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ypical Workload (Web Pages)

Multiple (typically small) objects per page
File sizes are heavy-tailed

Embedded references

This plays havoc with performance. \Why?

Solutions?
* New protocol! (SPDY -> HTTP 2.0)

« Web caches (Assignment 2!)
 CDNs



https://www.usenix.org/node/179788

HTTP evolution

1995 2000 2005 2010 2014

HTTP/1.1: The standard
to load Web pages

HTTP/1.1 becomes slow
for rich, modern pages

Google developed SPDY
to make the Web faster

- Starting to be deployed €
- Basis for HTTP/2.0 now

being standardized ~ Google
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HTTP/1.1 problems

Server

* Opens too many TCP connections
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HTTP/1.1 problems

Server

* Initiates object transfers strictly by
the client
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* Compresses only HTTP payloads,

not headers




Client

HTTP/1.1 problems

SPDY is proposed to
address these issues

Opens too many TCP connections

Initiates object transfers strictly by
the client

Compresses only HTTP payloads,
not headers
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SPDY

Server

* Openstoo-manyHcP-connections
* Multiplexes sliced frames into a
single TCP connection



Client

SPDY

Server

* Openstoo-manyHcP-connections
* Multiplexes sliced frames into a
single TCP connection

* Prioritizes Web objects



Client

SPDY

Server

 Allows servers to initiate Web

object transfers
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* Compresses both HTTP payloads
and headers
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HTTP evolution: SPDY->H

p201 R

1995 2000 2005 2010

HTTP/1.1: The standard
to load Web pages

HTTP/1.1 becomes slow
for rich, modern pages

Google developed SPDY
to make the Web faster

2014 2015 2017

HTTP 2.0
Introduced

15% web
HTTP 2

- Starting to be deployed € \/\;
- Basis for HTTP/2.0 now
being standardized ~ Google

G. drops
SPDY
support
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ypical Workload (Web Pages)

Multiple (typically small) objects per page
File sizes are heavy-tailed

Embedded references

This plays havoc with performance. \Why?
Solutions?

e CDNs
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Content Distribution Networks (CDNSs)

* The content providers are the
CDN customers.

« Content replication

« CDN company installs hundreds
of CDN servers throughout
Internet

* Close to users

* CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

«

origin server
in North America

|
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CDN server

in S. America CDN server
in Europe
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CDN server
in Asia




Content Distribution Networks &
Server Selection

* Replicate content on many servers

« Challenges
* How to replicate content
« \Where to replicate content
How to find replicated content
How to choose among known replicas
How to direct clients towards replica
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Server Selection “

 Which server?

 Lowest load = to balance load on servers

« Best performance - to improve client performance
« Based on Geography? RTT? Throughput? Load?

* Any alive node - to provide fault tolerance

* How to direct clients to a particular server?

 As part of routing = anycast, cluster load balancing
* Not covered ®

* As part of application > HTTP redirect
* As part of naming - DNS
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Application Based i‘,

« HTTP supports simple way to indicate that Web page has moved
(30X responses)

» Server receives GET request from client
» Decides which server is best suited for particular client and object
* Returns HTTP redirect (to the client) to that server

« (Can make informed application specific decision

« May introduce additional overhead -
multiple connection setup, name lookups, etc.
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Naming Based “

* Client does name lookup for service

 Name server chooses appropriate server address
 DNS A-record returned is “best” one for the client

 What information can name server base decision
on?
 Web server load/location =2 must be collected

 Information in the name lookup request

* Name service client - typically the local name server for client
(not the client itself, which means not aware of the app making
the DNS request)
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How Akamai Works “

« Akamai only replicates static content (*)
* Modified name contains original file name

« Akamai server is asked for content

* First checks local cache

 If not in cache, requests file from primary server and
caches file

* (At least, the version we’re talking about today. Akamai actually lets sites write
code that can run on Akamai’s servers, but that’s a pretty different beast)
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How Akamail Works “

 Clients fetch html document from primary server
« E.g. GET index.html from cnn.com

« URLs for replicated content are replaced in html

« E.g. <img src="http://cnn.com/af/x.qgif"> replaced with
<img src="http://a73.g.akamaitech.net/7/23/cnn.com/af/x.gif’>

* Client is forced to DNS resolve
aXYZ.g.akamaitech.net hostname
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How Akamail Works i‘

* Root server gives NS record for akamai.net

« Akamai.net name server returns NS record for
g.akamaitech.net

« Returned name server chosen to be in region of client’s
name server

« DNS TTL is large

 (G.akamaitech.net nameserver chooses server in
region
* Should try to chose server that has file in cache - How
to choose?

« Uses object (aXYZ) name and hash
« DNS TTL is small = why?
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How Akamai Works — First time request

cnn.com (content provider) DNS root server Akamai server

Get foo.jpg

Akamai high-level
DNS server

Akamai low-level DNS

Nearby matching
Akamai server

End-user

Get /cnn.com/foo.jpg
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Akamali — Subsequent Requests

cnn.com (content provider) DNS root server

~ Akamai high-level
DNS server

~ Akamai low-level DNS

u server

Nearby matching
Akamai server

End-user

Get /cnn.com/foo.jpg
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Simple Hashing “

 Given document XYZ, we need to choose a
server to use

* Suppose we use modulo

 Number servers from 1...n
* Place document XYZ on server (XYZ mod n)
* (i.e., Placement only based on server identities)

* What happens when a servers fails? n - n-1
- Same if different people have different measures of n

« Why might this be bad?
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Consistent Hash “

 “view” = subset of all hash buckets that are visible
(a bucket is e.g., a server)

 Desired features

 Smoothness — little impact on hash bucket contents
when buckets are added/removed

« Spread — small set of hash buckets that may hold an
object regardless of views

» Load balance — across all views, # of objects assigned
to hash bucket is small
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Consistent Hashing

«

Main idea:

* map both and nodes to the same (metric) identifier space
« find a “rule” how to assign keys to nodes

Ring is one option.
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Consistent Hashing i‘.

« The consistent hash function assigns each node

and key an m-bit identifier using SHA-1 as a base
hash function

* Node identifier: SHA-1 hash of IP address

« Key identifier: SHA-1 hash of key
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|dentifiers

« m bit 1dentifier space for both keys and nodes
» Key identifier: SHA-1(key)

Key="LetltBe” —SHAL - [D=60

* Node identifier: SHA-1(IP address)
[P="198.10.10.1" —sHA=L . [D=123

How to map key IDs to node IDs?

33



Consistent Hashing Example i‘,

Rule: A key is stored at its successor: node with next higher or equal ID

P=<198.10.10.1" 0 K5

/ A

K101 N32

Circular 7-bit
ID space

N90 ey="LetltBe”

K
~——— K0
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Consistent Hashing Properties “

« Smoothness - addition of node does not cause
movement of objects between existing nodes

« Spread - small set of nodes that lie near object
(with successor rule: object at exactly 1 node)

* Load balance - all nodes receive roughly the
same number of keys. For N nodes and K keys,

with high probability
* each node holds at most (1+&)K/N keys
 (provided that K is large enough compared to N)
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Consistent Hashing not just for CDN “

* Finding a nearby server for an object in a CDN
uses centralized knowledge.

« Consistent hashing can also be used in a
distributed setting

« P2P systems like BitTorrent, need a way of finding
files.

« More broadly: distributed hash tables (DHTSs) for
decentralized lookups

« Consistent Hashing to the rescue

* Need a way to route in a decentralized way between
nodes; but easy to come up with a distance metric!
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Issues with HT TP caching

Caching (with a CDN) is nice but...
Over 50% of all HTTP objects are uncacheable — why?
Challenges:
* Dynamic data - stock prices, scores, web cams
“CGI” scripts - results based on passed parameters
SSL - encrypted data is not cacheable
Cookies - results may be based on passed data
Hit metering = owner wants to measure # of hits for revenue, etc.
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Summary “

« Slow web with HTTP 1.1
« SPDY and HTTP 2.0 (change the protocol!)
« Content Delivery Networks move data closer to

user, maintain consistency, balance load

« Consistent hashing maps keys AND buckets into the
same space

« Consistent hashing can be fully distributed, useful in
P2P systems using structured overlays

More: “Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web” 40



