Distributed Key-Value Store Utilizing CRDT to
Guarantee Eventual Consistency

CPSC 416 Project Proposal
n6n8: Trevor Jackson, u2c9: Hayden Nhan, vOr5: Yongnan (Devin) Li, x5m8: Li Jye Tong

Introduction and Background

Ever since the CAP theorem was conjectured, practitioners of distributed systems in
academia and industry have evaluated various ways of making trade-offs between consistency,
availability, and network partition tolerance to strive for the best possible user experience.
Internet scale data storage systems aim for high availability to serve a large number of
concurrent requests, while being resilient to network partitioning caused by failures of various
hardware/software components. Amazon’s highly available Dynamo key-value store is a prime
example of such a distributed system. Amazon engineers chose the eventually consistent model
to provide a reliable “always on” experience to the users. Sacrifices in data consistency will
manifest under certain usage scenarios. For instance, in their 2007 publication, the authors
mentioned an anomaly in the Amazon shopping cart in which deleted items can reappear under
certain conditions [1]. Although these anomalies are very rare and can always be corrected by
the user, customer experience can be improved by minimizing these kind of anomalies.

Distributed systems use optimistic replication to achieve better availability and
performance. Updates to data can be made at each replica without synchronization with other
replicas. Conflicting updates at different replica are usually resolved through a background
consensus algorithm and some updates may need to be rolled-back. The downside to this
approach is that conflict resolution mechanism can be complex and error-prone. In the
distributed systems literature, the concept of Conflict-free Replicated Data Type (CRDT) has
been proposed to help with this problem. CRDT is a theoretical construct that ensures eventual
consistency by design without the use of consensus. CRDT presents a theoretical-sound
approach to eventual consistency that promises to remove the complexity in conflict resolution
in existing implementations. However, the level of consistency can be weak. More specifically,
CRDT will not provide sequential consistency which is often desired by application developers

[2].

Overall Approach

We propose to implement an always writable key-value store inspired by Amazon
Dynamo that uses CRDT to perform asynchronous background data reconciliation. The
key-value store is intended to run over multiple nodes. This means group management will
present challenges. To limit the scope of the project, we need to make simplifications to the



Dynamo architecture presented in reference [1] (similar to the ones made by the authors of
reference [3]). In particular, we plan to address the following challenges:

Challenge Technique Benefit

Membership/failure detection | Gossip Protocol Detection at run-time

Load Balancing Consistent Hashing Increased scalability

High Availability for Writes CRDT Simple data reconciliation

Node Failure and Rejoining See “Node Failure and Higher availability
Rejoining” Section

By addressing these challenges, our implementation will contain no single point of
failure, have scalable storage capacity, and guarantee eventual consistency. The main goal of
our project is to evaluate the efficacy of using CRDT as a simple and coherent mechanism for
data reconciliation when client writes are in conflict. Current production systems typically have
complex data reconciliation mechanisms. The successful application of CRDT will provide a
simpler, alternative mechanism. We will demonstrate our implementation using a collective
ToDo/notepad application.

System Architecture

Gossip Protocol

In order to detect active nodes both at the initial start-up of the system and as the system
continues to function, a gossip protocol will be used. The protocol, based on gossip that occurs
in social networks, will have each node choose another node in the system at random, at set
intervals. A node will then communicate all the nodes that it knows are currently inactive and
active with the randomly selected node. Should the selected node fail to respond, it is marked
as inactive. In this way, information about inactive nodes is passed from one node to the next
until it has permeated the entire system. If an inactive node becomes active again, its presence
will be initially identified by each node it randomly selects and communicates with.




— —_

Step 1: Node 1 sends a Step 2: Node 1 does not receive a
message to its peers with a response from Node 6 so sends out
list of active nodes it knows an updated message to its peers
about. indicating Node 6 is dead.

The peers continue to spread the
news.

Figure 1: The Gossip Protocol implemented across the network. Initial messages are solid
lines while subsequent messages echoed are dashed lines.

Consistent Hashing and Replication

Consistent hashing is a powerful mechanism for load distribution in a distributed
environment. Any given key can be hashed to a position in the ring. The ring will be divided into
partitions of equal size and each node in the system will be assigned roughly the same number
of partitions to store. Replication factor N is a parameter of the system configuration on start-up
and it means a key belonging to a given node will be replicated to its N-1 successor nodes in

the ring. Nodes will have a unique identifier, taking on a value of “Node#”, # being sequential
positive integers starting from 1.

API Call
l Client };

Each circle is a
server/node i, LI s

There are N Replicas per Key
Figure 2: The client sends a call to Node A which uses consistent hashing to assign the
keys to specific nodes (D, E, F).



Replication happens asynchronously in the background to increase the availability of the
system to client requests. This design decision sacrifices strong consistency for high availability
but the system can achieve strong eventual consistency with the use of CRDT. The use of
CRDT guarantees eventual consistency and simplifies data reconciliation process in cases
when write operations are in conflict.

Node Failure and Rejoining

In the event that a node fails, the remaining nodes with the failed node’s keys will
replicate the failed node’s key value pairs among the remaining nodes based on the replication
factor. Re-replication of the key value pairs will be performed by incrementing over the ring of
nodes and copying over key value pairs as the system travels over the ring.

The Consistent Hashing algorithm will not be affected by a failed node. If a node
attempts to access/modify a key value pair on a failed node, it will instead place them on the
next available node using the same system as above. If a failed node rejoins, the keys that it
previously held will be assigned to it to rebalance the nodes.

For example, Node 1, 2, and 3 have the same key value pairs and the replication factor
is 3. Node 2 and 3 die, Node 1 upon detecting the failures will attempt to replicate its key value
pairs to the next node, Node 4. Node 1 will then replicate its key value pairs to the next node,
Node 5. There will now be 3 nodes with the key value pairs, satisfying the replication factor.
(See Figure 3 and 4).

Nodes 1, 2, 3 all

have the same key-
value pairs
7

Figure 3 Figure 4

To continue our example from previously, Node 7 attempts to retrieve a key value pair
on the failed Node 2, however, Node 7 has learned via the Gossip Protocol that Node 2 has
died. Node 7 instead will try to retrieve the key value pair on Node 3. If Node 3 were to also
have died, Node 7 would learn of the death and attempt to access the next Node, in this case
Node 4. This process of checking the next Node would continue until either Node 7 ran out of
nodes to check or it found a node to return the key value pair. (See figure 5)



Figure 5 Figure 6

In the case where Node 2 were to rejoin, each Node in the system would learn about the
rejoining via the Gossip Protocol and then run a check on its own key value pairs. The check
would run the Consistent Hashing algorithm on the node’s own keys and then determine if that
key value pair could be moved to the new rejoined node. (See figure 6)

CRDT Usage in Our System:

The set data structure can be extended into a CRDT by attaching a unique identifier to
each element. As illustrated in the figure below, the addition of an element will put a unique
identifier (i.e. a, is unique). The removal of an element will remove all elements known to the
source replica (i.e. the blue replica in the figure). This is the so called Observed Remove Set
(OR-Set). By ensuring the addition of an element is always delivered before removal of the
same element, CRDT properties of OR-Set guarantees eventual consistency.

add(a) {q,} rmv (a) add(ag)
{} ° {aa} p { o >{GB}
0 add(ag)
—0 -
\ dd(ac) rmv (o)
0—0 0—>
add(ag) {aB; {ag, aa} 9B}

Figure 7: Operation-based OR-Set. Operations on the three replica propagate and eventually
reach the same state with the set containing one element. Adapted from reference [2].



Application to be Built Utilizing Our System

The application that will utilize our key-value store will be a collaborative ToDo list. In a
similar vein to Google Docs, our app will be able to handle multiple users editing the same
document from different machines and locations. We will restrict the list of ToDo objects to only
be strings up to a fixed maximum length. Each numbered object will correspond to a key
(ToDo1, ToDo2, ToDo3, etc.), while their string description will correspond to their value to be
stored. Each application running will act as a client for our server nodes to communicate with.
With the usage of our key-value store, multiple users accessing and changing the same list will
be able to do so concurrently while also receiving the changes made by the other users.

In order to access the key-value store, the client(s) will be able to use the follow commands:

e get(key): Send a request to the server to retrieve the value associated with the key
given
add(key, val): Send a request to the server to store the key value pair given
update(key, old_val, new_val): Send a request to the server to check the value
associated with the key, if there is a match with the old value given, replace the old value
with the new value.

e remove(key): Send a request to the server to remove the key value pair stored

Assumptions

Assumptions we can make:
1. Nodes can be trusted.
2. All possible Node membership is agreed upon and known by every Node before runtime.
3. Network failures do not occur.
Assumptions we cannot make:
1. Nodes are synchronized together.
2. Nodes will communicate failures.
3. Nodes will not rejoin the system after failure.

Testing Plan

e The client API will be tested by having a client issuing a series of commands (listed
above)
e Two clients will be used to issue concurrent writes to the same key on different nodes in
the system.
e We will test the system for node failures by:
o force killing nodes and observing that keys are replicated correctly
o rejoining killed/nodes and observing that keys are re-assigned back to this
original node
e GoVector and ShiViz will be used to visualize the behaviour of our system.



Timeline

March 3 Specifics of the API design, protocols, languages, and frameworks
worked out. Learn about GoVector and ShiViz.
March 10 Implement the Gossip Protocol
March 17 Complete CRDT and Consistent Hashing
March 18 Project update to TA
March 24 Replication and Node Failure/Joining
March 31 Testing with GoVector and ShiViz
April 7 Build Application and Testing
April 11 Final Report and Final Changes
SWOT Analysis
Strengths Weaknesses Opportunities Threats
All team Assignments, exams, other Implement a system Tight time
members are projects, and other to resolve a current constraints
comfortable with commitments can hinder issue, and create an
programming in the completion of this application to utilize The CRDT
golang system it proposed was taken
from a highly

Application will
use tools which
team members
are very
proficient and

comfortable with.

Team members
have flexible
schedules to
allow more
accessible
meeting times

No one knows how to use
golang unit test framework

We need to learn to use
GoVector and Shiviz.

Scope of project may be
too large for us to fully
implement

Many tutorials for
building Restful APIs
in golang

Possible Gossip
Protocol library, may
be useful.

Consistent Hashing
Protocol library may
be useful.

theoretical paper
and may take a
great deal of time to
understand and
implement.

Golang is a
relatively new
language, future
changes may cause
our system to
become deprecated




References:

1.

DeCandia, G., et al. Dynamo: Amazon’s Highly Available Key-value Store.
www.allthingsdistributed.com/2007/10/amazons_dynamo.html accessed Feb 26, 2016.
Shapiro, M. et al. A comprehensive study of Convergent and Commutative Replicated
Data Types. http://hal.upmc.fr/inria-00555588/document accessed Feb 26, 2016.

Scott Sallinen and Brittany Roesch. SASSI Simple Available Scalable Storage
Implementation. sample proposal 2 provided by instructor on piazza.



http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://hal.upmc.fr/inria-00555588/document

