
Replication notes
Oct 25, 2018
CPSC 416

How’d we get here?

• Failures & single systems; fault tolerance techniques
added redundancy (ECC memory, RAID, etc.)

• Conceptually, ECC & RAID both put a “master” in
front of the redundancy to mask it from clients --
ECC handled by memory controller, RAID looks like
a very reliable hard drive behind a (special)
controller

Simpler examples...

• Replicated web sites

• e.g., Yahoo! or Amazon:

• DNS-based load balancing (DNS returns
multiple IP addresses for each name)

• Hardware load balancers put multiple
machines behind each IP address

• (Diagram. :)

Read-only content

• Easy to replicate - just make multiple copies of it.

• Performance boost 1: Get to use multiple servers
to handle the load (scalability!)

• Perf boost 2: Locality. We’ll see this later when we
discuss CDNs, can often direct client to a replica
near it

• Availability boost: Can fail-over (done at both DNS
level -- slower, because clients cache DNS answers
-- and at front-end hardware level)

But for read-write
data...

• Must implement write replication, typically
with some degree of consistency

What consistency model?

• Just like in distributed filesystems, must consider consistency
model you supply

• R/L example: Google mail (mix of consistency models)

• Sending mail is replicated to ~2 physically separated
datacenters (users hate it when they think they sent mail
and it got lost); mail will pause while doing this
replication.

• Marking mail read is only replicated in the background -
you can mark it read, the replication can fail, and you’ll
have no clue (re-reading a read email once in a while is no
big deal)

• Weaker consistency is cheaper if you can get away with it.

Goal

• Provide a service

• Survive the failure of up to f replicas

• Provide identical service as a non-replicated version (except
more reliable, and perhaps different performance)

• Also known as the “replicated state machine” (RSM) abstraction

• As with other abstractions (e.g., RPC), there are many ways to
achieve/implement a RSM

We’ll cover
• Primary-backup

• Operations handled by primary, it streams copies to backup(s)

• Replicas are “passive”

• Good: Simple protocol. Bad: Clients must participate in recovery.

• Quorum consensus using Paxos or Raft (later in the course)

• Designed to have fast response time even under failures

• Replicas are “active” - participate in protocol; there is no master,
per se.

• Good: Clients don’t even see the failures. Bad: More complex.

primary-backup

• Clients talk to a primary

• The primary handles requests, atomically and
idempotently

• Executes them

• Sends the request to the backups

• Backups reply, “OK”

• Primary ACKs to the client

primary-backup
2.5.1 Primary-backup replication

We describe the principle of this technique, and ignore failures for a while.

client !!• •

q1 (primary) !!• • • • •

q2 (backup) !!• •

q3 (backup) !!• •

!"!"!"!"!"!" !"!"!"

!"!"!"!"!"!"

!"!"!"

!"!"!"

invocation

""!
!!

!!
!!

!!
!!

!!
!!

update
##"

""
""

""
"

ack

$$########

update
%%$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$$

ack

$$######
###########

response

&&%%%%%%%%%%%%%%%

replicas
of object q

The principle is the following:

• q1: primary copy; q2, q3: backups

• the client sends its invocation to the primary q1

• q1 receives the invocation and performs the operation. At the end of the
operation, the change of the state of q1 is forwarded to q2 and q3 (“update”
message). The “ack” is sent by the backups after they have updated their
states. The primary sends the response to the client after having received
“ack” from all backups.

If the primary does not crash, then order and atomicity are ensured.

• the order is defined by the primary.

• atomicity is ensured because the update is forwarded to all the backups and
“ack” is awaited by the primary before sending the response.

The crash of a backup is easy to handle. The crash of the primary is more difficult
to handle. There are three cases to distinguish:

72

primary-backup

• Note: If you don’t care about strong
consistency (e.g., the “mail read” flag), you can
reply to client before reaching agreement with
backups (sometimes called “asynchronous
replication”).

• This looks cool. What’s the problem?

• This is OK for some services, not OK for
others

• Advantage: With N servers, can tolerate loss of
N-1 copies

primary-backup

• Note: If you don’t care about strong consistency (e.g.,
the “mail read” flag), you can reply to client before
reaching agreement with backups (sometimes called
“asynchronous replication”).

• This looks cool. What’s the problem?

• What do we do if a replica has failed?

• We wait... how long? Until it’s marked dead.

• Primary-backup has a strong dependency on the
failure detector

• This is OK for some services, not OK for others

• Advantage: With N servers, can tolerate loss of N-1
copies

failures in p-b
• Use timeout-based failure detector for detection

• Backup failures: timeout and remove from set (later
add new backups)

• Primary failures: complex because unclear when the
primary failed (before/after replicating)

• Handling primary failures requires client
participation

2.5.1 Primary-backup replication

We describe the principle of this technique, and ignore failures for a while.

client !!• •

q1 (primary) !!• • • • •

q2 (backup) !!• •

q3 (backup) !!• •

!"!"!"!"!"!" !"!"!"

!"!"!"!"!"!"

!"!"!"

!"!"!"

invocation

""!
!!

!!
!!

!!
!!

!!
!!

update
##"

""
""

""
"

ack

$$########

update
%%$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$$

ack

$$######
###########

response

&&%%%%%%%%%%%%%%%

replicas
of object q

The principle is the following:

• q1: primary copy; q2, q3: backups

• the client sends its invocation to the primary q1

• q1 receives the invocation and performs the operation. At the end of the
operation, the change of the state of q1 is forwarded to q2 and q3 (“update”
message). The “ack” is sent by the backups after they have updated their
states. The primary sends the response to the client after having received
“ack” from all backups.

If the primary does not crash, then order and atomicity are ensured.

• the order is defined by the primary.

• atomicity is ensured because the update is forwarded to all the backups and
“ack” is awaited by the primary before sending the response.

The crash of a backup is easy to handle. The crash of the primary is more difficult
to handle. There are three cases to distinguish:

72

implementing primary-
backup

• Remember logging (if you’ve taken
databases)

• Common technique for replication in
databases and filesystem-like things: Stream
the log to the backup. They don’t have to
actually apply the changes before replying,
just make the log durable (i.e., on disk).

• You have to replay the log before you can be
online again, but it’s pretty cheap.

p-b: Did it happen?

Operation

Client Primary Backup

Log Commit!

Log
OK!

Failure here:
Commit logged only at primary

Primary dies? Client must re-send to backup
(idempotency important)

OK!

2.5.1 Primary-backup replication

We describe the principle of this technique, and ignore failures for a while.

client !!• •

q1 (primary) !!• • • • •

q2 (backup) !!• •

q3 (backup) !!• •

!"!"!"!"!"!" !"!"!"

!"!"!"!"!"!"

!"!"!"

!"!"!"

invocation

""!
!!

!!
!!

!!
!!

!!
!!

update
##"

""
""

""
"

ack

$$########

update
%%$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$$

ack

$$######
###########

response

&&%%%%%%%%%%%%%%%

replicas
of object q

The principle is the following:

• q1: primary copy; q2, q3: backups

• the client sends its invocation to the primary q1

• q1 receives the invocation and performs the operation. At the end of the
operation, the change of the state of q1 is forwarded to q2 and q3 (“update”
message). The “ack” is sent by the backups after they have updated their
states. The primary sends the response to the client after having received
“ack” from all backups.

If the primary does not crash, then order and atomicity are ensured.

• the order is defined by the primary.

• atomicity is ensured because the update is forwarded to all the backups and
“ack” is awaited by the primary before sending the response.

The crash of a backup is easy to handle. The crash of the primary is more difficult
to handle. There are three cases to distinguish:

72

p-b: Happened twice

Operation

Client Primary Backup

Log

Commit!

Log
OK!

Failure here:
Commit logged at backup

Primary dies? Client must check with backup

OK!

(Seems like at-most-once / at-least-once... :)

2.5.1 Primary-backup replication

We describe the principle of this technique, and ignore failures for a while.

client !!• •

q1 (primary) !!• • • • •

q2 (backup) !!• •

q3 (backup) !!• •

!"!"!"!"!"!" !"!"!"

!"!"!"!"!"!"

!"!"!"

!"!"!"

invocation

""!
!!

!!
!!

!!
!!

!!
!!

update
##"

""
""

""
"

ack

$$########

update
%%$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$$

ack

$$######
###########

response

&&%%%%%%%%%%%%%%%

replicas
of object q

The principle is the following:

• q1: primary copy; q2, q3: backups

• the client sends its invocation to the primary q1

• q1 receives the invocation and performs the operation. At the end of the
operation, the change of the state of q1 is forwarded to q2 and q3 (“update”
message). The “ack” is sent by the backups after they have updated their
states. The primary sends the response to the client after having received
“ack” from all backups.

If the primary does not crash, then order and atomicity are ensured.

• the order is defined by the primary.

• atomicity is ensured because the update is forwarded to all the backups and
“ack” is awaited by the primary before sending the response.

The crash of a backup is easy to handle. The crash of the primary is more difficult
to handle. There are three cases to distinguish:

72

Problems with p-b

• Not a great solution if you want very tight
response time even when something has
failed: Must wait for failure detector

• For that, quorum based schemes are used

• As name implies, different result:

• To handle f failures, must have 2f + 1
replicas. Why?

Problems with p-b

• Client must be involved in primary recovery

• Requires client state (at least operation + id)

• Client must be aware of backups (violates the RSM
abstraction)

• Bringing up a new primary is complicated

• All clients must sign off on their outstanding ops

• Vote a new backup to become primary?

• Download all state to new primary?

Problems with p-b

• Not a great solution if you want very tight
response time even when something has
failed: Must wait for failure detector

• For that, quorum based schemes are used

• As name implies, different result:

• To handle f failures, must have 2f + 1
replicas. Why? so that a majority (f+1) is still
alive after (f) failures

