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Types of Errors

• Hard errors:  The component is dead.

• Soft errors: A signal or bit is wrong, but it doesn’t 
mean the component must be faulty

• Note:  You can have recurring soft errors due to 
faulty, but not dead, hardware
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Examples

• DRAM errors

• Hard errors:  Often caused by motherboard - faulty 
traces, bad solder, etc.

• Soft errors:  Often caused by cosmic radiation or alpha 
particles (from the chip material itself) hitting memory 
cell, changing value.  (Remember that DRAM is just 
little capacitors to store charge... if you hit it with 
radiation, you can add charge to it.)
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Some fun #s

• Both Microsoft and Google have recently 
started to identify DRAM errors as an 
increasing contributor to failures... Google in 
their datacenters, Microsoft on your 
desktops.

• We�ve known hard drives fail for years, of 
course. :)
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Failures across a million 
consumer PCs:
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Millions of consumer PCs; 2016 study
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/eurosys84-nightingale.pdf

TACT:  Total Accumulated CPU Time

MCE : When CPU issues a machine-check exception (MCE) [Intel], which indicates a detected 
violation of an internal invariant. Causes include bus errors, microcode bugs, and parity errors in 
the CPU’s caches

Failure min TACT Pr[1st failure] Pr[2nd fail | 1 fail] Pr[3rd fail | 2 fails]
CPU subsystem (MCE) 5 days 1 in 330 1 in 3.3 1 in 1.8
CPU subsystem (MCE) 30 days 1 in 190 1 in 2.9 1 in 1.7
Memory (DRAM one-bit flip) 5 days 1 in 2700 1 in 9.0 1 in 2.2
Memory (DRAM one-bit flip) 30 days 1 in 1700 1 in 12 1 in 2.0
Disk subsystem 5 days 1 in 470 1 in 3.4 1 in 1.9
Disk subsystem 30 days 1 in 270 1 in 3.5 1 in 1.7

Figure 2. The (conditional) probability of an OS crash from various hardware failures

crashing due to an MCE during the 8 month observation pe-
riod. After a machine has crashed once, its crash probability
increases by a factor of 100, and the probability continues
to increase with subsequent crashes. The second row in the
figure shows that the same trend holds for machines with at
least 30 days of TACT, but the initial probability of failure is
higher. Further analysis shows that, of the machines with at
least 5 days of TACT that experience a recurring crash from
an MCE, 84% of machines experience a recurrence within
10 days of TACT, and 97% of machines experience a recur-
rence within a month.

4.2 One-bit DRAM failures

The middle two rows of Figure 2 show the crash probabil-
ity for one-bit DRAM failures, which are broadly similar to
the trends for CPU subsystem failures: The failure proba-
bility jumps by more than two orders of magnitude after a
first failure is observed, and the probability further increases
with subsequent crashes. The initial failure probabilities are
nearly an order of magnitude lower than those for CPU fail-
ures, but this gap is almost erased after two repeated crashes.
In addition, since we are capturing DRAM errors in only
1.5% of the address space, it is possible that DRAM error
rates across all of DRAM may be far higher than what we
have observed. Further analysis shows that, of the machines
with at least 5 days of TACT that crash from a repeated one-
bit DRAM failure, 94% experience the second crash within
10 days of TACT, and 100% crash within 30 days.

Memory manufacturers often use a metric called FITS
(failures per billion hours of uptime) [Micron 1994] to de-
scribe the probability of an Alpha particle or neutrino flip-
ping a bit in memory. Our data suggests that FITS is an in-
sufficient metric upon which to make decisions for building
software reliability or determining whether hardware pro-
tections such as ECC should be used. Unfortunately, ECC
memory is seen as a “premium” part, and is often used
only in server machines. Field studies—such as ours—may
observe many different environmental effects, such as dirt,
heat, or assembly defects, all of which all can conspire to
increase the probability of memory errors.

4.3 Spatial analysis of one-bit DRAM failures

DRAM faults provide a unique opportunity to gain more
insight into recurring hardware faults. Each mini-dump sent
to Microsoft contains sufficient information to determine the

memory location of a one-bit fault. We can thus determine
whether recurring one-bit faults show spatial locality, which
would substantiate the hypothesis that such recurrences are
not merely coincidental.

Unfortunately, we have a fairly limited set of crash reports
on which to base this analysis, for two reasons. First, the
RAC database contains only post-processed crash results,
not actual mini-dumps, so we must analyze mini-dumps
from ATLAS instead. Therefore, we analyzed 381,315 one-
bit failures reported to the ATLAS database, only 22,319 of
which are recurrent. Second, we can determine the physical
address only for the 2707 recurrent failures that occurred
within a particular 3 MB portion of the 30 MB Windows
kernel image, because the remainder of the image is not
loaded at a deterministic physical address.

Our result is that, among machines that experienced re-
current DRAM failures, 79% experienced at least two such
failures at the same physical address with the same bit
flipped. In fact, the rate of spatial locality may even be
higher, due to a weakness in the ATLAS data set: Each ma-
chine in ATLAS is tagged with an ID that is not guaranteed
to be unique, so many observations of two failures on the
“same” machine at different locations may in fact be fail-
ures on two different machines. The identifier collision rate
is hard to quantify but known to be non-zero, so 79% is a
conservative value for spatial locality.

There is one important caveat to this result: The 3 MB
portion of the kernel image used for this analysis is the only
part of kernel code not protected by the MMU, so it is pos-
sible that the one-bit errors are due to erratic software rather
than DRAM failures. However, we observed zero spatial lo-
cality among failures on different machines. Therefore, for
software to cause the behavior we have seen, a stray thread
would have to flip the same bit across different boots of the
same machine, but never flip the same bit across two differ-
ent machines. Although this is possible, we conjecture it to
be considerably more probable that these recurring crashes
are caused by a spatially local defect in a DRAM chip.

4.4 Disk subsystem

The last two rows of Figure 2 show the crash probability
for disk subsystem failures. The first-failure probability is
one in several hundred, followed by a roughly two-order-
of-magnitude increase after a machine has failed once, and
increasing thereafter. Further analysis found that, of the ma-
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Note that failures are not independent!



Measuring Availability

• Mean time to failure (MTTF)

• Mean time to repair (MTTR)

• MTBF = MTTF + MTTR  (mean time between failure)

• Availability = MTTF / (MTTF + MTTR)

• Suppose OS crashes once per month, takes 10min to 

reboot.  

• MTTF = 720 hours = 43,200 minutes

MTTR = 10 minutes

• Availability = 43200 / 43210 = 0.997 (~�3 nines�)
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8.2 Measures of Reliability and Failure Tolerance 8–9  

the system cannot be used until it is repaired, perhaps by replacing the failed component, 
so we are equally interested in the time to repair (TTR). If we observe a system through 
N run–fail–repair cycles and observe in each cycle i the values of TTFi and TTRi, we can 
calculate the fraction of time it operated properly, a useful measure known as availability: 

time system was runningAvailability = --------------------------------------------------------------------------------------------
time system should have been running 

N 

∑ TTFi 

i = 1= ---------------------------------------------- Eq. 8–1N 

∑ (TTFi + TTRi) 

i = 1 

By separating the denominator of the availability expression into two sums and dividing 
each by N (the number of observed failures) we obtain two time averages that are fre-
quently reported as operational statistics: the mean time to failure (MTTF) and the mean 
time to repair (MTTR): 

N N 
MTTF = ---1 - ∑ TTFi MTTR = ---1 - ∑ TTRi Eq. 8–2

N Ni = 1 i = 1 

The sum of these two statistics is usually called the mean time between failures (MTBF). 
Thus availability can be variously described as 

MTTF MTTF MTBF – MTTRAvailability = ---------------- = --------------------------------------- = --------------------------------------- Eq. 8–3MTBF MTTF + MTTR MTBF 

In some situations, it is more useful to measure the fraction of time that the system is not 
working, known as its down time: 

MTTRDown time = (1 – Availability) = ---------------- Eq. 8–4
MTBF 

One thing that the definition of down time makes clear is that MTTR and MTBF are 
in some sense equally important. One can reduce down time either by reducing MTTR 
or by increasing MTBF. 

Components are often repaired by simply replacing them with new ones. When failed 
components are discarded rather than fixed and returned to service, it is common to use 
a slightly different method to measure MTTF. The method is to place a batch of N com-
ponents in service in different systems (or in what is hoped to be an equivalent test 
environment), run them until they have all failed, and use the set of failure times as the 
TTFi in equation 8–2. This procedure substitutes an ensemble average for the time aver-
age. We could use this same procedure on components that are not usually discarded 
when they fail, in the hope of determining their MTTF more quickly, but we might 
obtain a different value for the MTTF. Some failure processes do have the property that 
the ensemble average is the same as the time average (processes with this property are 
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Availability

Availability % Downtime 
per year

Downtime per 
month*

Downtime per 
week

90% ("one nine") 36.5 days 72 hours 16.8 hours
95% 18.25 days 36 hours 8.4 hours
97% 10.96 days 21.6 hours 5.04 hours
98% 7.30 days 14.4 hours 3.36 hours
99% ("two nines") 3.65 days 7.20 hours 1.68 hours
99.50% 1.83 days 3.60 hours 50.4 minutes
99.80% 17.52 hours 86.23 minutes 20.16 minutes
99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes
99.95% 4.38 hours 21.56 minutes 5.04 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds
99.99999% ("seven nines") 3.15 seconds 0.259 seconds 0.0605 seconds
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For a reliable component, may have to wait a 
long time to determine its availability/downtime!



Availability in practice

• Carrier airlines (2002 FAA fact book)
• 41 accidents, 6.7M departures
• 99.9993% availability

• 911 Phone service (1993 NRIC report)
• 29 minutes per line per year
• 99.994%

• Standard phone service (various sources)
• 53+ minutes per line per year
• 99.99+%

• End-to-end Internet Availability
• 95% - 99.6%
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Real Devices
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Real Devices – the small print
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Disk failure conditional probability 
distribution - Bathtub curve

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn 
out
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Other Bathtub Curves

From: L. Gavrilov & N. Gavrilova, �Why We Fall Apart,� IEEE Spectrum, Sep. 2004.
Data from http://www.mortality.org

Human 
Mortality 
Rates
(US, 1999)
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So, back to disks...

• How can disks fail?
• Whole disk failure (power supply, electronics, motor, 

etc.)
• Sector errors - soft or hard

• Read or write to the wrong place (e.g., disk is 
bumped during operation)

• Can fail to read or write if head is too high, coating on 
disk bad, etc.

• Disk head can hit the disk and scratch it.
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Coping with failures...

• A failure
• Let�s say one bit in your DRAM fails.

• Propagates
• Assume it flips a bit in a memory address the kernel is 

writing to.  That causes a big memory error elsewhere, 
or a kernel panic.

• Your program is running one of a dozen storage 
servers for your distributed filesystem.

• A client can�t read from the DFS, so it hangs.
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Recovery Techniques

• We’ve already seen some:  e.g., retransmissions in 
TCP and in your RPC system

• Modularity can help in failure isolation:  preventing an 
error in one component from spreading.  
• Analogy:  The firewall in your car keeps an engine fire from 

affecting passengers

• Redundancy and Retries
• Later lectures:  Specific techniques used in file systems, 

disks (RAID)
• This time:  Understand how to quantify reliability
• Understand basic techniques of replication and fault masking
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What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure
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Options in dealing with failure

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure
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Block error detection/correction
• EDC= Error Detection and Correction bits (redundancy)
• D    = Data protected by error checking, may include header fields 
• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely
• Larger EDC field yields better detection and correction
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Parity Checking

Single Bit Parity:
Detect single bit errors

Calculated using XOR over data bits:
• 0 bit: even number of 0s
• 1 bit: odd number of 0s
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Error Detection - Checksum

• Used by TCP, UDP, IP, etc..

• Ones complement sum of all 16-bits in packet

• Simple to implement
• Break up packet into 16-bits strings

• Sum all the 16-bit strings
• Take complement of sum = checksum; add to header

• One receiver, compute same sum, add sum and 
checksum, check that the result is 0 (no error)

• Relatively weak detection
• Easily tricked by typical loss patterns (bursty errors)
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Example: Internet Checksum

Sender

• Treat segment contents 

as sequence of 16-bit 

integers

• Checksum: addition (1�s 

complement sum) of 

segment contents

• Sender puts checksum 

value into checksum field 

in header

Receiver

• Compute checksum of 

received segment

• Check if computed 

checksum equals 

checksum field value:

• NO - error detected

• YES - no error 

detected. But maybe 

errors nonethless?

• Goal: detect �errors� (e.g., flipped bits) in transmitted 

segment
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Error Detection – Cyclic 
Redundancy Check  (CRC)

• Polynomial code
• Treat packet bits a coefficients of n-bit polynomial
• Choose r+1 bit generator polynomial (well known –

chosen in advance)
• Add r bits to packet such that message is divisible by 

generator polynomial
• Better loss detection properties than checksums

• Cyclic codes have favorable properties in that they are 
well suited for detecting burst errors

• Therefore, used on networks/hard drives
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Error Detection – CRC

• View data bits, D, as a binary number
• Choose r+1 bit pattern (generator), G
• Goal: choose r CRC bits, R, such that

• <D,R> exactly divisible by G (modulo 2) 
• Receiver knows G, divides <D,R> by G.  If non-zero remainder: 

error detected!
• Can detect all burst errors less than r+1 bits

• Widely used in practice
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CRC Example

Want:
D.2r XOR R = nG

equivalently:
D.2r = nG XOR R 

equivalently:
if we divide D.2r by G, 
want reminder R

R = remainder[           ]
D.2r

G



CRC notes

• n-bit CRC = appended value is n-bits long
• Typical CRCs:

• CRC-8, CRC-16, CRC-32, CRC-64
• CRC-1 = parity bit (degenerate CRC case!)
• Error detection, but not correction
• Usage:

• RFID (CRC-5)
• Ethernet, PNG, Gzip, MPEG-2.. (CRC-32)
• 2G/GSM (CRC-40) 

• Many practical considerations:
• https://en.wikipedia.org/wiki/Computation_of_cyclic_redundancy_checks
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Options in dealing with failure

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure
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Error Recovery

• Two forms of error recovery
• Redundancy

• Error Correcting Codes (ECC)
• Replication/Voting

• Retry

• ECC
• Keep encoded redundant data to help repair losses
• Forward Error Correction (FEC) – send bits in advance

• Reduces latency of recovery at the cost of bandwidth
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Error Recovery – Error 
Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0



Replication/Voting

• If you take this to the extreme, three software versions:
[r1]  [r2]  [r3]

• Send requests to all three versions of the software:  Triple 
modular redundancy
•Compare the answers, take the majority
•Assumes no error detection

• In practice - used mostly in space applications;  some 
extreme high availability apps (stocks & banking?  maybe.  
But usually there are cheaper alternatives if you don�t 
need real-time)
•Stuff we cover later:  surviving malicious failures through voting 
(byzantine fault tolerance)
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Retry – Network Example

Time

Packet

ACKTi
m

eo
ut

• Sometimes errors 
are transient / need 
to mask

• Need to have error 
detection 
mechanism
• E.g., timeout, 

parity, checksum
• No need for 

majority vote

Sender Receiver



One key question

• How correlated are failures?
• Can you assume independence?

• If the failure probability of a computer in a rack is p,
• What is p(computer 2 failing) | computer 1 failed?

• Maybe it�s p... or maybe they�re both plugged into 
the same UPS...

• Why is this important?
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Back to Disks…
What are our options?

1. Silently return the wrong answer.

2. Detect failure.
• Every sector has a header with a checksum.  Every read 

fetches both, computes the checksum on the data, and 
compares it to the version in the header. Returns error if 
mismatch.

3. Correct / mask the failure
• Re-read if the firmware signals error (may help if transient 

error, may not)

• Use an error correcting code (what kinds of errors do they 
help?)

• Bit flips?  Yes.  Block damaged?  No

• Have the data stored in multiple places (RAID)
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Fail-fast disk

failfast_get (data, sn) {
get (sector, sn);
if (checksum(sector.data) = sector.cksum) {

data ← sector.data;
return OK;

} else {
return BAD;

}
}
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Careful disk (try 10 times on error)

careful_get (data, sn) {
r  ← 0;
while (r < 10) {

r ← failfast_get (data, sn);
if (r = OK) return OK;
r++;

}
return BAD;

}
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�RAID�

• Redundant Array of {Inexpensive, Independent} disks

• Replication!  Idea:  Write everything to two disks (�RAID-1�)
• If one fails, read from the other

• write(sector, data) ->
• write(disk1, sector, data)

• write(disk2, sector, data)

• read(sector, data)
• data = read(disk1, sector)

• if error

• data = read(disk2, sector)

• if error, return error

• return data

• Not perfect, though... doesn�t solve all uncaught errors.
37
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Durable disk (RAID 1)

durable_get (data, sn) {
r ← disk1.careful_get (data, sn);
if (r = OK) return OK;
r ← disk2.careful_get (data, sn);
signal(repair disk1);
return r;

}
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Summary

• Definition of MTTF/MTBF/MTTR:  Understanding 
availability in systems.

• Failure detection and fault masking techniques
• Engineering tradeoff:  Cost of failures vs. cost of 

failure masking.
• At what level of system to mask failures?
• Leading into replication as a general strategy for fault 

tolerance (more RAID next time)
• Thought to leave you with:

• What if you have to survive the failure of entire 
machine?  Of a rack of machines?  Of a datacenter?
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