
Distributed Systems
CPSC 416
Fall 2018

Course: September 6 - November 30, 2018

Sep 6, 2018 Lecture (first class!)

 1

Course staff
• Ivan Beschastnikh, instructor

• TAs

• Anny Gakhokidze (u)

• Vaastav Anand (g)

• Adam Geller (g)

 2

Logistics
• 2016: 77 students (open-ended project)

• 2017: 117 students (assignment hell)

• 2018W: 160 students (assignments + projects)

• 2018F: ~70 students (mix of above)

• 3 full TAs

• 2 assignments, 2 projects. 3/4 require group work.
One (group) open-ended project

 3

Logistics

• Everything on the website, updated continuously:
http://www.cs.ubc.ca/~bestchai/teaching/cs416_2018w1/

• Use Piazza for all course-related communication

• 4 hrs office hours/week

 4

https://piazza.com/class/jbyh5bsk4ez3cn

• Learning goals
• Go programming language (start learning!)
• Schedule (a work in progress)
• Assignment 1 due Sep 18 (12 days from now)

• Exam (‘just’ a final)
• Advice for doing well

• learn Go (a must to pass the course)
• don’t hack, engineer
• choose team, wisely
• reach out on Pizza/email for help.

• Collaboration guidelines

Course overview via the website

 5

Learning goals
• Understand key principles in designing and

implementing distributed systems

• Reason about problems that involve distributed
components

• Become familiar with important techniques for
solving problems that arise in distributed contexts

• Build distributed system prototypes using the Go
programming language

 6

Learning goals
• Understand key principles in designing and

implementing distributed systems

• Reason about problems that involve distributed
components

• Become familiar with important techniques for
solving problems that arise in distributed contexts

• Build distributed system prototypes using the Go
programming language (the key to all the above)

 7

Some workload comments
from last year’s course

• The workload for this course is easily double that of
any other course I had this term.

• Ivan has very high expectations of his students.

• I love and hate the fact that this class was a "sink or
swim" approach to learning

 8

 9

Assignment 1: Failure detector lib

• What’s a failure detector?

• Why is this a distributed systems topic? And, why do
we need a failure detector?

• Isn’t there a library I can use for this already?

• Deeper: why doesn’t Go/OS/switch/network/universe
provide a service for this already?

 10

Assignment 1: Failure detector lib
• Topology, message types (hbeat/ack), transport (UDP)

 11

Assignment 1: Failure detector lib
• Two protocols/APIs: client to fdlib and fdlib to fdlib

client

 12

Assignment 1: Failure detector lib
• Two fdlib capabilities: responding & monitoring

Assignment 1 note
• Last last year’s 416 TA rant:

 13

TEST YOUR CODE ON THE UGRAD
MACHINES!!!!!!!!!!!!!!!!!!!

YOU WILL GET ZERO IF IT DOESN'T RUN OR
COMPILE. WE HAVE NO SYMPATHY FOR THESE

TYPES OF ERRORS.

… you’ve been warned

Zoom zoom out

• What are some examples of distributed systems?

• What makes a system distributed?

• Why not a distributed application?

 14

Distributed system examples

• YouTube

• Videos are replicated (multiple machines host
the same video)

• Scalable wrt. client requests for videos (internally
elastic — can throw more machines at the
service to have it scale out further)

 15

Distributed system examples
• DropBox (or google drive)

• Replicated content across personal devices

• Supports disconnected operation (can work
while disconnected, and synchronize when re-
connected)

• Maintaining data consistent across devices

• Supports sharing; access control policies (security!)

 16

Distributed system examples

• NASDAQ

• Transactions (e.g., ACID semantics from
databases). Many DBMS concepts apply to
distributed systems!

• Strong consistency and security guarantees
(otherwise people would not trust it with money)

 17

Some D.S. challenges
• Synchronizing multiple machines (protocol complexity)

• Performance (how do you define/measure it?)

• Maintaining consistency: strong models (linearizable) to
weak models (eventual) of consistency

• Failures: machine failures (range: failure stop to byzantine);
network failures (just a few: disconnections/loss/corruption/
delay/partitioning)

• Security (how to prevent malicious control of a single host
in a system escalating into control of the entire system?)

 18

For Monday

• Install Go on your personal machine

• Work through Tour of Go! and other tutorials.

• Practice Go!

 19

