
CAP Theorem

Thanks to Arvind K., Dong W., and Mihir N. for slides.

C A

P

CAP Theorem
• “It is impossible for a web service to provide these

three guarantees at the same time (pick 2 of 3):
• (Sequential) Consistency
• Availability
• Partition-tolerance”

• Conjectured by Eric Brewer in ’00
• Proved by Gilbert and Lynch in ’02
• But with definitions that do not match what you’d

assume (or Brewer meant)
• Influenced the NoSQL mania
• Highly controversial: “the CAP theorem encourages

engineers to make awful decisions.” – Stonebraker
• Many misinterpretations

2

CAP Theorem
• Consistency:
– Sequential consistency (a data item behaves as if there is

one copy)
• Availability:
– Node failures do not prevent survivors from continuing to

operate
• Partition-tolerance:
– The system continues to operate despite network

partitions
• CAP says that “A distributed system can satisfy any two

of these guarantees at the same time but not all
three”

3

C in CAP != C in ACID

• They are different!

• CAP’s C(onsistency) = sequential consistency
– Similar to ACID’s A(tomicity) = Visibility to all

future operations
• ACID’s C(onsistency) = Does the data satisfy

schema constraints

4

Sequential consistency

• Makes it appear as if there is one copy of the
object

• Strict ordering on ops from same client
• A single linear ordering across client ops
– If client a executes operations {a1, a2, a3, ...},

client b executes operations {b1, b2, b3, ...}
– Then, globally, clients observe some serialized

version of the sequence
• e.g., {a1, b1, b2, a2, ...} (or whatever)
Notice how a1 precedes a2, b1 precedes b2, etc

5

CAP Theorem: Proof

• A simple proof using two nodes:

B A

Partition

Client A
6

Write:

CAP Theorem: Proof

• A simple proof using two nodes:

B A

Not Consistent!

Respond to client Partition

Client AClient B
7

Write:Read:

CAP Theorem: Proof

• A simple proof using two nodes:

B A

Not Available!

Wait to be updated Partition

Client AClient B
8

Write:

CAP Theorem: Proof

• A simple proof using two nodes:

B A

Not Partition
Tolerant!

A gets updated from B

Client AClient B
9

Read:

CAP => 3 types of systems

C A
P

• Of the following three
guarantees potentially offered
by distributed systems:

• Consistency
• Availability
• Partition tolerance

• Pick two

• This suggests there are three
kinds of distributed systems:

• CP
• AP
• CA

11

Issues with CAP

• What does it mean to choose or not choose
partition tolerance?
– P is a property of the environment, C and A are

goals
– In other words, what's the difference between a

"CA" and "CP" system? both give up availability on
a partition!

• Better phrasing: “if the network can have
partitions, do we give up on consistency or
availability?”

12

Witnesses: P is unavoidable

• Coda Hale, Yammer (Microsoft?) software
engineer:
– “Of the CAP theorem’s Consistency, Availability,

and Partition Tolerance, Partition Tolerance is
mandatory in distributed systems. You cannot
not choose it.”

http://codahale.com/you-cant-sacrifice-partition-tolerance/
16

http://codahale.com/you-cant-sacrifice-partition-tolerance/

Witnesses: P is unavoidable

• Werner Vogels, Amazon CTO
– “An important observation is that in larger

distributed-scale systems, network partitions are a
given; therefore, consistency and availability
cannot be achieved at the same time.”

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html 17

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

Witnesses: P is unavoidable

• Daneil Abadi (UMD), Co-founder of Hadapt;
Vertica, VoltDB contributor
– ”So in reality, there are only two types of systems

... I.e., if there is a partition, does the system give
up availability or consistency?”

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
18

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

Witnesses: P?
Who cares about P!?

• Michael Stonebraker
– [VoltDB, TuringAward’14]
– “In my experience, network partitions do not happen

often. Specifically, they occur less frequently than the
sum of bohrbugs [deterministic DB crashes],
application errors, human errors and reprovisioning
events. So it doesn’t much matter what you do when
confronted with network partitions. Surviving them
will not “move the needle” on availability because
higher frequency events will cause global outages.
Hence, you are giving up something (consistency)
and getting nothing in return.”

https://www.voltdb.com/blog/2010/10/21/clarifications-cap-theorem-data-related-errors/19

https://www.voltdb.com/blog/2010/10/21/clarifications-cap-theorem-data-related-errors/

CAP Theorem 12 year later

• Eric Brewer: father of CAP

• “The “2 of 3” formulation was

always misleading because it

tended to oversimplify the

tensions among properties. ...

• CAP prohibits only a tiny part of
the design space: perfect
availability and consistency in the
presence of partitions, which are

rare.”

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed20

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Consistency or Availability

C A
P

• Consistency and Availability is
not a “binary” decision

• AP systems relax consistency
in favor of availability – but
are not inconsistent

• CP systems sacrifice
availability for consistency-
but are not unavailable

• This suggests both AP and CP
systems can offer a degree of
consistency, and availability,
as well as partition tolerance 21

AP: Best Effort Consistency

• Example:
– CDNs / Web caches
– DNS
– BlockChain
– CRDTs

• Trait:
– Optimistic concurrency control
– Expiration/Time-to-live
– Conflict resolution

22

CP: Best Effort Availability

• Example:
– Majority protocols (Paxos, Raft)
– Distributed Locking (Google Chubby Lock service)

• Trait:
– Pessimistic locking
– Make minority partition unavailable

23

Types of Consistency
• Strong Consistency
– After the update completes, any subsequent access

will return the same updated value.
• Weak Consistency
– It is not guaranteed that subsequent accesses will

return the updated value.
• Eventual Consistency
– Specific form of weak consistency
– It is guaranteed that if no new updates are made to

object, eventually all accesses will return the last
updated value (e.g., propagate updates to replicas in a
lazy fashion)

24

Eventual Consistency Variations
• Causal consistency
– Processes that have causal relationship will see

consistent data
• Read-your-write consistency
– A process always accesses the data item after it’s

update operation and never sees an older value
• Session consistency
– As long as session exists, system guarantees read-

your-write consistency
– Guarantees do not overlap sessions

25

Eventual Consistency Variations
• Monotonic read consistency
– If a process has seen a particular value of data item,

any subsequent processes will never return any
previous values

• Monotonic write consistency
– The system guarantees to serialize the writes by the
same process

• In practice
– A number of these properties can be combined
– Monotonic reads and read-your-writes are most

desirable
26

Eventual Consistency
- A Facebook Example

• Bob finds an interesting story and shares with
Alice by posting on her Facebook wall

• Bob asks Alice to check it out
• Alice logs in her account, checks her Facebook

wall but finds:
- Nothing is there!

27

Eventual Consistency
- A Facebook Example

• Bob tells Alice to wait a bit and check out later
• Alice waits for a minute or so and checks back:

- She finds the Cambridge Analytica story
Bob shared with her!

28

Eventual Consistency
- A Facebook Example

• Reason: it is possible because Facebook uses an
eventual consistent model

• Why would Facebook choose an eventual
consistent model over the strong consistent one?
– Facebook has more than 1 billion active users
– It is non-trivial to efficiently and reliably store the

huge amount of data generated at any given time
– Eventual consistent model offers the option to reduce

the load and improve availability

29

Dynamic Tradeoff between C and A
• An airline reservation system:
– When most of seats are available: it is ok to rely

on somewhat out-of-date data, availability is more
critical

– When the plane is close to be filled: it needs more
accurate data to ensure the plane is not
overbooked, consistency is more critical

• Neither strong consistency nor guaranteed
availability, but it may significantly increase
the tolerance of network disruption

30

Heterogeneity: Segmenting C and A

• No single uniform requirement
– Some aspects require strong consistency
– Others require high availability

• Segment the system into different components
– Each provides different types of guarantees

• Overall guarantees neither consistency nor
availability
– Each part of the service gets exactly what it needs

• Can be partitioned along different dimensions

31

Partitioning Strategies

• Data Partitioning
• Operational Partitioning
• Functional Partitioning
• User Partitioning
• Hierarchical Partitioning

• Idea: provide differentiated guarantees
depending on X {data/op/func/user/component}

33

Partitioning Examples

Data Partitioning
• Different data may require different consistency

and availability
• Example:

• Shopping cart: high availability, responsive, can
sometimes suffer anomalies

• Product information need to be available, slight
variation in inventory is sufferable

• Checkout, billing, shipping records must be consistent

34

Partitioning Examples

Operational Partitioning
• Each operation may require different balance

between consistency and availability
• Example:

• Reads: high availability; e.g.., “query”
• Writes: high consistency, lock when writing; e.g.,

“purchase”

35

Partitioning Examples

Functional Partitioning
• System consists of sub-services
• Different sub-services provide different

balances
• Example: A comprehensive distributed system
– Distributed lock service (e.g., Chubby) :
• Strong consistency

– DNS service:
• High availability

36

Partitioning Examples

User Partitioning
• Try to keep related data close together to

assure better performance
• Example: Craigslist
– Might want to divide its service into several data

centers, e.g., east coast and west coast
• Users get high performance (e.g., high availability and

good consistency) if they query servers close to them
• Poorer performance if a New York user query Craglist in

San Francisco

37

Partitioning Examples

Hierarchical (node) Partitioning

• Large global service with local “extensions”

• Different location in hierarchy may use different

consistency

• Example:

– Local servers (better connected) guarantee more

consistency and availability

– Global servers has more partition and relax one of the

requirement

- Systems that do this: DNS, NTP

38

C

Take-aways

• CAP is a tool for thinking about trade-offs in
distributed systems

• Misinterpreted + contentious
• The devil (in designing distributed systems) is

often in the details: real systems cannot be
classified into one of CA/AP/CP

• Many eventual consistency variants, widely
adopted by popular systems

40

A

P

