Synchronization i‘.

Computer on @ ... 2145 2146 2147 <4— Time according
| | | to local clock

which compiler u . .

runs Y\ output.o created
Computer on 2142 @ 2144 2145 <«— Time according
which editor ; ; ; to local clock

runs
output.c created

* When each machine has its own clock, an event
that occurred after another event may nevertheless
be assigned an earlier time.

Replicated Database Update

i Ypdatet Update 2__ %

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

« Updating a replicated database and leaving it in
an inconsistent state

Time Standards i‘.

« UT1

 Based on astronomical observations
« ~ “Greenwich Mean Time” (GMT)
 TAI

o Started Jan 1, 1958

« Each second is 9,192,631,770 cycles of radiation emitted by
Cesium atom

« Has diverged from UT1 due to slowing of earth’s rotation

« UTC
« TAIl + leap seconds to be within 0.9s of UT1
« Currently ~37s

Comparing Time Standards

0.2
UT1 -UTC

00000000000000000000000000000000

Coordinated Universal Time

 Is broadcast from radio stations on land and satellite (e.g.,
GPS)

« Computers with receivers can synchronize their clocks
with these timing signals

« Signals from land-based stations are accurate to about
0.1-10 millisecond

« Signals from GPS are accurate to about 1 microsecond
« Why can't we use GPS receivers on all our computers?

Clocks in a Distributed System “

SN

Network

« Computer clocks are not generally in perfect agreement

Skew: the difference between the times on two clocks (at any instant)

« Computer clocks are subject to clock drift (they count time at different
rates)

Clock drift rate: the difference per unit of time from some ideal reference
clock

Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-® secs/sec).
High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

10

Clock drift visualized

Clock time, C

UTC, t

 The relation between clock time and UTC
when clocks tick at different rates.

11

Today's Lecture

Need for time synchronization

Time synchronization techniques

Lamport Clocks

Vector Clocks

12

Perfect networks

«

 Messages always arrive, with propagation delay

exactly d

{ie —

« Sender sends time T in a message

 Receiver sets clock to T+d
* Synchronization is exact

Synchronous networks i‘.

* Messages always arrive, with propagation delay
at most D

tine —>

« Sender sends time T in a message

« Receiver sets clockto T + D/2
* Synchronization error is at most D/2

Synchronization in the real world

* Real networks are asynchronous
 Message delays are arbitrary

 Real networks are unreliable
* Messages don't always arrive

Cristian’s Time Sync (‘89) “

« A time server S receives signals from a UTC source
* Process p requests time in m, and receives tin m;from S
« psetsits clock to t + Troyng-trip/2
* Accuracy = (T oung-trip/2 - mMin) :
* Where min is minimum one-way transmission delay

1

m; Time server,S

Trouna is the round trip time recorded by p
min is an estimated minimum one way delay

16

Berkeley algorithm “

 Cristian’s algorithm -
« a single time server might fail, so they suggest the use of a group of
synchronized servers
it does not deal with faulty servers

. Berkeley algorithm (also 1989)
An algorithm for internal synchronization of a group of computers
* A master polls to collect clock values from the others (slaves)

« The master uses round trip times to estimate the slaves’ clock values (only
master computes RTT)

|t takes an average (eliminating any above average round trip time or with
faulty clocks)

It sends the required adjustment to the slaves (better than sending the
time which depends on the round trip time)

» Failures
 |f master fails, can elect a new master to take over (not in bounded time)

17

The Berkeley Algorithm (1) ™MW

e The time daemon asks Time daemon
all the other machines 3:00 / 3-:00
for their clock values. j)

3:00 @

()
O [

2:50 3:25

18

The Berkeley Algorithm (2) ™MW

« The machines 3:00 0

answer.

w0 (Dl
Compute avg: +25
+15/3=+5 _I_LI7
Adjustment:
0> +5=+5
-10 > +5=+15

+25 2> +5=-20
2:50 3:25

19

The Berkeley Algorithm (3)

 The time daemon tells 3:05 i
everyone how to 9
adjust their clock.

+15

Compute avg: l 1-20
+15/3 =+5 j r
Adjustment:

0> +5= +5 @
-10 > +5=+15

+25 2 +5=-20
3:05 3:05

20

Network Time Protocol (NTP) Y

(invented by David Mills, 1981)

« A time service for the Internet - synchronizes clients to

Reli Primars ceaniare ara rnnnactad tn | ITC
iitlepaeiay Secondary servers are synchronized to
primary servers

Synchronization subnet - lowest level servers
in users’ computers

N~
2\ 2

~ ™~

3 3 3

21

The Network Time Protocol (NTP) | 9%

Uses UDP (minimal overhead/OS stack latency)

Uses a hierarchy of time servers
« Class 1 servers have highly-accurate clocks
« connected directly to atomic clocks, etc.

» Class 2 servers get time from only Class 1 and Class 2
servers

« Class 3 servers get time from any server (usually 3)

Synchronization similar to Cristian’ s alg.

« Modified to use multiple one-way messages instead of
Immediate round-trip

Accuracy: Local ~1ms, Global ~10ms

How To Change Time

« Can't just change time
* Why not?

27

How To Change Time

« Can't just change time
* Why not?

« Change the update rate for the clock
« Changes time in a more gradual fashion
* Prevents inconsistent local timestamps

28

Important Lessons “.

Clocks on different systems will always behave differently
« Skew and drift between clocks

« Time disagreement between machines can result in undesirable
behavior

* Clock synchronization
* Rely on a time-stamped network messages
« Estimate delay for message transmission
« Can synchronize to UTC or to local source
» Clocks never exactly synchronized

« Often inadequate for distributed systems

* might need totally-ordered events
* might need millionth-of-a-second precision

29

Today's Lecture

Need for time synchronization

Time synchronization techniques

Lamport Clocks

Vector Clocks

30

Logical time

«

« Capture just the “happens before” relationship

between events
 Discard the infinitesimal granularity of time
« Corresponds roughly to causality

Logical time and logical clocks
(Lamport 1978)

* Events at three processes

P1 o ®

a b\
P2

» Physical

P3 o ®

time

32

Logical time and logical clocks
(Lamport 1978) “‘

Py ° » Physical
time
C (\

P3 o e >

* Instead of syenchronizing clocks, event orfdering can be used

1. If two events occurred at the same process p; (i = 1, 2, ... N) then
they occurred in the order observed by p;, that is the definition of:

i
2. When a message, m is sent between two processes, send(m)
‘happens before’ receive(m)

3. The ‘happened before’ relation is transitive

« The happened before relation (—) is necessary for causal

ordering
33

Logical time and logical clocks
(Lamport 1978)

«

P1 o ®

» Physical

P2 o

P3 ® ®

time

- a—>b(atp,) c—>d (atp,)
b — ¢ because of m,
 also d — fbecause of m,

34

Logical time and logical clocks
(Lamport 1978) “‘

P1

P2

P3

* Not all eilents are related by —

» Physical

¢
time
C (\

f

« Consider a and e (different processes and no chain
of messages to relate them)
« they are not related by — ; they are said to be concurrent
 writtenas al| e

35

Lamport Clock (1) “.

1 2
o >
P1 a b m,
0 S 4 » Physical
2 c q time
my
1 5
P3 ® >
e f

* Alogical clock is a monotonically increasing software counter
« It need not relate to a physical clock.

« Each process p; has a logical clock, L; which can be used to apply
logical timestamps to events
* Rule 0O: initially all clocks are setto 0
* Rule 1: L; is incremented by 1 before each event at process p;
* Rule 2:
* (a) when process p,; sends message m, it piggybacks t = L;

* (b) when p, receives (m,t) it sets L; := max(L;, f) and applies rule 1 before timestamping the
event receive (m)

36

Lamport Clock (1) “.

P1

P2

P3

B
b M4
S 4 » Physical

time
C d m,
1 5
o >

e f

« each of pq, p,, p3 has its logical clock initialised to zero,
 the clock values are those immediately after the event.
* e.g. 1fora, 2forb.

« for m4, 2 is piggybacked and c gets max(0,2)+1 =3

37

Lamport Clock (1) “

o >
P1 a b m,
S 4 » Physical
P2 c g time
my
1 5
P3 ® >

e f

- e —>¢€ (e happened before €’) implies L(e)<L(€’)
(where L(e) is Lamport clock value of event e)

- The converse is not true, that is L(e)<L(e) does not
Imply e »>¢e’. What’s an example of this above?

38

Lamport Clock (1) i‘.

1

2

o >
P1 a b m,
0 S 4 » Physical

2 c q time
my
1 5

P3 ® >

e f

- e —>¢€ (e happened before €’) implies L(e)<L(€’)
- The converse is not true, that is L(e)<L(e’) does not
imply e »>¢’
- e.g.L(b)>L(e)butbll e

39

Lamport logical clocks

« Similar rules for concurrency
- L(e) =L(e’) implies el| e’ (for distinct e,e ")
- e|e’” does notimply L(e) =L(e’)

* I.e., Lamport clocks arbitrarily order some concurrent
events

Total-order Lamport clocks “

« Many systems require a total-ordering of events,
not a partial-ordering

» Use Lamport’s algorithm, but break ties using the
process ID; one example scheme:
c L(e)=M*L(e) +i
e M = maximum number of processes

e i = process ID

Today's Lecture

Need for time synchronization

Time synchronization techniques

Lamport Clocks

Vector Clocks

43

Vector Clocks “.

» Vector clocks overcome the shortcoming of
Lamport logical clocks

- L(e) < L(€’) does not imply e happened before €’
* Goal

« Want ordering that matches happened before

« V(e)<V(e')ifandonlyife — €’
* Method

« Label each event by vector V(e) [cq, Cs ..., C]
* C; = # events in process i that precede e

44

Vector Clock Algorithm O\ Y

Initially, all vectors [0,0,...,0]
For event on process i, increment own ¢
Label message sent with local vector

When process j receives message with vector
[d{,d,, ..., d.]

« Set each local vector entry k to max(c,, d,)

* Increment value of ¢;

Vector Clocks “.

(1,0,0) (2,0,0)

°]
P1 a b m,
(21,0) (220 .. Physical
Py . d time
my
0.0,1) (2:22)
P3 ® -
o f

At p;
« aoccurs at (1,0,0); b occurs at (2,0,0)
-« piggyback (2,0,0) on m,
At p, on receipt of my; use max ((0,0,0), (2,0,0)) = (2, 0, 0)
and add 1 to own element = (2,1,0)

- Meaning of =, <=, max etc for vector timestamps
« compare elements pairwise

46

Vector Clocks “

(1,0,0) (2,0,0)
L >

P1

P2

P3

* Note't

a b my
2,1,0 2,20 _
() () > Pr][ysmal
ime
C d m,
(0,0,1) (2,2,2)
L >
e f

nat e — e’ implies V(e)<V(e’). The

converse Is also true

« Can you see a pair of concurrent events; Can you
infer they are concurrent from their vectors

clocks?

47

Vector Clocks “.

(1,0,0) (2,0,0)

o B
P1 a b m,
(2,1,0) (2,2,0) » Physical
P2 c g n time
(0,0,1) (2,2,2)
P3 ® >
e f
Note that e —» €’ implies V(e)<V(e’). The converse
IS also true

- Can you see a pair of concurrent events?
¢ |l e (concurrent) because neither V(c) <= V(e) nor V(e) <= V(c)

48

Implementing logical clocks “

* Positioning of logical timestamping in distributed

systems.
Application layer
Application sends message \%) : Message is delivered to application
~ Adjust local clock Adjust local clock Middleware layer
and timestamp message
Middleware sends message Message is received
Network layer

49

Distributed time “.

* Premise

* The notion of time is well-defined (and measurable) at
each single location

» But the relationship between time at different
locations is unclear

« Can minimize discrepancies, but never eliminate
them

* Reality

« Stationary GPS receivers can get global time with <
1Us error

* Few systems designed to use this; logical clocks key
mechanism for ordering

« Recent exception: (Spanner system from Google)

Important Points “

* Physical Clocks

« Can keep closely synchronized, but never perfect

 Logical Clocks

* Encode happens before relationship (necessary for
causality)

» Lamport clocks provide only one-way encoding

« Vector clocks precedence necessary for causality (but
not sufficient. could have been caused by some event

along the path, not all events)

