416 Distributed Systems

Errors and Failures
Oct 16, 2018

Types of Errors “

 Hard errors: The component is dead.

« Soft errors: A signal or bit is wrong, but it doesn’t
mean the component must be faulty

* Note: You can have recurring soft errors due to
faulty, but not dead, hardware

Examples “.

 DRAM errors

« Hard errors: Often caused by motherboard - faulty
traces, bad solder, etc.

« Soft errors: Often caused by cosmic radiation or alpha
particles (from the chip material itself) hitting memory
cell, changing value. (Remember that DRAM is just
little capacitors to store charge... if you hit it with
radiation, you can add charge to it.)

Some fun #s “

® Both Microsoft and Google have recently
started to identify DRAM errors as an
increasing contributor to failures... Google in
their datacenters, Microsoft on your
desktops.

® We’ ve known hard drives fail for years, of
course. :)

Faillures across a million
consumer PCs:

N

TACT: Total Accumulated CPU Time

MCE : When CPU issues a machine-check exception (MCE) [Intel], which indicates a detected

violation of an internal invariant. Causes include bus errors, microcode bugs, and parity errors in
the CPU’s caches

Failure min TACT | Pr[lst failure] | Pr[2nd fail | 1 fail] | Pr[3rd fail | 2 fails]
CPU subsystem (MCE) 5 days I in 330 1in3.3 lin 1.8
CPU subsystem (MCE) 30 days I in 190 1in 2.9 I'in 1.7
Memory (DRAM one-bit flip) | 5 days 1 1n 2700 11n9.0 l'in2.2
Memory (DRAM one-bit flip) | 30 days 1 in 1700 l1in 12 1in2.0
Disk subsystem 5 days 1 in 470 lin3.4 lin 1.9
Disk subsystem 30 days 1 in 270 lin 3.5 lin 1.7

Figure 2. The (conditional) probability of an OS crash from various hardware failures

Millions of consumer PCs; 2016 study

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/eurosys84-nightingale.pdf

Faillures across a million
consumer PCs:

«

TACT: Total Accumulated CPU Time

MCE : When CPU issues a machine-check exception (MCE) [Intel], which indicates a detected

violation of an internal invariant. Causes include bus errors, microcode bugs, and parity errors in
the CPU’s caches

Failure min TACT | Pr[lst failure] | Pr[2nd fail | 1 fail] | Pr[3rd fail | 2 fails]
CPU subsystem (MCE) 5 days I in 330 1in3.3 lin 1.8
CPU subsystem (MCE) 30 days I in 190 1in 2.9 I'in 1.7
Memory (DRAM one-bit flip) | 5 days 1 1n 2700 11n9.0 l'in2.2
Memory (DRAM one-bit flip) | 30 days 1 in 1700 l1in 12 1in2.0
Disk subsystem 5 days 1 in 470 lin3.4 lin 1.9
Disk subsystem 30 days 1 in 270 lin 3.5 lin 1.7

Figure 2. The (conditional) probability of an OS crash from various hardware failures

Note that failures are not independent!

Millions of consumer PCs; 2016 study

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/eurosys84-nightingale.pdf

Measuring Availability O\

Mean time to failure (MTTF)
Mean time to repair (MTTR)
MTBF = MTTF + MTTR (mean time between failure)

time system was running
time system should have been running

Availability = MTTF / (MTTF + MTTR) oeume - 0 vt

* Suppose OS crashes once per month, takes 10min to
reboot.

e MTTF =720 hours =43,200 minutes
MTTR = 10 minutes

« Availability = 43200 / 43210 = 0.997 (~“3 nines™)

Availability =

Availability Y

Downtime = Downtime per Downtime per

Availability %

per year month* week
90% ("one nine") 36.5 days 72 hours 16.8 hours
95% 18.25 days 36 hours 8.4 hours
97% 10.96 days 21.6 hours 5.04 hours
98% 7.30 days 14.4 hours 3.36 hours
99% ("two nines") 3.65 days 7.20 hours 1.68 hours
99.50% 1.83 days 3.60 hours 50.4 minutes
99.80% 17.52 hours| 86.23 minutes 20.16 minutes
99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes
99.95% 4.38 hours 21.56 minutes 5.04 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds

99.99999% ("seven nines") | 3.15 seconds 0.259 seconds 0.0605 seconds

For a reliable component, may have to wait a
long time to determine its availability/downtime!

Availability in practice

Carrier airlines (2002 FAA fact book)

* 41 accidents, 6.7M departures
* 99.9993% availability

911 Phone service (1993 NRIC report)

« 29 minutes per line per year
* 99.994%
Standard phone service (various sources)
« 53+ minutes per line per year
* 99.99+%

* End-to-end Internet Availability
* 95% - 99.6%

10

Real Devices

senge (€

We tum on wess

PRODUCT OVERVIEW

Cheetah 15K.4

Mainstream enterprise disc drive

Simply the best price/
performance, lowest cost of
ownership disc drive ever

KEY FEATURES AND BENEFITS

« The Cheetah” 15K.4 is the highest-performance drive ever offered by Seagate®,
delvering maximum 10PS with fwer drives 10 yield lower TCO.

« The Cheetah 15K.4 price-par valug united with the bensfits
of serial attached SCSI {SAS) make it the optimal 3.5-inch drive for reck solid
enferprise storage.

« Proactive, sell-initated background management functions impeave media integeity,
increass drive efficiency, reduce incidence of integeation failures and improve
fiskd refability.

« Tne Cheetah 15K.4 shares its slectronics architecture and firmware base with
Cheetzh 10K.7 and Savvio " 10 ensure greater factory consistency and reducad
time to market.

KEY SPECIFICATIONS

* 146-, 73- and 36-Gbyte capacities

* 3.3-msac average read and 3.8-msec average write seek tmes.

« Up 1o 95-Moytes/sac sustained transfer rate

« 1.4 million hours full duty cycle MTBF

« Serial Attachad SCSI (SAS), Utra320 SCSI and 2 Ghits/sec Fibre Channel interfacss

« Seyear warranty

For mors information on why 15K is the industry’s best price/performance disc drive for
use in mair stovage appiications, visit /15K

11

Real Devices — the small print l‘.

* INE Lneeg@n” 1989 1S Ui mgncst-penonance onve ever onerea

dalvering maximum IOPS with fawer drives 1o yield lower TCO.

« The Cheetah 15K.4 price-par-performancs value united with the breakthrough benafits
of seral attached SCSI [SAS) make #t the optimal 3.5-inch drive for reck solid
enlerprse storage.

 Proactive, self-initated background manzgement functions impeove media intagrity,
increass drive efficiency, raduce incidence of integeation failures and improve
fizld relability.

« The Cheetah 15K.4 shares its electronics architecture and firmware base with
Cheetzh 10K.7 and Savvio ™ 1o ensure greater factory consistency and reducad
time 1o market.

KEY SPECIFICATIONS

* 146-, 73- and 36-Cbyte capacities
3.3-msac average read and 3.6-msec averags wnite seek tmes

For more informahion an why 15K is the industry’s best price/performance disc drive for
wse in mamnstream storane aoolicabans wsit hito://soecials seaaate. com/15k

12

Disk failure conditional probability
distribution - Bathtub curve

Infant Burn
4 mortality out
= Stable failure period
QD
E;
X
k=
—
e 1 / (reported MTTF)
— |
Expected ope{éting lifetime
| o
0

Time
13

Other Bathtub Curves “

o
|

0.0l

0.001

Death rate, log scale

0.0001 -

Human

Mortality
Infant Rates
mortality Female (US, 1999)

Aging

Normal working
| I | | |

20 60 100
Age, years

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart, ” IEEE Spectrum, Sep. 2004.
Data from http://www.mortality.org 14

So, back to disks... “

« How can disks fail?

« Whole disk failure (power supply, electronics, motor,
etc.)

e Sector errors - soft or hard

« Read or write to the wrong place (e.g., disk is
bumped during operation)

 Can fail to read or write if head is too high, coating on
disk bad, etc.

* Disk head can hit the disk and scratch it.

15

Coping with failures... O\ Y

« A failure
 Let’ s say one bit in your DRAM fails.
* Propagates

« Assume it flips a bit in a memory address the kernel is
writing to. That causes a big memory error elsewhere,
or a kernel panic.

* Your program is running one of a dozen storage
servers for your distributed filesystem.

« Aclient can’ t read from the DFS, so it hangs.

16

Recovery Techniques “

 We've already seen some: e.g., retransmissions in
TCP and in your RPC system

« Modularity can help in failure isolation: preventing an
error in one component from spreading.

« Analogy: The firewall in your car keeps an engine fire from
affecting passengers

* Redundancy and Retries

« Later lectures: Specific techniques used in file systems,
disks (RAID)

« This time: Understand how to quantify reliability
« Understand basic techniques of replication and fault masking

17

What are our options?
1. Silently return the wrong answer.
2. Detect failure.

3. Correct/ mask the failure

18

Options in dealing with failure
1. Silently return the wrong answer.
2. Detect failure.

3. Correct / mask the failure

19

Block error detection/correction “.

« EDC= Error Detection and Correction bits (redundancy)
« D = Data protected by error checking, may include header fields
» Error detection not 100% reliable!

* Protocol may miss some errors, but rarely

« Larger EDC field yields better detection and correction

| datagram I | datagram I

vy |

bits in D'

_>
OK detected
? error

<+d diata bits—| :
| D | EDC I D’ EDC'

— () bit-error prone link (}—

20

Parity Checking

Single Bit Parity:

Detect single bit errors

— d data bits —f 0¥

| 0111000110101011‘ 0 l

Calculated using XOR over data bits:
* 0 bit: even number of Os
1 bit: odd number of Os

21

Error Detection - Checksum “

« Used by TCP, UDP, IP, etc..
* Ones complement sum of all 16-bits in packet

« Simple to implement
« Break up packet into 16-bits strings

« Sum all the 16-bit strings
« Take complement of sum = checksum; add to header

* One receiver, compute same sum, add sum and
checksum, check that the result is 0 (no error)

Relatively weak detection
 Easily tricked by typical loss patterns (bursty errors)

22

Example: Internet Checksum

«

« Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

Sender

« Treat segment contents
as sequence of 16-bit
integers

« Checksum: addition (1’ s
complement sum) of
segment contents

« Sender puts checksum
value into checksum field
In header

Recelver

 Compute checksum of
received segment

* Check if computed
checksum equals
checksum field value:

* NO - error detected

* YES - no error
detected. But maybe
errors nonethless?

23

Error Detection — Cyclic
Redundancy Check (CRC) “‘

* Polynomial code

« Treat packet bits a coefficients of n-bit polynomial

* Choose r+1 bit generator polynomial (well known —
chosen in advance)

« Add r bits to packet such that message is divisible by
generator polynomial

» Better loss detection properties than checksums

« Cyclic codes have favorable properties in that they are
well suited for detecting burst errors

 Therefore, used on networks/hard drives

24

Error Detection — CRC “.

View data bits, D, as a binary number
Choose r+1 bit pattern (generator), G

Goal: choose r CRC bits, R, such that
« <D,R> exactly divisible by G (modulo 2)

* Receiver knows G, divides <D,R> by G. If non-zero remainder:
error detected!

e (Can detect all burst errors less than r+1 bits
Widely used in practice

«———d bits » «— r bits —
bit
| D:data bits to be sent‘ R:CRC bitsl pattern

mathematical

.
D*2 XOR R formula

25

CRC Example i‘.

Want: 101011
D2 XOR R =nG 1001) 101110000
equivalently: 1001 P
D-2' = nG XOR R 28
equivalently: 1929
if we divide D-2" by G, 110
want reminder R 000
1100
1001
) 1010
R = remainder| % 1001
G 011
R 4:I_I

26

CRC notes “.

* n-bit CRC = appended value is n-bits long
« Typical CRCs:

« CRC-8, CRC-16, CRC-32, CRC-64
 CRC-1 = parity bit (degenerate CRC case!)
» Error detection, but not correction
« Usage:

. RFID (CRC-5)

« Ethernet, PNG, Gzip, MPEG-2.. (CRC-32)

. 2G/GSM (CRC-40)
* Many practical considerations:

* https://en.wikipedia.org/wiki/Computation of cyclic redundancy checks

27

https://en.wikipedia.org/wiki/Computation_of_cyclic_redundancy_checks

Options in dealing with failure
1. Silently return the wrong answer.
2. Detect failure.

3. Correct/ mask the failure

28

Error Recovery

« Two forms of error recovery
* Redundancy
 Error Correcting Codes (ECC)
 Replication/Voting
* Retry

- ECC

« Keep encoded redundant data to help repair losses
« Forward Error Correction (FEC) — send bits in advance
« Reduces latency of recovery at the cost of bandwidth

29

Error Recovery — Error
Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors
Sary
d4.1 dij | dq, jurq
d2 1 d2j | dg s
column l dm di’j di,]'ﬂ
parity ditq 1 divt)j disq jat
101011 101011
111100 +-4-1-+ofo—Panty
O1110[L 011101
00101/0 od1o1o
no errors gf‘r';try
correctable
single bit error

30

Replication/Voting “

 If you take this to the extreme, three software versions:
[r1] [r2] [r3]

« Send requests to all three versions of the software: Triple
modular redundancy
Compare the answers, take the majority
*Assumes no error detection

* |n practice - used mostly in space applications; some
extreme high availability apps (stocks & banking? maybe.
But usually there are cheaper alternatives if you don’ t
need real-time)

*Stuff we cover later: surviving malicious failures through voting
(byzantine fault tolerance)

31
31

Retry — Network Example “

e Sometimes errors

are transient / need

to mask Sender Receiver
* Need to have error | Packe,

detection Tme | 8|

mechanism S| Aok

+ E.g., timeout, -

parity, checksum

* No need for
majority vote

32

One key question i‘.

* How correlated are failures?

« Can you assume independence?
« If the failure probability of a computer in a rack is p,
« What is p(computer 2 failing) | computer 1 failed?

- Maybe it’ s p... or maybe they’ re both plugged into
the same UPS...

 Why is this important?

33

Back to Disks...
What are our options?

«

1. Silently return the wrong answer.

2. Detect failure.

» Every sector has a header with a checksum. Every read
fetches both, computes the checksum on the data, and
compares it to the version in the header. Returns error if
mismatch.

3. Correct/ mask the failure

« Re-read if the firmware signals error (may help if transient
error, may not)

« Use an error correcting code (what kinds of errors do they
help?)

 Bit flips? Yes. Block damaged? No
« Have the data stored in multiple places (RAID)

34

Fail-fast disk i‘.

failfast _get (data, sn) {
get (sector, sn);
If (checksum(sector.data) = sector.cksum) {
data < sector.data;
return OK;
} else {
return BAD:;

35

Careful disk (try 10 times on error)

careful_get (data, sn) {
r — O;
while (r < 10) {
r — failfast_get (data, sn);
if (r = OK) return OK;
r++:

J

}
return BAD:;

36

“RAID” W

Redundant Array of {Inexpensive, Independent} disks

Replication! Idea: Write everything to two disks (“RAID-17)
o If one fails, read from the other

write(sector, data) ->
o write(disk1, sector, data)
o write(disk2, sector, data)

read(sector, data)

e data = read(disk1, sector)

e if error
 data = read(disk2, sector)
« if error, return error

e return data
Not perfect, though... doesn’ t solve all uncaught errors.

37
37

Durable disk (RAID 1)

durable_get (data, sn) {
r — diskl.careful_get (data, sn);
if (r = OK) return OK;
r — disk2.careful_get (data, sn);
signal(repair diskl);

return r;

38

Summary “

* Definition of MTTF/MTBF/MTTR: Understanding
availability in systems.

 Failure detection and fault masking techniques
* Engineering tradeoff: Cost of failures vs. cost of
failure masking.

« At what level of system to mask failures?

« Leading into replication as a general strategy for fault
tolerance (more RAID next time)

* Thought to leave you with:

« What if you have to survive the failure of entire
machine? Of a rack of machines? Of a datacenter?

39
39

