
416 Distributed Systems

Sep 27, Peer-to-Peer

Outline

• P2P Lookup Overview

• Centralized/Flooded Lookups

• BitTorrent

• Routed Lookups – Chord

2

Scaling Problem

• Millions of clients Þ server and network meltdown

3

P2P System

• Leverage the resources of client machines (peers)
• Traditional: Computation, storage, bandwidth
• Non-traditional: Geographical diversity, mobility, sensors!

4

Peer-to-Peer (storage) Networks

• Typically each member stores/provides access to
content

• Basically a replication system for files
• Always a tradeoff between possible location of files and

searching difficulty
• Peer-to-peer allow files to be anywhere à searching is

the challenge
• Dynamic member list makes it more difficult

• What other systems have similar goals?
• Routing, DNS

5

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=�title�
Value=MP3 data… Client

Lookup(�title�)

?

6

Searching

• Needles vs. Haystacks
• Searching for top 40, or an obscure punk track from

1981 that nobody�s heard of?
• Search expressiveness

• Whole word? Regular expressions? File names?
Attributes? Whole-text search?

• Searching for recent versus older content
• Searching for content correlated with your

location/time of day/etc versus not

7

Framework

• Common Primitives:
• Join: how do I begin participating?
• Publish: how do I advertise my file?
• Search: how to I find a file?
• Fetch: how to I retrieve a file?

8

Outline

• P2P Lookup Overview

• Centralized/Flooded Lookups

• BitTorent

• Routed Lookups – Chord

9

Napster: Overiew

• Centralized Database:
• Join: on startup, client contacts central server
• Publish: reports list of files to central server
• Search: query the server => return someone that

stores the requested file
• Fetch: get the file directly from peer

10

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

11

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

12

Napster: Discussion

• Pros:
• Simple
• Search scope is O(1)
• Controllable (pro or con?)

• Cons:
• Server maintains O(N) State
• Server does all processing
• Single point of failure

13

Napster: Discussion

• Pros:
• Simple
• Search scope is O(1)
• Controllable (pro or con?)

• Cons:
• Server maintains O(N) State
• Server does all processing
• Single point of failure

14

“Old” Gnutella: Overview

• Query Flooding:
• Join: on startup, client contacts a few other nodes;

these become its �neighbors�
• “unstructured overlay”

• Publish: no need
• Search: ask neighbors, who ask their neighbors, and

so on... when/if found, reply to sender.
• TTL limits propagation

• Fetch: get the file directly from peer

15

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

16

Gnutella: Discussion

• Pros:
• Fully de-centralized
• Search cost distributed
• Processing @ each node permits powerful search semantics

• Cons:
• Search scope is O(N)
• Search time is O(???)
• Nodes leave often, network unstable

• TTL-limited search works well for haystacks.
• For scalability, does NOT search every node. May have to

re-issue query later; no guarantee that it will find the file!

17

• Modifies the Gnutella protocol into two-level hierarchy
• Hybrid of Gnutella and Napster

• Supernodes
• Nodes that have better connection to Internet
• Act as temporary indexing servers for other nodes
• Help improve the stability of the network

• Standard nodes
• Connect to supernodes and report list of files
• Allows slower nodes to participate

• Search
• Broadcast (Gnutella-style) search across supernodes

• Disadvantages
• Kept a centralized registration à allowed for law suits L

18

Flooding: Gnutella, Kazaa

Outline

• P2P Lookup Overview

• Centralized/Flooded Lookups

• BitTorent

• Routed Lookups – Chord

19

BitTorrent: Overview

• File swarming:
• Join: contact centralized �tracker� server, get a list of

peers.
• Publish: Run a tracker server.
• Search: Out-of-band. E.g., use Google to find a tracker

for the file you want.
• Fetch: Download chunks of the file from your peers.

Upload chunks you have to them.
• Big differences from Napster:

• Chunk based downloading
• �few large files� focus
• Anti-freeloading mechanisms

20

BitTorrent: Publish/Join

Seeder

21

Tracker

BitTorrent: Fetch

22

Seeder

BitTorrent: Sharing Strategy

• Employ �Tit-for-tat� sharing strategy
• A is downloading from some other people

• A will let the fastest N of those download from it
• Be optimistic: occasionally let freeloaders download

• Optimistic unchoke
• Otherwise no one would ever start!
• Also allows you to discover better peers to download from when

they reciprocate

• Goal: Pareto Efficiency
• Game Theory: �No change can make anyone better off

without making others worse off�
• Does it work? How would you cheat?
• (not perfectly, but perhaps good enough?)

23

BitTorrent: Summary

• Pros:

• Works reasonably well in practice

• Gives peers incentive to share resources; avoids

freeloaders

• Cons:

• Pareto Efficiency claim is not true … a lie

• Central tracker server needed to bootstrap swarm

• Alternate tracker designs exist (e.g., DHT-based trackers)

24

Outline

• P2P Lookup Overview

• Centralized/Flooded Lookups

• BitTorent

• Routed Lookups (DHTs) – Chord

25

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=�title�
Value=MP3 data… Client

Lookup(�title�)

?

26

DHT: Overview (1)

• Goal: make sure that an item (file) identified is always
found in a reasonable # of steps

• Abstraction: a distributed hash-table (DHT) data
structure
• insert(id, item);
• item = query(id);
• Note: item can be anything: a data object, document, file,

pointer to a file…
• Implementation: nodes in system form a distributed

data structure
• Can be Ring, Tree, Hypercube, Skip List, Butterfly Network,

...

27

DHT: Overview (2)

• Structured Overlay Routing:
• Join: On startup, contact a �bootstrap� node and integrate yourself

into the distributed data structure; get a node id
• Publish: Route publication for file id toward a close node id along

the data structure
• Search: Route a query for file id toward a close node id. Data

structure guarantees that query will meet the publication.
• Fetch: Two options:

• Publication contains actual file => fetch from where query stops
• (Indirection) Publication says �I have file X� => query tells you

128.2.1.3 has X, use IP routing to get X from 128.2.1.3

28

DHT: Example - Chord

• Associate to each node and file a unique id in an
uni-dimensional space (a Ring)

• E.g., pick from the range [0...2m]
• Usually the hash of the file or IP address

• Routing properties:
• Routing table size is O(log N) , where N is the total

number of nodes
• Guarantees that a file is found in O(log N) hops

from MIT in 2001

29

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID
30

Routing: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

�Where is key 80?�

�N90 has K80�

31

Chord: finger tables (fast lookup)

• Assume identifier space is 0…2m

• Each node maintains
• Finger table

• Entry i in the finger table of n is the first node that succeeds or
equals n + 2i

• Predecessor node
• An item identified by id
is stored on the successor
node of id

32
N80

½¼

1/8

1/16
1/32
1/64
1/128

Routing: Chord Example

• Assume an
identifier space
0..7

• Node n1:(1)
joinsàall entries
in its finger table
are initialized to
itself

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

33

n1

Routing: Chord Example

• Node n2(2) joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

34

n1

n2

Routing: Chord Example

• Nodes n3:(0), n4:(6) join

0
1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

35

n1

n2

n3

n4

Routing: Chord Examples

• Nodes: n1:(1), n2(2),

n3(0), n4(6)

• Items: file1:(7), file2:(1)

0
1

2

3
4

5

6

7 i id+2
i
succ

0 2 2

1 3 6

2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6

2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2

2 4 6

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0

1 0 0

2 2 2

Succ. Table

36

n1

n2

n3

n4

Routing: Query

• Upon receiving a query
for item id, a node
• Check whether stores

the item locally
• If not, forwards the query

to the largest node in its
successor table that
does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 6

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

37

n1

n2

n3

n4

DHT: Chord Summary

• Routing table size?
• Log N fingers

• Routing time?
• Each hop expects to 1/2 the distance to the desired

id => expect O(log N) hops.
• Pros:

• Guaranteed Lookup
• O(log N) per node state and search scope
• Influenced many future systems; esp. key-val stores

• Cons:
• No one uses them? (BitTorrent somewhat)
• Supporting non-exact match search is hard

38

What can DHTs do for us?

• Distributed object lookup
• Based on object ID

• De-centralized file systems
• CFS, PAST, Ivy

• Application Layer Multicast
• Scribe, Bayeux, Splitstream

• Databases
• PIER

39

When are p2p / DHTs useful?

• Caching and �soft-state� data
• Works well! BitTorrent, KaZaA, etc., all use peers as

caches for hot read-only data

• Finding read-only data
• Limited flooding finds hay

• DHTs find needles

• BUT

40

A Peer-to-peer ?

• Complex intersection queries (�the� + �who�)
• Billions of hits for each term alone

• Sophisticated ranking
• Must compare many results before returning a subset

to user
• Very, very hard for a DHT / p2p system

• Need high inter-node bandwidth
• (This is exactly what Google does - massive clusters)

41

Writable, persistent p2p

• Do you trust your data to 100,000 monkeys?
• Node availability hurts

• Ex: Store 5 copies of data on different nodes
• When someone goes away, you must replicate the data

they held
• Hard drives are *huge*, but edge network upload

bandwidth is tiny
• May take days to upload contents of a hard drive. P2P

replication/fault-tolerance expensive.
42

P2P: Summary

• Many different styles; remember pros and cons of each
• centralized, flooding, swarming, and structured routing

• Lessons learned:
• Single points of failure are very bad
• Flooding messages to everyone is bad
• Underlying network topology is important
• Not all nodes are equal
• Need incentives to discourage freeloading
• Privacy and security are important
• Structure can provide theoretical bounds and guarantees

43

