416 Distributed Systems

September 24, 2018
Making the web fast:
SPDY/HTTP2.0, CDNs
Consistent hashing

Special thanks to Sophia Wang for some slides

Outline

Problem with HTTP 1.1
SPDY and HTTP2.0

DNS Design (317)

Content Distribution Networks
Consistent hashing

ypical Workload (Web Pages)

Multiple (typically small) objects per page
File sizes are heavy-tailed

Embedded references

This plays havoc with performance. \Why?

Solutions?
* New protocol! (SPDY -> HTTP 2.0)

« Web caches (Assignment 2!)
 CDNs

https://www.usenix.org/node/179788

HTTP evolution

1995 2000 2005 2010 2014

HTTP/1.1: The standard
to load Web pages

HTTP/1.1 becomes slow
for rich, modern pages

Google developed SPDY
to make the Web faster

- Starting to be deployed €
- Basis for HTTP/2.0 now

being standardized ~ Google

[cat - Google Sea

€« C' {8 https://www.google.c eb+page&es_sm=91&so

Google cat Tlent

. | HTTP/1.2 problems

Server

- Client

HTTP/1.1 problems

Server

* Opens too many TCP connections

Client
HTTP/1.1 problems

Server

* Initiates object transfers strictly by
the client

41a4/1z

Client

HTTP/1.12 problems

Uncompressed i

*****************a

Gompresse

Server

* Compresses only HTTP payloads,

not headers

Client

HTTP/1.1 problems

SPDY is proposed to
address these issues

Opens too many TCP connections

Initiates object transfers strictly by
the client

Compresses only HTTP payloads,
not headers

Client

SPDY

Server

* Openstoo-manyHcP-connections
* Multiplexes sliced frames into a
single TCP connection

Client

SPDY

Server

* Openstoo-manyHcP-connections
* Multiplexes sliced frames into a
single TCP connection

* Prioritizes Web objects

Client

SPDY

Server

 Allows servers to initiate Web

object transfers

~ Client SPDY

.Compressed.
~Compressed- Server

—

» -Compressesonty-HT T Ppayeads,-
not-headers

* Compresses both HTTP payloads
and headers

13

HTTP evolution: SPDY->H

p201 R

1995 2000 2005 2010

HTTP/1.1: The standard
to load Web pages

HTTP/1.1 becomes slow
for rich, modern pages

Google developed SPDY
to make the Web faster

2014 2015 2017

HTTP 2.0
Introduced

15% web
HTTP 2

- Starting to be deployed € \/\;
- Basis for HTTP/2.0 now
being standardized ~ Google

G. drops
SPDY
support

14

Outline

Problem with HTTP 1.1
SPDY and HTTP2.0

DNS Design (317)

Content Distribution Networks
Consistent hashing

15

ypical Workload (Web Pages)

Multiple (typically small) objects per page
File sizes are heavy-tailed

Embedded references

This plays havoc with performance. \Why?
Solutions?

e CDNs

16

https://www.usenix.org/node/179788

Content Distribution Networks (CDNSs)

* The content providers are the
CDN customers.

« Content replication

« CDN company installs hundreds
of CDN servers throughout
Internet

* Close to users

* CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

«

origin server
in North America

|
|

CDN diStaﬁon node
AN
0" g

CDN server

in S. America CDN server
in Europe

]

CDN server
in Asia

Content Distribution Networks &
Server Selection

* Replicate content on many servers

« Challenges
* How to replicate content
« \Where to replicate content
How to find replicated content
How to choose among known replicas
How to direct clients towards replica

18

Server Selection “

 Which server?

 Lowest load = to balance load on servers

« Best performance - to improve client performance
« Based on Geography? RTT? Throughput? Load?

* Any alive node - to provide fault tolerance

* How to direct clients to a particular server?

 As part of routing = anycast, cluster load balancing
* Not covered ®

* As part of application > HTTP redirect
* As part of naming - DNS

19

Application Based i‘,

« HTTP supports simple way to indicate that Web page has moved
(30X responses)

» Server receives GET request from client
» Decides which server is best suited for particular client and object
* Returns HTTP redirect (to the client) to that server

« (Can make informed application specific decision

« May introduce additional overhead -
multiple connection setup, name lookups, etc.

20

Naming Based “

* Client does name lookup for service

 Name server chooses appropriate server address
 DNS A-record returned is “best” one for the client

 What information can name server base decision
on?
 Web server load/location =2 must be collected

 Information in the name lookup request

* Name service client - typically the local name server for client
(not the client itself, which means not aware of the app making
the DNS request)

21

How Akamai Works “

« Akamai only replicates static content (*)
* Modified name contains original file name

« Akamai server is asked for content

* First checks local cache

 If not in cache, requests file from primary server and
caches file

* (At least, the version we’re talking about today. Akamai actually lets sites write
code that can run on Akamai’s servers, but that’s a pretty different beast)

22

How Akamail Works “

 Clients fetch html document from primary server
« E.g. GET index.html from cnn.com

« URLs for replicated content are replaced in html

« E.g. replaced with

* Client is forced to DNS resolve
aXYZ.g.akamaitech.net hostname

23

How Akamail Works i‘

* Root server gives NS record for akamai.net

« Akamai.net name server returns NS record for
g.akamaitech.net

« Returned name server chosen to be in region of client’s
name server

« DNS TTL is large

 (G.akamaitech.net nameserver chooses server in
region
* Should try to chose server that has file in cache - How
to choose?

« Uses object (aXYZ) name and hash
« DNS TTL is small = why?

24

How Akamai Works — First time request

cnn.com (content provider) DNS root server Akamai server

Get foo.jpg

Akamai high-level
DNS server

Akamai low-level DNS

Nearby matching
Akamai server

End-user

Get /cnn.com/foo.jpg

25

Akamali — Subsequent Requests

cnn.com (content provider) DNS root server

~ Akamai high-level
DNS server

~ Akamai low-level DNS

u server

Nearby matching
Akamai server

End-user

Get /cnn.com/foo.jpg

26

Outline

Problem with HTTP 1.1
SPDY and HTTP2.0

DNS Design (317)

Content Distribution Networks
Consistent hashing

27

Simple Hashing “

 Given document XYZ, we need to choose a
server to use

* Suppose we use modulo

 Number servers from 1...n
* Place document XYZ on server (XYZ mod n)
* (i.e., Placement only based on server identities)

* What happens when a servers fails? n - n-1
- Same if different people have different measures of n

« Why might this be bad?

28

Consistent Hash “

 “view” = subset of all hash buckets that are visible
(a bucket is e.g., a server)

 Desired features

 Smoothness — little impact on hash bucket contents
when buckets are added/removed

« Spread — small set of hash buckets that may hold an
object regardless of views

» Load balance — across all views, # of objects assigned
to hash bucket is small

29

Consistent Hashing

«

Main idea:

* map both and nodes to the same (metric) identifier space
« find a “rule” how to assign keys to nodes

Ring is one option.

31

Consistent Hashing i‘.

« The consistent hash function assigns each node

and key an m-bit identifier using SHA-1 as a base
hash function

* Node identifier: SHA-1 hash of IP address

« Key identifier: SHA-1 hash of key

32

|dentifiers

« m bit 1dentifier space for both keys and nodes
» Key identifier: SHA-1(key)

Key="LetltBe” —SHAL - [D=60

* Node identifier: SHA-1(IP address)
[P="198.10.10.1" —sHA=L . [D=123

How to map key IDs to node IDs?

33

Consistent Hashing Example i‘,

Rule: A key is stored at its successor: node with next higher or equal ID

P=<198.10.10.1" 0 K5

/ A

K101 N32

Circular 7-bit
ID space

N90 ey="LetltBe”

K
~——— K0

34

Consistent Hashing Properties “

« Smoothness - addition of node does not cause
movement of objects between existing nodes

« Spread - small set of nodes that lie near object
(with successor rule: object at exactly 1 node)

* Load balance - all nodes receive roughly the
same number of keys. For N nodes and K keys,

with high probability
* each node holds at most (1+&)K/N keys
 (provided that K is large enough compared to N)

35

Consistent Hashing not just for CDN “

* Finding a nearby server for an object in a CDN
uses centralized knowledge.

« Consistent hashing can also be used in a
distributed setting

« P2P systems like BitTorrent, need a way of finding
files.

« More broadly: distributed hash tables (DHTSs) for
decentralized lookups

« Consistent Hashing to the rescue

* Need a way to route in a decentralized way between
nodes; but easy to come up with a distance metric!

37

Issues with HT TP caching

Caching (with a CDN) is nice but...
Over 50% of all HTTP objects are uncacheable — why?
Challenges:
* Dynamic data - stock prices, scores, web cams
“CGI” scripts - results based on passed parameters
SSL - encrypted data is not cacheable
Cookies - results may be based on passed data
Hit metering = owner wants to measure # of hits for revenue, etc.

38

Summary “

« Slow web with HTTP 1.1
« SPDY and HTTP 2.0 (change the protocol!)
« Content Delivery Networks move data closer to

user, maintain consistency, balance load

« Consistent hashing maps keys AND buckets into the
same space

« Consistent hashing can be fully distributed, useful in
P2P systems using structured overlays

More: “Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web” 40

