

Data-Intensive Distributed Computing

CS 451/651 431/631 (Winter 2018)

Mix of slides from:

- Reza Zadeh http://reza-zadeh.com
- Jimmy Lin's course at UWaterloo: http://lintool.github.io/bigdata-2018w/

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

So far in 416

Focused on distributed coordination

- Distributed algorithms: consensus, atomic commitment, mutual exclusion,...
- Distributed systems: CDN, DFS, BT, BChains, Kademlia, ..

What about programmability?

So far in 416

Focused on distributed coordination

- Distributed algorithms: consensus, atomic commitment, mutual exclusion,...
- Distributed systems: CDN, DFS, BT, BChains, Kademlia, ..

What about programmability?

Well, there is RPC. What, is that not enough?

Reality check

Data growing faster than processing speeds

Only solution is to parallelize on large clusters »Widely use in both enterprises and web industry

Reality check

Data growing faster than processing speeds

Only solution is to parallelize on large clusters »Widely use in both enterprises and web industry

Google "rocesses 20 PB a day (2008) Crawls 20B web pages a day (2012) Search index is 100+ PB (5/2014) Bigtable serves 2+ EB, 600M QPS (5/2014)

JPMorganChase 🚺

400B pages, 10+ PB (2/2014)

150 PB on 50k+ servers

running 15k apps (6/2011)

19 Hadoop clusters: 600 PB, 40k servers (9/2015)

YAHO

Hadoop: 10K nodes, 150K cores, 150 PB (4/2014)

300 PB data in Hive + 600 TB/day (4/2014)

amazon

web services[™]

facebook.

S3: 2T objects, I.IM request/second (4/2013)

640K ought to be enough for anybody. LHC: ~15 PB a year

RN

LSST: 6-10 PB a year (~2020)

SKA: 0.3 – 1.5 EB per year (~2020)

How much data?

The datacenter is the computer!

00-0

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, ...

Very difficult to do at scale: » How to split problem across nodes?

Must consider network & data locality
How to deal with failures? (inevitable at scale)
Even worse: stragglers (node not failed, but slow)
Heterogeneity of nodes, their locations, complex env
Have to write programs for each machine

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, ...

Very difficult to do at scale:

Rarely used in commodity datacenters

» How to deal with failures? (inevitable at scale)
» Even worse: stragglers (node not failed, but slow)
» Heterogeneity of nodes, their locations, complex env
» Have to write programs for each machine

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, ...

Very difficult to do at scale:

Rarely used in commodity datacenters

» How to deal with failures? (inevitable at scale)

Key question: how do we let developers leverage distribution without having them build a distributed system per use case?

env

The datacenter is the computer!

It's all about the right level of abstraction Moving beyond the von Neumann architecture What's the "instruction set" of the datacenter computer?

Hide system-level details from the developers No more race conditions, lock contention, etc. No need to explicitly worry about reliability, fault tolerance, etc.

Separating the *what* from the *how*

Developer specifies the computation that needs to be performed Execution framework ("runtime") handles actual execution

MapReduce is the first instantiation of this idea... but not the last!

Data Flow Models

<u>Restrict the programming interface</u> so that the system can do more automatically

Express jobs as graphs of high-level operators » <u>System</u> picks how to split each operator into tasks and where to run each task » Re-run parts for fault recovery

Best example: MapReduce

Why Use a Data Flow Engine?

Ease of programming » High-level functions instead of message passing

Wide deployment » More common than MPI, especially "near" data

Scalability to huge commodity node clusters » Even HPC world is now concerned about resilience

Examples: Pig, Hive, Storm, but initially publicized with MapReduce

Roots in Functional Programming

Simplest data-parallel abstraction

Process a large number of records: "do" something to each

Мар

We need something more for sharing partial results across records!

Roots in Functional Programming

Let's add in aggregation!

MapReduce = Functional programming + distributed computing!

A Data-Parallel Abstraction

Process a large number of records M_{ap} "Do something" to each

Group intermediate results

"Aggregate" intermediate results Reduce

Write final results

Key idea: provide a functional abstraction for these two operations

MapReduce

Programmer specifies two functions:

 $\begin{array}{l} \text{map} (k_1, v_1) \rightarrow \text{List}[(k_2, v_2)] \\ \text{reduce} (k_2, \text{List}[v_2]) \rightarrow \text{List}[(k_3, v_3)] \end{array}$

All values with the same key are sent to the same reducer

The execution framework handles everything else...

"Hello World" MapReduce: Word Count

```
def map(key: Long, value: String) = {
  for (word <- tokenize(value)) {</pre>
    emit(word, 1)
  }
def reduce(key: String, values: Iterable[Int]) = {
  for (value <- values) {</pre>
    sum += value
  emit(key, sum)
}
```

"Hello World" MapReduce: Word Count

MapReduce

Programmer specifies two functions:

 $\begin{array}{l} \text{map} (k_1, v_1) \rightarrow \text{List}[(k_2, v_2)] \\ \text{reduce} (k_2, \text{List}[v_2]) \rightarrow \text{List}[(k_3, v_3)] \end{array}$

All values with the same key are sent to the same reducer

The execution framework handles everything else... What's "everything else"?

MapReduce "Runtime"

Handles scheduling Assigns workers to map and reduce tasks

> Handles "data distribution" Moves processes to data

Handles synchronization Groups intermediate data

Handles errors and faults Detects worker failures and restarts

Everything happens on top of a distributed FS (HDFS)

MapReduce Implementations

Google has a proprietary implementation in C++ Bindings in Java, Python

Hadoop provides an open-source implementation in Java Development begun by Yahoo, later an Apache project Used in production at Facebook, Twitter, LinkedIn, Netflix, ... Large and expanding software ecosystem Potential point of confusion: Hadoop is more than MapReduce today

Lots of custom research implementations

Limitations of MapReduce

MapReduce is great at one-pass computation, but inefficient for *multi-pass* algorithms

No efficient primitives for data sharing » State between steps goes to distributed file system » Slows down pipeline: replication & disk storage Logical View

Physical View

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View

Adapted from (Dean and Ghemawat, OSDI 2004)

Example: Iterative Apps

Commonly spend 90% of time doing I/O

Example: PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page adjacency lists and rank vector

MapReduce -> Spark

While MapReduce is simple, composing multiple M/R stages has a huge I/O cost: network + disk

Spark compute engine:

Extends a PL with data-flow operators and inmemory distributed collection data-structure » "Resilient distributed datasets" (RDD)

Spark

Answer to "What's beyond MapReduce?"

Brief history: Developed at UC Berkeley AMPLab in 2009 Open-sourced in 2010 Became top-level Apache project in February 2014 Commercial support provided by DataBricks

Map-like Operations

Reduce-like Operations

Sort Operations

Join-like Operations

Join-like Operations

Set-ish Operations

(Not meant to be exhaustive)

Set-ish Operations

(Not meant to be exhaustive)

Spark Word Count

val textFile = sc.textFile(args.input())

What's an RDD? Resilient Distributed Dataset (RDD) = immutable = partitioned

» Immutable collections of objects, spread across cluster
 » Statically typed: RDD[T] has objects of type T

Wait, so how do you actually do anything? Developers define *transformations* on RDDs Framework keeps track of lineage

RDD Lifecycle

Transformations are lazy: Framework keeps track of lineage Actions trigger actual execution

Spark Word Count

RDDs and Lineage

RDDs and Lineage

RDDs and Caching RDDs can be materialized in memory (and on disk)!

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user controlled partitioning & storage (memory, disk, ...)
» Built via parallel transformations (map, filter, ...)
» Only lets you make RDDs such that they can be:

Automatically rebuilt on failure

Spark Architecture

Spark Architecture

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))

- .reduceByKey(lambda x, y: x + y)
- .filter(lambda (type, count): count > 10)

Input file

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))

- .reduceByKey(lambda x, y: x + y)
- .filter(lambda (type, count): count > 10)

Input file

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))

- .reduceByKey(lambda x, y: x + y)
- .filter(lambda (type, count): count > 10)

Input file

Benefit of a single ecosystem

Same engine performs data extraction, model training and interactive queries

Example: graph processing

Spark: a general platform

Standard libraries included with Spark

Spark SQL structured

Spark Streaming real-time

GraphX graph MLlib machine learning

10 A A

Spark Core

Spark.ML Library (MLlib)

points = context.sql("select latitude, longitude from tweets")

model = KMeans.train(points, 10)

classification: logistic regression, linear SVM, naïve Bayes, classification tree

regression: generalized linear models (GLMs), regression tree

collaborative filtering: alternating least squares (ALS), non-negative matrix factorization (NMF)

clustering: k-means

```
decomposition: SVD, PCA
```

optimization: stochastic gradient descent, L-BFGS

Spark.GraphX General graph processing library

Build graph using RDDs of nodes and edges

Large library of graph algorithms with composable steps

Spark Streaming

Run a streaming computation as a series of very small, deterministic batch jobs

- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches

Spark Streaming

Run a streaming computation as a series of very small, deterministic batch jobs

- Batch sizes as low as ½ second, latency ~ 1 second
- Potential for combining batch processing and streaming processing in the same system

Spark SQL

// Run SQL statements

```
val teenagers = context.sql(
    "SELECT name FROM people WHERE age >= 13 AND age <= 19")</pre>
```

// The results of SQL queries are RDDs of Row objects

val names = teenagers.map(t => "Name: " + t(0)).collect()

Spark SQL

Enables loading & querying structured data in Spark

From Hive:

```
c = HiveContext(sc)
```

```
rows = c.sql("select text, year from hivetable")
```

```
rows.filter(lambda r: r.year > 2013).collect()
```

From JSON: c.jsonFile("tweets.json").registerAsTable("tweets") c.sql("select text, user.name from tweets")

```
tweets.json
{"text": "hi",
"user": {
```

"id": 123

}}

"name": "matei".

May other data-flow systems

Graph Computations: Pregel, GraphLab

SQL based engines: Hive, Pig, ...

... data-flow an ideal abstract? Who knows.

Take-aways

Data flow engines are important for distributed processing: simplify life for devs!

MapReduce: batch processing + distinct map and reduce phases. Inefficient and low level.

Spark: RDDs for fault tolerance; ecosystem.

