
Data-Intensive Distributed Computing

Part 2: From MapReduce to Spark (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 451/651 431/631 (Winter 2018)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

January 18, 2018

These slides are available at http://lintool.github.io/bigdata-2018w/

Mix of slides from:
- Reza Zadeh http://reza-zadeh.com

- Jimmy Lin’s course at UWaterloo:
http://lintool.github.io/bigdata-2018w/

So far in 416

Focused on distributed coordination

- Distributed algorithms: consensus, atomic
commitment, mutual exclusion,…

- Distributed systems: CDN, DFS, BT,
BChains, Kademlia, ..

What about programmability?

So far in 416

Focused on distributed coordination

- Distributed algorithms: consensus, atomic
commitment, mutual exclusion,…

- Distributed systems: CDN, DFS, BT,
BChains, Kademlia, ..

What about programmability?

Well, there is RPC. What, is that not enough?

Reality check
Data growing faster than processing speeds

Only solution is to parallelize on large clusters
»Widely use in both enterprises and web industry

Reality check
Data growing faster than processing speeds

Only solution is to parallelize on large clusters
»Widely use in both enterprises and web industry

How do we let regular (non 416)
developers program these things?

Why use a cluster,
Distributed compute:
Convex Optimization

Matrix Factorization

Machine Learning

Neural Networks

The Bootstrap

Numerical Linear Algebra

Large Graph analysis

Streaming and online
algorithms

Hadoop: 10K nodes, 150K
cores, 150 PB (4/2014)

Processes 20 PB a day (2008)
Crawls 20B web pages a day (2012)
Search index is 100+ PB (5/2014)
Bigtable serves 2+ EB, 600M QPS (5/2014)

300 PB data in Hive +
600 TB/day (4/2014)

400B pages, 10+
PB (2/2014)

LHC: ~15 PB a year

LSST: 6-10 PB a year
(~2020)640K ought to be

enough for anybody.

150 PB on 50k+ servers
running 15k apps (6/2011)

S3: 2T objects, 1.1M
request/second (4/2013)

SKA: 0.3 – 1.5 EB
per year (~2020)

19 Hadoop clusters: 600
PB, 40k servers (9/2015)

How much data?

Source: Google

The datacenter is the computer!

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, …

Very difficult to do at scale:
»How to split problem across nodes?
• Must consider network & data locality

»How to deal with failures? (inevitable at scale)
»Even worse: stragglers (node not failed, but slow)
»Heterogeneity of nodes, their locations, complex env
»Have to write programs for each machine

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, …

Very difficult to do at scale:
»How to split problem across nodes?
• Must consider network & data locality

»How to deal with failures? (inevitable at scale)
»Even worse: stragglers (node not failed, but slow)
»Heterogeneity of nodes, their locations, complex env
»Have to write programs for each machine

Rarely used in commodity datacenters

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, …

Very difficult to do at scale:
»How to split problem across nodes?
• Must consider network & data locality

»How to deal with failures? (inevitable at scale)
»Even worse: stragglers (node not failed, but slow)
»Heterogeneity of nodes, their locations, complex env
»Have to write programs for each machine

Rarely used in commodity datacenters

Key question: how do we let developers
leverage distribution without having them
build a distributed system per use case?

The datacenter is the computer!

It’s all about the right level of abstraction
Moving beyond the von Neumann architecture

What’s the “instruction set” of the datacenter computer?

Hide system-level details from the developers
No more race conditions, lock contention, etc.

No need to explicitly worry about reliability, fault tolerance, etc.

Separating the what from the how
Developer specifies the computation that needs to be performed

Execution framework (“runtime”) handles actual execution

MapReduce is the first instantiation of this idea… but not the last!

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators
»System picks how to split each operator into tasks

and where to run each task
»Re-run parts for fault recovery

Best example: MapReduce
Map

Map

Map

Reduce

Reduce

Why Use a Data Flow Engine?

Ease of programming
»High-level functions instead of message passing

Wide deployment
»More common than MPI, especially “near” data

Scalability to huge commodity node clusters
»Even HPC world is now concerned about resilience

Examples: Pig, Hive, Storm, but initially
publicized with MapReduce

f f f f fMap

Roots in Functional Programming

We need something more for sharing partial results across records!

Simplest data-parallel abstraction
Process a large number of records: “do” something to each

g g g g g

f f f f fMap

Fold

Roots in Functional Programming

Let’s add in aggregation!

MapReduce = Functional programming + distributed computing!

A Data-Parallel Abstraction

Process a large number of records

“Do something” to each

Group intermediate results

“Aggregate” intermediate results

Write final results

Key idea: provide a functional abstraction for these two operations

Map

Reduce

MapReduce

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

The execution framework handles everything else…

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {

emit(word, 1)
}

}

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {

sum += value
}
emit(key, sum)

}

“Hello World” MapReduce: Word Count

MapReduce

The execution framework handles everything else…
What’s “everything else”?

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce “Runtime”

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles synchronization
Groups intermediate data

Handles errors and faults
Detects worker failures and restarts

Everything happens on top of a distributed FS (HDFS)

MapReduce Implementations

Google has a proprietary implementation in C++
Bindings in Java, Python

Hadoop provides an open-source implementation in Java
Development begun by Yahoo, later an Apache project

Used in production at Facebook, Twitter, LinkedIn, Netflix, …
Large and expanding software ecosystem

Potential point of confusion: Hadoop is more than MapReduce today

Lots of custom research implementations

Limitations of MapReduce

MapReduce is great at one-pass computation,
but inefficient for multi-pass algorithms

No efficient primitives for data sharing
»State between steps goes to distributed file system
»Slows down pipeline: replication & disk storage

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

Logical View

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View

DFS DFS

iter. 1 iter. 2 . .
.

Input

file system
read

file system
write

file system
read

file system
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

file system
read

Commonly spend 90% of time doing I/O

Example: Iterative Apps

Example: PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page
adjacency lists and rank vector

Neighbors
(id, edges)

Ranks
(id, rank) …

Same file grouped
over and over

iteration 1 iteration 2 iteration 3

MapReduce -> Spark
While MapReduce is simple, composing
multiple M/R stages has a huge I/O cost:
network + disk

Spark compute engine:
Extends a PL with data-flow operators and in-
memory distributed collection data-structure
» “Resilient distributed datasets” (RDD)

Spark
Answer to “What’s beyond MapReduce?”

Brief history:
Developed at UC Berkeley AMPLab in 2009

Open-sourced in 2010
Became top-level Apache project in February 2014

Commercial support provided by DataBricks

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators
»System picks how to split each operator into tasks

and where to run each task
»Re-run parts for fault recovery

Best example: MapReduce
Map

Map

Map

Reduce

ReduceSpark: more types of graph ops +
in-memory datasets

RDD[T]

RDD[T]

filter
f: (T) ⇒
Boolean

map
f: (T)
⇒ U

RDD[T]

RDD[U]

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

mapPartitions
f: (Iterator[T])
⇒ Iterator[U]

RDD[T]

RDD[U]

(Not meant to be exhaustive)

Map-like Operations

RDD[(K, V)]

RDD[(K, Iterable[V])]

groupByKey reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey
seqOp: (U, V) ⇒ U,
combOp: (U, U) ⇒ U

RDD[(K, U)]

(Not meant to be exhaustive)

Reduce-like Operations

RDD[(K, V)]

RDD[(K, V)]

sort

(Not meant to be exhaustive)

RDD[(K, V)]

RDD[(K, V)]

repartitionAnd
SortWithinPartitions

Sort Operations

join

RDD[(K, V)]

RDD[(K, (V, W))]

RDD[(K, W)] RDD[(K, V)]

RDD[(K, (Iterable[V], Iterable[W]))]

cogroup

RDD[(K, W)]

(Not meant to be exhaustive)

Join-like Operations

leftOuterJoin

RDD[(K, V)]

RDD[(K, (V, Option[W]))]

RDD[(K, W)] RDD[(K, V)]

RDD[(K, (Option[V], Option[W]))]

fullOuterJoin

RDD[(K, W)]

(Not meant to be exhaustive)

Join-like Operations

RDD[T]

RDD[T]

union

RDD[T]

RDD[T]

RDD[T]

intersection

RDD[T]

(Not meant to be exhaustive)

Set-ish Operations

RDD[(T, U)]

RDD[T]

cartesian

RDD[U]RDD[T]

RDD[T]

distinct

(Not meant to be exhaustive)

Set-ish Operations

Spark Word Count

val textFile = sc.textFile(args.input())

textFile
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
.saveAsTextFile(args.output())

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

??

What’s an RDD?
Resilient Distributed Dataset (RDD)

= partitioned= immutable

Wait, so how do you actually do anything?
Developers define transformations on RDDs
Framework keeps track of lineage

» Immutable collections of objects, spread across cluster
» Statically typed: RDD[T] has objects of type T

RDD Lifecycle

RDD

Transformation

Action

Transformations are lazy:
Framework keeps track of lineage

Actions trigger actual execution

values

Spark Word Count

val textFile = sc.textFile(args.input())

val a = textFile.flatMap(line => line.split(" "))
val b = a.map(word => (word, 1))
val c = b.reduceByKey((x, y) => x + y)

c.saveAsTextFile(args.output())

RDDs

TransformationsAction

RDDs and Lineage

textFile: RDD[String]On HDFS

a: RDD[String]

.flatMap(line => line.split(" "))

b: RDD[(String, Int)]

.map(word => (word, 1))

c: RDD[(String, Int)]

.reduceByKey((x, y) => x + y)
Remember,

transformations are lazy!

RDDs and Lineage

textFile: RDD[String]On HDFS

a: RDD[String]

.flatMap(line => line.split(" "))

Action!

b: RDD[(String, Int)]

.map(word => (word, 1))

c: RDD[(String, Int)]

.reduceByKey((x, y) => x + y)Remember,

transformations are lazy!

.saveAsTextFile(args.output())

RDDs and Optimizations

textFile: RDD[String]

a: RDD[String]

b: RDD[(String, Int)]

c: RDD[(String, Int)]

On HDFS

.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey((x, y) => x + y)

Optimize

Map->Map

RDDs don’t need
to be materialized!

Lazy evaluation creates optimization opportunities

Action!

.saveAsTextFile(args.output())

RDDs and Caching
RDDs can be materialized in memory (and on disk)!

textFile: RDD[String]

a: RDD[String]

b: RDD[(String, Int)]

c: RDD[(String, Int)]

On HDFS

.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey((x, y) => x + y)

Cache it! Fault tolerance?✗
Spark works even if

the RDDs are
partially cached!

Action!

.saveAsTextFile(args.output())

»Collections of objects across a cluster with user
controlled partitioning & storage (memory, disk, ...)
»Built via parallel transformations (map, filter, …)
»Only lets you make RDDs such that they can be:

Automatically rebuilt on failure

Resilient Distributed Datasets (RDDs)

Spark Architecture

Spark Architecture

✗

Fault Tolerance

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

filterreducemap

In
p

u
t

fil
e

RDDs track lineage info to rebuild lost data

filterreducemap

In
p

u
t

fil
e

Fault Tolerance

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

RDDs track lineage info to rebuild lost data

✗ ✗

filterreducemap

In
p

u
t

fil
e

Fault Tolerance

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

RDDs track lineage info to rebuild lost data

Benefit of a single ecosystem

Same engine performs data extraction, model
training and interactive queries

…
DFS
read

DFS
writep

a
rs

e DFS
read

DFS
writetr

a
in DFS

read
DFS
writeq

u
e
ry

DFS

DFS
read p
a
rs

e

tr
a
in

q
u
e
ry

Separate engines

Single (Spark) engine

58

Example: graph processing

Spark: a general platform

Spark Core

Spark
Streaming

real-time

Spark SQL
structured

GraphX
graph

MLlib
machine
learning

…

Standard libraries included with Spark

Spark.ML Library (MLlib)
points = context.sql(“select latitude, longitude from tweets”)

model = KMeans.train(points, 10)

classification: logistic regression, linear SVM,
naïve Bayes, classification tree

regression: generalized linear models (GLMs), regression tree

collaborative filtering: alternating least squares (ALS), non-negative matrix
factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS

61

General graph processing library

Build graph using RDDs of nodes and edges

Large library of graph algorithms with
composable steps

Spark.GraphX

Spark Streaming
Run a streaming computation as a series
of very small, deterministic batch jobs

62

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

• Chop up the live stream into batches of
X seconds

• Spark treats each batch of data as
RDDs and processes them using RDD
operations

• Finally, the processed results of the
RDD operations are returned in
batches

Spark Streaming
Run a streaming computation as a series
of very small, deterministic batch jobs

63

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

• Batch sizes as low as ½ second, latency
~ 1 second

• Potential for combining batch
processing and streaming processing in
the same system

Spark SQL
// Run SQL statements

val teenagers = context.sql(
"SELECT name FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are RDDs of Row objects

val names = teenagers.map(t => "Name: " + t(0)).collect()

Enables loading & querying structured data in Spark

c = HiveContext(sc)
rows = c.sql(“select text, year from hivetable”)
rows.filter(lambda r: r.year > 2013).collect()

From Hive:

{“text”: “hi”,
“user”: {
“name”: “matei”,
“id”: 123

}}

c.jsonFile(“tweets.json”).registerAsTable(“tweets”)
c.sql(“select text, user.name from tweets”)

From JSON: tweets.json

Spark SQL

May other data-flow systems

Graph Computations: Pregel, GraphLab

SQL based engines: Hive, Pig, …

… data-flow an ideal abstract? Who knows.

Take-aways

Data flow engines are important for
distributed processing: simplify life for devs!

MapReduce: batch processing + distinct map
and reduce phases. Inefficient and low level.

Spark: RDDs for fault tolerance; ecosystem.

