

416 Distributed Systems

RAID, Oct 18 2018

Thanks to Greg Ganger and Remzi Arapaci-Dusseau for slides

Outline

- Using multiple disks
 - Why have multiple disks?
 - problem and approaches
- RAID levels and performance

Motivation: Why use multiple disks?

- Capacity
 - More disks allows us to store more data
- Performance
 - Access multiple disks in parallel
 - Each disk can be working on independent read or write
 - Overlap seek and rotational positioning time for all
- Reliability
 - Recover from disk (or single sector) failures
 - Will need to store multiple copies of data to recover
- So, what is the simplest arrangement?

Just a bunch of disks (JBOD)

- Yes, it's a goofy name
 - industry really does sell "JBOD enclosures"

Disk Subsystem Load Balancing

- I/O requests are almost never evenly distributed
 - Some data is requested more than other data
 - Depends on the apps, usage, time, ...
- What is the right data-to-disk assignment policy?
 - Common approach: Fixed data placement
 - Your data is on disk X, period!
 - For good reasons too: you bought it or you're paying more...
 - Fancy: Dynamic data placement
 - If some of your files are accessed a lot, the admin(or even system) may separate the "hot" files across multiple disks
 - In this scenario, entire files systems (or even files) are manually moved by the system admin to specific disks
 - Alternative: Disk striping
 - Stripe all of the data across all of the disks

Disk Striping

- Interleave data across multiple disks
 - Large file streaming can enjoy parallel transfers
 - High throughput requests can enjoy thorough load balancing
 - If blocks of hot files equally likely on all disks (really?)

Disk striping details

- How disk striping works
 - Break up total space into fixed-size stripe units
 - Distribute the stripe units among disks in round-robin
 - Compute location of block #B as follows
 - disk# = B%N (%=modulo,N = #ofdisks)

Now, What If A Disk Fails?

- In a JBOD (independent disk) system
 - one or more file systems lost
- In a striped system
 - a part of each file system lost
- Backups can help, but
 - backing up takes time and effort
 - backup doesn't help recover data lost during that day
 - Any data loss is a big deal to a bank or stock exchange

Tolerating and masking disk failures

- If a disk fails, it's data is gone
 - may be recoverable, but may not be
- To keep operating in face of failure
 - must have some kind of data redundancy
- Common forms of data redundancy
 - replication
 - error-correcting codes

Redundancy via replicas

- Two (or more) copies
 - mirroring, shadowing, duplexing, etc.
- Write both, read either

Mirroring & Striping

- Mirror to 2 virtual drives, where each virtual drive is really a set of striped drives
 - Provides reliability of mirroring
 - Provides striping for performance (with write update costs)

Implementing Disk Mirroring

- Mirroring can be done in either software or hardware
- Software solutions are available in most OS's
- Hardware solutions
 - Could be done in Host Bus Adaptor(s)
 - Could be done in Disk Array Controller

Lower Cost Data Redundancy

- Single failure protecting codes
 - general single-error-correcting code is overkill
 - General code finds error and fixes it
- Disk failures are self-identifying (a.k.a. erasures)
 - Don't have to find the error
- Parity is single-disk-failure-correcting code
 - recall that parity is computed via XOR
 - it's like the low bit of the sum

Simplest approach: Parity Disk

- One extra disk
- All writes update parity disk
 - Potential bottleneck
 - (different data in different As, Bs, Cs, Ds)
 - (Ap contains parity for all As)

Updating and using the parity

The parity disk bottleneck

- Reads go only to the data disks
 - But, hopefully load balanced across the disks
- All writes go to the parity disk
 - And, worse, usually result in Read-Modify-Write sequence
 - So, parity disk can easily be a bottleneck

Solution: Striping the Parity

Removes parity disk bottleneck

Outline

- Using multiple disks
 - Why have multiple disks?
 - problem and approaches
- RAID levels and performance

RAID Taxonomy

- Redundant Array of Inexpensive Independent Disks
 - Constructed by UC-Berkeley researchers in late 80s (Garth)
- RAID 0 Coarse-grained Striping with no redundancy
- RAID 1 Mirroring of independent disks
- RAID 2 Fine-grained data striping plus Hamming code disks
 - Uses Hamming codes to detect and correct multiple errors
 - Originally implemented when drives didn't always detect errors
 - Not used in real systems
- RAID 3 Fine-grained data striping plus parity disk
- RAID 4 Coarse-grained data striping plus parity disk
- RAID 5 Coarse-grained data striping plus striped parity
- RAID 6 Coarse-grained data striping plus 2 striped codes

RAID-0: Striping

- Stripe blocks across disks in a "chunk" size
 - How to pick a reasonable chunk size?

How to calculate where chunk # lives?

Disk #:

Offset within disk:

RAID-0: Striping

- Evaluate for D disks
- Performance: How much faster than 1 disk? (best case)
- Reliability: More or less reliable than 1 disk?

RAID-1: Mirroring

- Motivation: Handle disk failures
- Put copy (mirror or replica) of each chunk on another disk

- Capacity
- Reliability
- Performance

RAID-4: Parity

- Motivation: Improve capacity
- Idea: Allocate parity block to encode info about blocks
 - Parity checks all other blocks in stripe across other disks
- Parity block = XOR over others (gives "even" parity)
 - Example: 0 1 0 → Parity value?
- How do you recover from a failed disk?
 - Example: x 0 0 and parity of 1
 - What is the failed value?

A	B	XOR
0	0	0
0	1	1
1	0	1
1	1	0

RAID-4: Parity

- Capacity:
- Reliability:
- Performance:
 - Reads
 - Writes: How to update parity block?
 - Two ways:
 - Use parity disk
 - Re-compute parity from non-parity disks
 - (Parity disk is the bottleneck)

Updating and using the parity

RAID-5: Rotated/Striped Parity

Rotate location of parity across all disks

- Capacity:
- Reliability:
- Performance:
 - Reads:
 - Writes:
 - Still requires 4 I/Os per write, but not always to same parity disk

N: number of disks

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

-				
	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	N	N/2	N-1	N-1
Reliability	0	1 (for sure)	1	1
		$\frac{N}{2}$ (if lucky)		
Throughput				
Sequential Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
Sequential Write	$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
Sequential Read Sequential Write Random Read Random Write	$N \cdot R$	$N \cdot R$	$(N-1)\cdot R$	$N \cdot R$
Random Write	$N \cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency Read			_	-
Read	D	D	D	D
Write	D	D	2D	2D

N: number of disks

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

		1		
	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	N	N/2	N-1	N-1
Reliability	0	1 (for sure)	1	1
		$\frac{N}{2}$ (if lucky)		
Throughput				
Sequential Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
Sequential Read Sequential Write Random Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
Random Read	$N \cdot R$	$N \cdot R$	$(N-1)\cdot R$	$N \cdot R$
Random Write	$N \cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency Read			2	-
Read	D	D	D	D
Write	D	D	2D	2D

N: number of disks

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	N	N/2	N-1	N-1
Reliability	0	1 (for sure)	1	1
- - -		$\frac{N}{2}$ (if lucky)		
Throughput				
Sequential Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
Sequential Write	$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
Sequential Read Sequential Write Random Read	$N \cdot R$	$N \cdot R$	$(N-1)\cdot R$	$N \cdot R$
Random Write	$N \cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency Read			<u> </u>	1
Read	D	D	D	D
Write	D	D	2D	2D

N: number of disks

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

D-5
- 1
$1) \cdot S$
$1) \cdot S$
R
R
)
$\overline{}$
-

N: number of disks

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

RAID-0	RAID-1	RAID-4	RAID-5
N	N/2	N-1	N-1
0	1 (for sure)	1	1
	$\frac{N}{2}$ (if lucky)		
$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
$N \cdot S$	$(N/2) \cdot S$	$(N-1)\cdot S$	$(N-1)\cdot S$
$N \cdot R$	$N \cdot R$	$(N-1)\cdot R$	$N \cdot R$
$N \cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
		2	1
D	D	D	D
D	D	2D	2D
	$N \cdot S$ $N \cdot S$ $N \cdot R$ $N \cdot R$	N $N/2$ 0 $1 ext{ (for sure)}$ $\frac{N}{2} ext{ (if lucky)}$ $N \cdot S$ $N \cdot S$ $N \cdot S$ $N \cdot R$	$\begin{array}{c cccc} N & N/2 & N-1 \\ \hline 0 & 1 \text{ (for sure)} & 1 \\ \frac{N}{2} \text{ (if lucky)} \\ \\ N \cdot S & (N/2) \cdot S & (N-1) \cdot S \\ N \cdot S & (N/2) \cdot S & (N-1) \cdot S \\ N \cdot R & N \cdot R & (N-1) \cdot R \\ N \cdot R & (N/2) \cdot R & \frac{1}{2} \cdot R \\ \\ D & D & D \\ \end{array}$

Advanced Issues

- What happens if more than one fault?
 - Example: One disk fails plus "latent sector error" on another
 - RAID-5 cannot handle two faults
 - Solution: RAID-6: add multiple parity blocks
- Why is NVRAM useful?
 - Example: What if update 2, don't update P0 before power failure (or crash), and then disk 1 fails?
 - NVRAM solution: Use to store blocks updated in same stripe
 - If power failure, can replay all writes in NVRAM
 - Software RAID solution: Perform parity scrub over entire disk

Conclusions

- RAID turns multiple disks into a larger, faster, more reliable disk
- RAID-0: Striping Good when performance and capacity really matter, but reliability doesn't
- RAID-1: Mirroring Good when reliability and write performance matter, but capacity (cost) doesn't
- RAID-4: Parity disk
- RAID-5: Rotating parity Good when capacity and cost matter or workload is read-mostly
 - Good compromise choice