Paxos

(deck based on slides from
Lorenzo Alvisi and Tom Anderson)

The Part-Time Parliament

Leslie Lamport
ACM Transactions on Computer Systems 16, 2 (May 1998), 133-169. Also appeared as SRC Research

Report 49. This paper was first submitted in 1990, setting a personal record for publication delay that

has since been broken by [60]. | May 1998

ACM SIGOPS Hall of Fame Award in 2012

@ Parliament deftermines
laws by passing sequence
of numbered decrees

@ Legislators can leave and
enter the chamber at
arbitrary times

@ No centralized record of
approved decrees-
instead, each legislator
carries a ledger ANTIPAXOS

PAXDS

https://www.microsoft.com/en-us/research/people/lamport/

Safe Replication?

@ Suppose using primary/hot standby replication

@ How can we tell if primary has failed versus is
slow? (if slow, might end up with two primaries!)

@ FLP: impossible for a deterministic protocol to

guarantee in bounded time in an
asynchronous distributed system (even if no
failures actually occur and all messages are
delivered)

2PC vs. Paxos?

@ Two phase commit: blocks if coordinator
fails after the prepare message is sentf,
until the coordinator recovers

@ Paxos: non-blocking as long as a majority
of participants are alive, provided there is
a sufficiently long period without further
failures

@ By FLP cannot have both safety+liveness

@ Paxos quarantees safety, tries to be live

Operating model

@ A set of processes that can propose values
@ Processes can crash and recover

@ Processes have access to stable storage

@ Asynchronous communication via messages

@ Messages can be lost and duplicated, but not
corrupted

The Game: Consensus

SAFETY

@ Only a value that has been proposed can be chosen
@ Only a single value is chosen (consistency)

@ A process never learns that a value has been
chosen unless it has been (Tatomicity)

LIVENESS

@ Some proposed value is eventually chosen

@ If a value is chosen, a process eventually learns it

The Players

@ Proposers
@ Acceptors

@ Learners

Choosing a value

proposers

5

: O Use a single
acceptor
o acceptor P

Choosing a value

proposers

5

7)@ Use a single
acceptor
o acceptor P

\

What if
the acceptor fails?

What if
the acceptor fails?

@ Choose only when a
“large enough” set
of acceptors accepts

What if
the acceptor fails?

@ Choose only when a
“large enough” set
of acceptors accepts

@ Using a majority set
guarantees that at
most one value is
chosen

What if
the acceptor fails?

)

@ Choose only when a

“large enough” set
D of acceptors accepts
@ Using a majority set
O guarantees that at
most one value is

chosen

What if
the acceptor fails?

)

@ Choose only when a
“large enough” set
of acceptors accepts

/ % | US|ng a mdjor‘ify set

O guarantees that at
most one value is

chosen

What if
the acceptor fails?

@ 6 IS chosen!

@ Choose only when a

of acceptors accepts

@ “large enough” set
; /
\>

@ Using a majority set
@ guarantees that at
most one value is

chosen

Accepting a value

@ Suppose only one value is proposed by a single
proposer.

@ That value should be chosen! (if not, then no
liveness = cannot make progress)

@ First requirement:

Pl: An acceptor must accept the first
proposal that it receives

Accepting a value

@ Suppose only one value is proposed by a single
proposer.

@ That value should be chosen!
@ First requirement:

Pl: An acceptor must accept the first
proposal that It receives

@ ..but what if we have multiple proposers, each
proposing a different value?

Pl + multiple proposers

i)
4
&

Pl + multiple proposers

Pl + multiple proposers

No value is chosen!

..

Handling multiple proposals

@ Realization: acceptors must (be able to) accept
more than one proposal

@ To Keep track of different proposals, assign a
natural number to each proposal

O A proposal is then a pair (psn, value)
O Different proposals have different psn

O A proposal is chosen: when it has been
accepted by a majority of acceptors

O A value is chosen: when a single proposal
with that value has been chosen

Choosing a unique value

@ We need to guarantee that all chosen
proposals result in choosing the same value

@ We introduce a second requirement (by
induction on the proposal number):

P2. If a proposal with value v is chosen,
then every higher-numbered proposal that
IS chosen has value v

which can be satisfied by:

P2a. If a proposal with value v is chosen,
then every higher-numbered proposal
by any acceptor has value v

What about P1?

(P1: An acceptor must accept the first proposal that it receives)

(P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v)

What about P1?

(P1: An acceptor must accept the first proposal that it receives)

(P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v)

@ Do we still need P17

What about P1?

(P1: An acceptor must accept the first proposal that it receives)

(P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v)

@ Do we still need P17

YES, to ensure that some
proposal is accepted

What about P1?

(P1: An acceptor must accept the first proposal that it receives)

(P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v)

@ Do we still need P17

YES, to ensure that some
proposal is accepted

@ How well do Pl and P2a
play together?

What about P1?

(P1: An acceptor must accept the first proposal that it receives)

(P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v)

@ Do we still need P17

YES, to ensure that some
proposal is accepted

@ How well do Pl and P2a
play together?

Asynchrony is a problem...

What about P1?

(P1: An acceptor must accept the first proposal that it receives)

(P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v)

@ Do we still need P17

YES, to ensure that some
proposal is accepted

@ How well do Pl and P2a
play together?

Asynchrony is a problem...

()il o

What about P1?

(P1: An acceptor must accept the first proposal that it receives)

(P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v)

@ Do we still need P17

D YES, to ensure that some

proposal is accepted

/ (1,6) @® How well do P1 and P2a
play together?
Asynchrony is a problem...

(1,6)

6 is chosen!
(with psn 1) by P1

What about P1?

(P1: An acceptor must accept the first proposal that it receives)

(P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v)

How does it know
it should not accept? @ Do we still need P1?

(violating PZa)
@ YES, to ensure that some

/ proposal is accepted
/ E @® How well do P1 and P2a

play together?

\ Asynchrony is a problem...
(1,6) Y Y P

6 is chosen!
(with psn 1) by P1

Another take on P2

@ Recall P2a:

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen,
then every higher-numbered proposal
has value v

Another take on P2

@ Recall P2a:

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by

any acceptor has value v

P2b is more restrictive than
P2a: can’t accept a proposal,

We strengthen it to: /

P2b: If a proposal with value v is chosen,
then every higher-numbered proposal

has value v

Implementing P2 (I)

P2b: If a proposal with value v is chosen, then every higher-

numbered proposal by any proposer has value v
Suppose a proposer p wants to a proposal
numbered n. What value should p propose?

@ If (n’v) with n’ <n is chosen, then in every
majority set S of acceptors at least one acceptor
has accepted (n’,v)...

@ ..so, if there is a majority set S where no acceptor
has accepted (or will accept) a proposal with
number less than n, then p can propose any value

Implementing P2 (II)

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal by any proposer has value v

What if for all S (majority set) some acceptor
ends up accepting a pair (#’,v) with n’ <n?

Claim (if mef, P2b satisfied): p should propose the
value of the highest numbered proposal among all
accepted proposals numbered less than #

Proof: By induction on the number of proposals
issued after a proposal is chosen (or by
contradiction)

Implementing P2 (III)

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and
number 7 is issued, then there is a set S consisting of a
majority of acceptors such that either:

0 no acceptor in S has accepted any proposal numbered
less than 7, or

o v is the value of the highest-numbered proposal
among all proposals numbered less than »n accepted
by the acceptors in S

P2c in action

S
(4 8)

@ No acceptor in S

[e . has accepted any
2, 1 ? proposal numbered
less than psn 7 (=2)

(psn, value)

P2c in action

4,8
(4.8) @ v (2) is the value of the

highest-numbered

proposal (#5) among
W all proposals numbered

less than 7 (<i18) and

accepted by the

(5.2) acceptors in S

(psn, value)

P2c in action

O%‘

@ v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(b

P2c in action

@ v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

The invariant is violated

Future tfelling?

: For any v and n, if a proposal with value v and
number 7 is issued, then there is a set S consisting of
a majority of acceptors such that either....

@ To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than #, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

Future telling?

@ To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than #, if any, that has been or
accepted by each acceptor in some majority
of acceptors

@ Key strategy: avoid predicting the future by
from a majority of
acceptors not to subsequently accept any
proposals numbered less than 7

The proposers protocol (I)

@ A proposer chooses a new proposal number 7 and sends
a request to each member of some (majority) set of
acceptors, asking it to respond with:

a. A promise never again to accept a proposal
numbered less than 7, and

b. The accepted proposal with highest number less
than 7 if any.

...call this a with number 7

The proposers protocol (II)

@ If the proposer receives a response from a majority
of acceptors, then it can issue a proposal with
number 7 and value v, where v is

the value of the highest-numbered proposal
among the responses, or

is any value selected by the proposer if
responders returned no proposals

A proposer issues a proposal by sending, to some set of
acceptors, a request that the proposal be accepted.

..call this an accept request.

The acceptors protocol

The acceptors protocol

@ An acceptor receives and accept requests
from proposers. It can ignore these without
affecting safety.

The acceptors protocol

@ An acceptor receives and accept requests
from proposers. It can ignore these without
affecting safety.

0O It can always respond to a request

The acceptors protocol

@ An acceptor receives and accept requests
from proposers. It can ignore these without
affecting safety.

0O It can always respond to a request

O It can respond to an accept request, accepting
the proposal, iff it has not promised not fo, e.g.

The acceptors protocol

@ An acceptor receives and accept requests
from proposers. It can ignore these without
affecting safety.

0O It can always respond to a request

O It can respond to an accept request, accepting
the proposal, iff it has not promised not fo, e.g.

Pla: An acceptor can accept a proposal numbered
n iff it has not responded to a prepare
request having number greater than »

The acceptors protocol

@ An acceptor receives and accept requests
from proposers. It can ignore these without
affecting safety.

0O It can always respond to a request

O It can respond to an accept request, accepting
the proposal, iff it has not promised not fo, e.g.

Pla: An acceptor can accept a proposal numbered
n iff it has not responded to a prepare
request having number greater than »

..which subsumes Pl.

Putting It together
Initial sys config:

(2,2)

(3,2)

(4.,1)

(4,1)

(psn, value)

Minority fails

Note that if maj.
fails, then Paxos is
(2,2) unavailable (not live)

=> as long as ma,|.
(3,2) alive, there will be
some overlap
between consecutive
(4,1) majorities

(psn, value)

Working with remaining 3/5

majority
(18,?) S
repare (18)
,f \\(2,2)
repare (18)
(3.2)

prepare8)

@ (psn, value)

Working with remaining 3/5

majority
(18,2) S
& repare (18)
* \\(2,2) promised (18)
| brepare (18)

(3.2)|promised (18)

promised (18)

@ (psn, value)

prepare\18)

Working with remaining 3/5
majority

(18,7) S

| r/‘_GCCepf(lglglz)
: —((2,2)|promised (18)

promised (18)

@ (psn, value)

Majority overlap

Note that maj.
overlap (does not
(18,1) S need to be complete)

promised (18)
O prepare (5) :
P promlsed (18)

@ prepare (5)
prepare (5) promised (18)

@ (psn, value)

Prepare(5) conflicts with
promised (18)

(18,1) S

promised (18)
promised (18)
promised (18)

@ (psn, value)

Prepare(5) conflicts with
promised (18)

(18,1) S

promised (18)
promised (18)
promised (18)

@ (psn, value)

Outcome: just one proposer can
(temporarily) prepare a majority

(18,1) S

~ N

2,2)

@ (psn, value)

Outcome: just one proposer can
(temporarily) prepare a majority

(18,1) S

w

accept (18,1)

(psn, value)

Outcome: just one proposer can
(temporarily) prepare a majority

(18,1) S .
/ accept (18,1) disk

N

accept (18,1)

disk

disk

@ (psn, value)

Small optimizations

@ If an acceptor receives a request numbered
when it has already responded to a request for
n’ >n, then the acceptor can simply ignore this prepare.

@ An acceptor can also ignore requests for
proposals it has already accepted

.50 an acceptor needs only remember the highest
numbered proposal it has accepted and the number of
the highest-numbered request to which it has
responded.

This information needs to be stored on stable storage to
allow restarts.

Summary: Choosing a
value: Phase 1

@ A proposer chooses a new n and sends <prepare,n> to a
majority of acceptors

@ If an acceptor a receives <prepare,n’>, where n’ > n of

any <prepare,n> to which it has responded, then it
responds to <prepare, n’> with

[0 a promise not to accept any more proposals
numbered less than n’

0 the highest numbered proposal (if any) that it has
accepted

Summary: Choosing a
value: Phase 2

@ If the proposer receives a response to <prepare,n>
from a majority of acceptors, then it sends to each
<accept,n,v>, where v is either

O the value of the highest numbered proposal
among the responses

O any value if the responses reported no proposals

@ If an acceptor receives <accept,n,v>, it accepts the
proposal unless it has in the meantime responded fo
<prepare,n’> , Where n’ >n

Learning chosen
values (I)

Once a value is chosen, learners should find out
about it. Many strategies are possible:

i. Each acceptor informs each learner
whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner,
who informs the other learners

iii. Something in between (a set of not-
quite-as-distinguished learners)

Learning chosen
values (II)

Because of failures (message loss and acceptor
crashes) a learner may not learn that a value

has been chosen
(4,8) Was 6
chosen?

()
ool

(7,6)

Learning chosen
values (II)

Because of failures (message loss and acceptor
crashes) a learner may not learn that a value

has been chosen
chosen?

p a
OPOSQ Some.l.h’n I

Liveness

Progress is not guaranteed:

n1<n2<n3<n4<...

P P2

<propose,n,>

<propose,n.,>
<accept(n,,v,)>
<propose,n>
<accepi(n,,v,)>
<propose,n, >

A

Implementing State
Machine Replication (RSM)

@ Implement a sequence of separate instances of
consensus, where the value chosen by the ith
Instance is the ith message in the sequence.

@ Each server assumes all three roles in each
instance of the algorithm.

@ Assume that the set of servers is fixed

RSM: The role of the
leader

@ In normal operation, elect a single server to be
a . The leader acts as the distinguished
proposer in all instances of the consensus
algorithm.

O Clients send commands to the leader, which decides
where in the sequence each command should appear.

O If the leader, for example, decides that a client
command is the kth command, it ftries to have the
command chosen as the value in the k'h instance of
consensus.

RSM: A new leader A is
elected...

@ Since)\ is a learner in all instances of consensus, it
should know most of the commands that have
already been chosen. For example, it might know
commands 1-10, 13, and 15.

O It executes phase 1 of instances 11, 12, and 14 and
of all instances 16 and larger.

O This might leave, say, 14 and 16 constrained and
11, 12 and all commands after 16 unconstrained.

O A then executes phase 2 of 14 and 16, thereby
choosing the commands numbered 14 and 16

RSM: Stop-gap measures

@ All replicas can execute commands 1-10, but not 13-16
because 11 and 12 haven't yet been chosen.

@ A can either take the next two commands requested
by clients to be commands 11 and 12, or can propose
immediately that 11 and 12 be no-op commands.

@) runs phase 2 of consensus for instance numbers 11
and 12.

@ Once consensus is achieved, all replicas can execute
all commands through 16.

RSM: To infinity, and
beyond

@) can efficiently execute phase 1 for infinitely
many instances of consensus! (e.g. command 16
and higher)

O A just sends a message with a sufficiently high
proposal number for all instances

0 An acceptor replies non frivially only for instances for
which it has already accepted a value

Paxos and FLP

@ Paxos is always safe—despite asynchrony
@ Once a leader is elected, Paxos is live.

@ "Ciao ciao” FLP?

O To be live, Paxos requires a single leader

O "Leader election” is impossible in an
asynchronous system (gotcha!)

@ Given FLP, Paxos is the next best thing:
always safe, and live during periods of synchrony

Delegation

@ Paxos is expensive compared to primary/
backup; can we get the best of both worlds?

@ Paxos group leases responsibility for order
of operations to a primary, for a limited
period

@ If primary fails, wait for lease to expire,
then can resume operation (after checking
backups)

@ If no failures, can refresh lease as needed

Byzantine Paxos

@ What if a Paxos node goes rogue? (or
two?)

@ Solution sketch: instead of just one node
iIn the overlap between majority sets, need
more: 2f + 1, to handle f byzantine nodes

@ The extra f+l outvote the f byzantine
nodes, allowing you to make progress.

