“ 416 Distributed Systems

RAID, Oct 18 2018

Thanks to Greg Ganger and Remzi Arapaci-Dusseau
for slides

Outline

» Using multiple disks
« Why have multiple disks?
e problem and approaches

* RAID levels and performance

Motivation:
Why use multiple disks?

« Capacity
* More disks allows us to store more data
« Performance
« Access multiple disks in parallel
« Each disk can be working on independent read or write
« Overlap seek and rotational positioning time for all

« Reliability
* Recover from disk (or single sector) failures
» Will need to store multiple copies of data to recover

* So, what is the simplest arrangement?

5
AQ

N—_

Al

N

A2

N—

A3

-
BO

—
Bl

N

B2
—

B3

~——

Just a bunch of disks (JBOL

5
CO

N—

Cl

N

C2

N—

C3

~——"

* Yes, it's a goofy name
* industry really does sell “JBOD enclosures”

v

-
DO

Dl

D2

D3

~——

Disk Subsystem Load Balancing

« 1/0O requests are almost never evenly distributed

» Some data is requested more than other data
* Depends on the apps, usage, time, ...

« What is the right data-to-disk assignment policy?
« Common approach: Fixed data placement
* Your data is on disk X, period!
« For good reasons too: you bought it or you're paying more...
* Fancy: Dynamic data placement

* If some of your files are accessed a lot, the admin(or even
system) may separate the “hot” files across multiple disks

* In this scenario, entire files systems (or even files) are manually moved
by the system admin to specific disks

 Alternative: Disk striping
 Stripe all of the data across all of the disks

Disk Striping “

 |nterleave data across multiple disks

 Large file streaming can enjoy parallel transfers

* High throughput requests can enjoy thorough load
balancing

* If blocks of hot files equally likely on all disks (really?)

stripe unit
or block

Stripe (=——=

Disk striping details ™

* How disk striping works
« Break up total space into fixed-size stripe units
 Distribute the stripe units among disks in round-robin

« Compute location of block #B as follows
o disk# = B%N (%=modulo,N = #ofdisks)

Now, What If A Disk Fails?

* |Ina JBOD (independent disk) system

« one or more file systems lost

* |n a striped system
 a part of each file system lost

« Backups can help, but
* backing up takes time and effort
* backup doesn’t help recover data lost during that day

* Any data loss is a big deal to a bank or stock
exchange

Tolerating and masking disk
failures

 If a disk fails, it's data is gone

* may be recoverable, but may not be
« To keep operating in face of failure

* must have some kind of data redundancy
« Common forms of data redundancy

* replication

* error-correcting codes

10

Redundancy via replicas

e Two (or more) copies
* mirroring, shadowing, duplexing, etc.

* Write both, read either

- -
0 2
~— ~—
1 3
~— ~—

11

«

Mirroring & Striping

* Mirror to 2 virtual drives, where each virtual drive is
really a set of striped drives

* Provides reliability of mirroring
* Provides striping for performance (with write update costs)

12

Implementing Disk Mirroring l‘.

« Mirroring can be done in either software or hardware
« Software solutions are available in most OS’s

* Hardware solutions
« Could be done in Host Bus Adaptor(s)
* Could be done in Disk Array Controller

Lower Cost Data Redundancy “.

» Single failure protecting codes
» general single-error-correcting code is overkill
« General code finds error and fixes it

* Disk failures are self-identifying (a.k.a. erasures)
« Don’t have to find the error

 Parity is single-disk-failure-correcting code
* recall that parity is computed via XOR
* it's like the low bit of the sum

14

Simplest approach: Parity Disk

 One extra disk

* All writes update (~—— ~—
parity disk A A A

» Potential ~ 1 ~——] M—
bottleneck B B B

- (different data in C C C
different As, Bs,] A

Cs, Ds)

* (Ap contains N N N
parity for all As)

15

Updating and using the parity i‘.

Fault-Free Read Fault-Free Write

-
— D+

The parity disk bottleneck

« Reads go only to the data disks
« But, hopefully load balanced across the disks

 All writes go to the parity disk

* And, worse, usually result in Read-Modify-Write
sequence

* So, parity disk can easily be a bottleneck

17

Solution: Striping the Parity

* Removes parity disk bottleneck

18

Outline

» Using multiple disks
« Why have multiple disks?
e problem and approaches

* RAID levels and performance

19

RAID Taxonomy “.

« Redundant Array of Inexpensive Independent Disks
» Constructed by UC-Berkeley researchers in late 80s (Garth)

« RAID O — Coarse-grained Striping with no redundancy
« RAID 1 — Mirroring of independent disks

 RAID 2 - Fine-grained data striping plus Hamming code disks
« Uses Hamming codes to detect and correct multiple errors
* Originally implemented when drives didn’t always detect errors
* Not used in real systems

 RAID 3 - Fine-grained data striping plus parity disk

« RAID 4 — Coarse-grained data striping plus parity disk

« RAID 5 — Coarse-grained data striping plus striped parity
 RAID 6 — Coarse-grained data striping plus 2 striped codes

20

RAID-0: Striping “.

« Stripe blocks across disks in a “chunk” size
* How to pick a reasonable chunk size?

ol

8 fiz

~_

o[

~_

How to calculate where chunk # lives?
Disk #:
Offset within disk:

RAID-0: Striping

 Evaluate for D disks

 Performance: How much faster than 1 disk?
(best case)

 Reliability: More or less reliable than 1 disk?

RAID-1: Mirroring i‘.

Motivation: Handle disk failures
Put copy (mirror or replica) of each chunk on another disk

Capacity
Reliability
Performance

RAID-4: Parity

AT

N
of:
6 9

~_

AT

N
7 (| 10

~_

Motivation: Improve capacity
|dea: Allocate parity block to encode info about blocks
« Parity checks all other blocks in stripe across other disks
Parity block = XOR over others (gives “even” parity)
 Example: 0 1 0 - Parity value?
How do you recover from a failed disk?

« Example: x 0 0 and parity of 1
* What is the failed value?

AT

N
8 || 11

AT

N
rofe
P2 || P3

«

~_

~_

XOR
0
1
1
0

RAID-4: Parity

N N AT
N N N N
o3 BE
6 9 7 10 8 11 P2 || P3
~_ ~_ ~_ ~_
« Capacity:
« Reliability:
 Performance:
e Reads

» Writes: How to update parity block?
« Two ways:
Use parity disk
Re-compute parity from non-parity disks
 (Parity disk is the bottleneck)

Updating and using the parity i‘.

Fault-Free Read Fault-Free Write

-
— D+

RAID-5: Rotated/Striped Parity

Rotate location of parity across all disks

Y
S
o

6 || P3

~_

« Capacity:
 Reliability:

Performance:

* Reads:
« Writes:
 Still requires 4 1/Os per write, but not always to same parity disk

AT

N
P2 || 9

~_

AT

N
7 (| 10

~_

N: number of disks
S: throughput of 1 disk sequential read/write

COmpa rson R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N -1 N —1
Reliability 0 1 (for sure) 1 1
% (if lucky)

Throughput

Sequential Read N-S (N/2)-S (N—-1)-§ (N—-1)-8

Sequential Write N-S (N/2)-S (N—-1)-§ (N—-1)-8

Random Read N-R N-R (N—-1)-R N-R

Random Write N-R (N/2)-R TR 2R
Latency

Read D D D D

Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

28

N: number of disks
S: throughput of 1 disk sequential read/write

COmpa rson R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N -1 N —1
Reliability 0 1 (for sure) 1 1
% (if lucky)

Throughput

Sequential Read N-S (N/2)-S (N—-1)-§ (N—-1)-8

Sequential Write N-S (N/2)-S (N—-1)-§ (N—-1)-8

Random Read N-R N-R (N—-1)-R N-R

Random Write N-R | (N/2)-R TR 2R
Latency

Read D D D D

Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

29

N: number of disks
S: throughput of 1 disk sequential read/write

COmpa rson R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N -1 N —1
Reliability 0 1 (for sure) 1 1
% (if lucky)

Throughput

Sequential Read N-S (N/2)-S (N—-1)-§ (N—-1)-8

Sequential Write N-S (N/2)-S (N—-1)-§ (N—-1)-8

Random Read N-R N-R (N—-1)-R N-R

Random Write N-R | (N/2)-R TR 2R
Latency

Read D D D D

Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

30

N: number of disks
S: throughput of 1 disk sequential read/write

COmpa rson R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N -1 N —1
Reliability 0 1 (for sure) 1 1
% (if lucky)

Throughput

Sequential Read N-S (N/2)-S (N—-1)-§ (N—-1)-8

Sequential Write N-S (N/2)-S (N—-1)-§ (N—-1)-8

Random Read N-R N-R (N—-1)-R N-R

Random Write N-R (N/2)-R TR 2R
Latency

Read D D D D

Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

31

N: number of disks
S: throughput of 1 disk sequential read/write

COmpa rson R: throughput of 1 disk random read/write
D: delay to read/write from 1 disk

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N -1 N —1
Reliability 0 1 (for sure) 1 1
% (if lucky)

Throughput

Sequential Read N-S (N/2)-S (N—-1)-§ (N—-1)-8

Sequential Write N-S (N/2)-S (N—-1)-§ (N—-1)-8

Random Read N-R N-R (N—-1)-R N-R

Random Write N-R (N/2)-R TR 2R
Latency

Read D D D D

Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

32

Advanced Issues

« What happens if more than one fault?

«

« Example: One disk fails plus “latent sector error” on another
* RAID-5 cannot handle two faults
» Solution: RAID-6: add multiple parity blocks

* Why is NVRAM useful?

- Example: What if update 2, don’ t update PO before power failure
(or crash), and then disk 1 fails?

« NVRAM solution: Use to store blocks updated in same stripe
* If power failure, can replay all writes in NVRAM

« Software RAID solution: Perform parity scrub over entire disk

AT

N
of:
6 9

~_

AT

N
7 (| 10

~_

AT

N
8 || 11

~_

AT

N
e
P2 || P3

~_

Conclusions “

« RAID turns multiple disks into a larger, faster, more
reliable disk

* RAID-0: Striping
Good when performance and capacity really matter,
but reliability doesn’ t

* RAID-1: Mirroring
Good when reliability and write performance matter,

but capacity (cost) doesn’ t

* RAID-4: Parity disk

* RAID-5: Rotating parity
Good when capacity and cost matter or workload is
read-mostly

« Good compromise choice

