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Machine Learning is Everywhere

● Data collection at massive scales
● Analysis for everything
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Data and Analysis are Decentralized

● Internet of things (large scale sensor networks)
● Live mobile analytics (maps/routing/traffic)
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Gentle ML Overview
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Data 
X

ML Model
f(X,w) -> y

Model Fit 
(Train)

Classification (predict type)
Regression (predict value)Collect Data

● X: labelled data features
○ E.g. Square footage

● y: predicted output 
○ E.g. House value
○ Categorical or numerical

● w: model parameters
○ Feature weighting
○ Depends on model type

■ Assume arbitrary 
vector of floats



ML: Stochastic Gradient Descent

● SGD: General iterative algorithm for model training [1]
○ Can apply to regressions, deep learning, recommender 

systems, etc.

Model
f(X, y, w)

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10 7
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● SGD: General iterative algorithm for model training [1]
○ Can apply to regressions, deep learning, recommender 

systems, etc.
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ML: Stochastic Gradient Descent

● Repeat until done!
○ Using some convergence gradient metric
○ For a fixed number of iterations

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10 9



ML Use Cases
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Modern Large Scale ML Solutions

● What if there is a lot of data?
● Modern solutions: store it all in a data centre and train on it

○ 3 common libraries to do this...
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Distributed ML: Aggregate Data

● Option 1: Centralize the data, then train a model

Central Server
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Distributed ML: Aggregate Data

● Option 1: Centralize the data, then train a model
○ But at massive scale, this is expensive and not private

Central Server
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The Need for Privacy

● Data can be sensitive in nature
○ Photos, location info, voice recordings

● Typically, a centralized service performs model training
○ Do we have to trust Google with our data?

15



Costs of Centralization

● Growth of data is costly!
○ ~2.3 billion smartphones in world today
○ Use of smartphones and tablets increasing

● Collecting data, keeping it updated is expensive
● Today’s improvements: perform ML without data transfer

○ Aggregating locally trained models
○ Training over the network: federated learning

■ We’ll get back to this one
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Distributed ML: Aggregate Outputs

● Option 2: Train local models and aggregate predictions
○ Various methods (forests, bagging, transfer learning)

Central Server
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Distributed ML: Aggregate Outputs

● Option 2: Train local models and aggregate predictions
○ Various methods (forests, bagging, transfer learning)
○ But when data is highly non-uniform, this is suboptimal [1]

Central Server
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Train 

Model

M1 M2 M3

Predict

[1] Bellet et al. “Personalized and Private Peer-to-Peer Machine Learning”, AISTATS ‘18



Distributed ML: Federated Learning

● Option 3: Send SGD updates over network

Central Server
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Distributed ML: Federated Learning

● Option 3: Send SGD updates over network

Central Server
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Model

SGD Δww Δw

Federated Learning (Google’s new 2017 algorithm): 
Data never leaves the client, as good as centralized

[1] Bellet et al. “Personalized and Private Peer-to-Peer Machine Learning”, AISTATS ‘18



● Benefits: client centric view enables privacy
○ Data remains with client
○ Perform SGD locally

■ Can modify the protocol for further privacy
● Drawbacks: less control for server

○ Clients used to just provide data, now they are capable of 
many new attacks

○ Depends on the threat model

Federated Learning Tradeoffs
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[1] Cynthia Dwork. “Differential Privacy” ICALP '06
[2] Song et al. “Stochastic gradient descent with differentially private updates” GlobalSIP ‘13
[3] Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, CCS ‘17
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Threat Models in ML
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● How will the ML system be used?
○ User model
○ Threat model

● For example, three types of privacy models [1]:
○ Private networks (I trust everyone here)
○ Public networks (Most common, open to join with account)
○ Anonymous networks (Completely hide all information)

Different Levels of Privacy

29[1] Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, CCS ‘17



● Private Network
○ Between a fixed set of known users
○ Not open to outsiders

● Public Network
○ Open to public users
○ Typically require external verification (Account)

● Anonymous Network
○ Open, but identities are hidden

Types of Networks
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● Weak/no threat model
○ No malicious users, no new users
○ Everyone follows protocol, no 

attacks
● i.e. Sharing models and analysis across 

hospitals 

Private Network ML

31

[1] Wu et al. “Grid Binary LOgistic REgression (GLORE): building shared models without sharing data”. Journal of the American Medical 
Informatics Association, Volume 19, Issue 5



● Mild threat model
○ Users mount attacks, could use 

sybils
● Users don’t trust server or other users
● Only data byproducts revealed to server
● Federated learning for Gboard [1]

Public Network ML

32

[1] McMahan et al. “Federated Learning: Collaborative Machine Learning without Centralized Training Data”. Google Research Blog 2017



● Strongest threat model
● Users do not know each other or share 

identities
○ No user authentication

● Users do not trust anyone with data or 
updates
○ Google secure aggregation [1]

Anonymous Network ML

33[1] Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, CCS ‘17



● “Why don’t we just use the strongest security model?”
○ Usually performance/usability concerns
○ Google secure aggregation for federated learning

■ 4 rounds of communication between users and service!
■ With 1000 clients, takes ~5s per iteration
■ On wide area network, up to ~28s per iteration

○ A typical ML workload can take 1000s of iterations!

Security Performance Tradeoffs

34

[1] Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, CCS ‘17



Security Performance Tradeoffs
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[1] Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, CCS ‘17

● “Why don’t we just use the strongest security model?”
○ Usually performance/usability concerns
○ Google secure aggregation for federated learning

■ 4 rounds of communication between users and service!
■ With 1000 clients, takes ~5s per iteration
■ On wide area network, up to ~28s per iteration

○ A typical ML workload can take 1000s of iterations!

Security tradeoffs: Making realistic user and threat 
model assumptions for your use case is vital!
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Why do we attack ML?

● As we already know, ML is used everywhere!
● To influence model prediction outputs:

○ Model poisoning [1]
○ Adversarial examples [2]

● To gain extra information/data from users:
○ Inversion [3]
○ Model extraction [4]

[1] Huang et al. “Adversarial Machine Learning”. AISec ‘11
[2] Goodfellow et al. “Explaining and Harnessing Adversarial Examples” ICLR ‘15
[3] Fredrikson et al. “Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures” CCS ‘15
[4] Tramer et al. “Stealing Machine Learning Models via Prediction APIs” Usenix Sec ‘16 37



How do we attack ML?

● Supplying malicious training data:
○ Model poisoning [1]

● Supplying malicious test data:
○ Adversarial examples [2]

● Through information in prediction APIs:
○ Inversion [3]
○ Model extraction [4]

[1] Huang et al. “Adversarial Machine Learning”. AISec ‘11
[2] Goodfellow et al. “Explaining and Harnessing Adversarial Examples” ICLR ‘15
[3] Fredrikson et al. “Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures” CCS ‘15
[4] Tramer et al. “Stealing Machine Learning Models via Prediction APIs” Usenix Sec ‘16 38



Poisoning Attacks

● Two types: [1]
○ Random attack: Aim to decrease model accuracy
○ Targeted attack: Aim to increase/decrease classification of a 

specific point
■ I want my email to pass a spam filter
■ I want my advertisement to be displayed more 

[1] Huang et al. “Adversarial Machine Learning”. AISec ‘11
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Poisoning Attacks
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Poisoning Attacks
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Attack sampleVictim sample



Backdoor Attacks [1]

● A newer poisoning attack from 2017
● Use a small, unimportant part of model to hide signals in 

malicious training data. Exploit backdoor once model deployed.

42[1] Gu et al. “BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain”. ArXiv ‘17



Adversarial Examples [1, 2, 3]

● Another way to exploit classifier mispredictions
● On prediction: A test point that evades a classifier

○ A recent discovery of deep learning
○ Since DL is very non-linear, easy to exploit 

[1] Goodfellow et al. “Explaining and Harnessing Adversarial Examples” ICLR ‘15
[2] Pei et al. “DeepXplore: Automated Whitebox Testing of Deep Learning Systems” SOSP ‘17
[3] Li et al. “Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics” ICCV ‘17 43



Adversarial Examples [1, 2, 3]

[1] Goodfellow et al. “Explaining and Harnessing Adversarial Examples” ICLR ‘15
[2] Pei et al. “DeepXplore: Automated Whitebox Testing of Deep Learning Systems” SOSP ‘17
[3] Li et al. “Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics” ICCV ‘17 44



Inversion Attacks [1]

● Attacking public prediction APIs:
○ Prediction: “Given an example, predict its class”
○ By repeating this several times, the adversary can uncover 

private information about the model

[1] Fredrikson et al. “Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures” CCS ‘15
45



Inversion Attacks [1]

● Model inversion: reconstruct training data
○ Use class confidence information from prediction query API

■ Train a generative model to create training examples
● [1]: Reconstruct training face from deep learning model after 

~3000 prediction API calls.

[1] Fredrikson et al. “Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures” CCS ‘15
46



Inversion Attacks [1]

[1] Fredrikson et al. “Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures” CCS ‘15
47



Model Stealing Attacks [1]

● Similar to inversion, uncover the ML model itself

[1] Tramer et al. “Stealing Machine Learning Models via Prediction APIs” Usenix Sec ‘16 48



GAN Attack on Federated Learning [1]

● In federated learning: 
○ Join system as client, but with no data
○ Use updates to train generative adversarial network (GAN) 

■ A two part model that generates and classifies data
■ Used by adversaries to generate fake training data

○ Inversion attack, but clients are more powerful (see the 
model while trained)

[1] Hitaj et al. “Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning” CCS ‘17
49



GAN Attack on Federated Learning

● Federated Learning Inversion: 

[1] Hitaj et al. “Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning” CCS ‘17
50



GAN Attack on Federated Learning

● Federated Learning Inversion: 

[1] Hitaj et al. “Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning” CCS ‘17
51



Sybil Attacks

● In public/anonymous networks, Sybils are a problem
○ Fake accounts created for additional leverage [1]
○ Sybil attacks on “crowd-sourced computations” 

● In ML setting:
○ Attacks can become more powerful (poisoning, leakage)

[1] Doucuer et al. “The Sybil Attack” IPTPS '01
52



Sybil Attacks

[1] Wang et al. “Defending against Sybil Devices in Crowdsourced Mapping Services”, MobiSys ‘16
53



Is It All Hopeless?

● ML vulnerable to manipulation and leakage
● Ongoing: many defenses have been developed

○ The whole research field is back and forth work
○ Again, depends on the threat model: Define user and 

attacker assumptions 
■ Big part of security research

54
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Data Privacy
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Data Privacy

● Assuming a public network:
○ Users can know each other, willing to cooperate
○ Don’t want to share their data with each other or server
○ “Honest-but-curious”

● How can we train on multi-party data without breaking privacy?

57



● “For privacy, can’t we just hide the labels?”
○ 2006 Netflix user dataset de-anonymized using IMDB [1] 
○ 2006 AOL search database de-anonymized [2]

● Anonymizing is insufficient: auxiliary data breaks anonymity!

Past Research: Why “Privacy” is Difficult

58

[1] Narayanan et al. “Robust De-anonymization of Large Sparse Datasets”, S&P ‘08
[2] NYTimes “A Face Is Exposed for AOL Searcher No. 4417749” NYTimes ‘06



● Mechanisms that protecting privacy of datasets when used
● Record level DP:

○ Protects individual records
○ A dataset with/without given example is indistinguishable

● Generally, get privacy from adding noise to responses
○ Privacy-utility tradeoff: more noise, less accuracy

○ Parameterized by ε (lower ε: more private, less utility)

Differential Privacy (DP) [1]

59[1] Cynthia Dwork. “Differential Privacy” ICALP '06



Differential Privacy (DP) Example

Data

Query: “What is the mean salary at UBC?”

Response

Untrusted Service

60

● Untrusted service that knows the current mean salary at UBC
○ Then, a new employee joins

● Can directly compute the salary of employee!



Differential Privacy (DP) Example

Data

Query: “What is the mean salary at UBC?” Untrusted Service

61

● Untrusted service that knows the current mean salary at UBC
○ Then, a new employee joins

● Add noise to the output

● Cannot directly compute the salary of employee!

Response
Add 

Noise ε Noisy Response



● In ML, DP used to protect training data privacy
○ Applied in SVM, random forest, deep learning, etc. [1]

● With model, adversaries cannot tell if record was in training data 
○ With lower ε parameter (more noise), resulting model is less 

accurate

Differential Privacy (DP) in ML

62

Differentially 
private modelAdd ε noise Noisy

Data
Train

[1] Yu et al. “Privacy-Preserving SVM Classification on Vertically Partitioned Data” PAKDD '06
[2] Abadi et al. “Deep Learning with Differential Privacy” CCS ‘16



Differential Privacy (DP) in ML
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● Lower ε (more private), directly trades off with utility



● Differentially private SGD [1]
○ Apply parameterized noise (ε) to SGD updates

Differential Privacy (DP) in ML via SGD

6464

Differentially 
private model

SGD with ε 
noise 

[1] Song et al. “Stochastic gradient descent with differentially private updates” GlobalSIP ‘13



● Differentially private SGD [1]
○ Apply parameterized noise (ε) to SGD updates
○ Can be extended to federated learning [2]
○ Easier in distributed settings: no need to directly 

manipulate data!

Differential Privacy (DP) in ML via SGD

6565

[1] Song et al. “Stochastic gradient descent with differentially private updates” GlobalSIP ‘13
[2] Geyer et al. “Differentially Private Federated Learning: A Client Level Perspective” NIPS ‘17

Differentially 
private model

SGD with ε 
noise 



Differential Privacy (DP) in ML via SGD

66

● Tuning ε is quite hard

○ If too private, model error is high
○ Effect also depends on SGD-specific parameters



67[1] Wired 2016.
[2] Apple. “Learning with Privacy at Scale” Apple Machine Learning Journal V1.8 2017

So Popular, Even Apple Uses It!



But differential 
privacy is difficult 
to do properly..

68[1] Wired 2017.



● Privacy loss: number of queries must be limited

○ Number of queries depends on ε
● At Apple, ε was misconfigured (not private enough): [1]

○ Resulted in high privacy loss
○ Loss was restored everyday
○ Loss not shared between applications on shared data 

Differential Privacy (DP) is Difficult

69

[1] Tang et al. “Privacy Loss in Apple’s Implementation of Differential Privacy” arXiv 2017



Other State of the Art 
Solutions in 
Private/Secure ML

70



Privacy-Preserving ML via SGX [1]

● Intel SGX: runs trusted code in an SGX enclaves
● Coordinate distributed ML through an SGX-enabled data center
● Tradeoff: 

○ Requires specialized configuration
○ Overhead depends on model type (1.07x - 115x slower)

■ Based on rate of data access to SGX enclave

[1] Ohrimenko et al. “Oblivious Multi-Party Machine Learning on Trusted Processors”. Usenix Sec ‘16
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Cryptography in ML

● Pessimistic threat model
○ No user authentication
○ Users do not know each other or share identities

● Find ways to collect the model updates from clients without 
revealing the individual gradients
○ Key idea: use secure multiparty computation (MPC) to 

compute sums of client model parameter updates 
■ Google’s secure aggregation [1]

[1] Cyphers et al. “AnonML: Locally Private Machine Learning over a Network of Peers”. NIPS ‘16, DSAA ‘17
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Sybil Defenses

● Current Sybil defenses involve one of two things:
○ Auxiliary behaviour data [1]

■ Run a classifier to detect anonymous behaviour
○ Network graph between users [2]

■ Use “friend list” or proximity to infer fake users

[1] Viswanath et al. “Strength in Numbers: Robust Tamper Detection in Crowd Computations ” COSN ‘15
[2] Tran et al. “Sybil-Resilient Online Content Voting” NSDI ‘09
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Sybil Defenses

● To defend against poisoning adversaries:
○ Outlier detection/robust ML

■ Krum: Remove outlier gradient contributions [1]
■ Auror: Run a live clustering on contributed features to 

classify updates as malicious [2]
● Requires a lot of assumptions about the use case

○ These approaches can rarely be made private

[1] Blanchard et al. “Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent”. NIPS ‘17
[2] Shen et al. “Auror: Defending Against Posoning ATtacks in Collaborative Deep Learning Systems” ACSAC‘16
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Our Research at UBC
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Topic 1: Anonymous Machine Learning

● What would it take to realize “full privacy”?
○ Hiding the data, of course
○ Hiding the identity of the clients
○ Hiding the end-user of the model
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Topic 1: Anonymous Machine Learning

● Onion routing protocols (Tor)
○ Hide source and destination of messages by communicating 

through chain of random nodes in system
○ Can hide identity of clients in distributed ML!
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Topic 1: Anonymous Machine Learning

● Re-define federated learning: curators and client pools
● Define a standard set of APIs that communicate through Tor
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Topic 2: More Robust Poisoning Defenses

● In an open network setting, users can easily join ML system
○ Weak admission control
○ Easy to poison model

● Some solutions involve detecting malicious data [1]
○ But even harder in federated learning setting!

● Modern solutions only provide guarantees up to a limit
○ “Ensure convergence up to 33% attackers” [2]

80

[1] Rubinstein et al. “ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors” IMC ‘09
[2] Blanchard et al. “Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent”. NIPS ‘17



Topic 2: More Robust Poisoning Defenses

● When Sybils are introduced, defenses are easy to break!
○ But we know how to detect Sybils [1, 2]

● We propose a better solution to Sybils in ML context:
○ Combine ideas from graph defense and anomalous 

behaviour defense to ML context
■ Update similarity and correctness

○ Instead of robustness, detection and rejection of Sybils

81

[1] Viswanath et al. “Strength in Numbers: Robust Tamper Detection in Crowd Computations ” COSN ‘15
[2] Tran et al. “Sybil-Resilient Online Content Voting” NSDI ‘09



Topic 2: Distributed ML: Federated Learning

Central Server
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Topic 2: Distributed ML: Federated Learning
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Key ideas:

1. Limit attacker ability to influence model 
with similar-looking data

2. Use shape of data to identify and reject 
Sybil contributions

We built and tested these assumptions in a 
system called FoolsGold



FoolsGold

● Defends well against adversaries with higher proportions of 
attackers
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Topic 3: Secure P2P Federated Learning

● Major issue for federated learning style systems:
○ Coordination and consistency of many clients
○ Security against Sybil attacks

● There is a modern solution that provides this in a peer to peer 
(P2P) network...

88



Topic 3: Blockchain Based Learning
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Topic 3: Blockchain Based Learning

● We propose an alternative solution to distributed ML based on 
blockchain
○ Blockchain as a consensus protocol
○ Blockchain acts as shared state and coordinator

● Requires mapping of traditional blockchain ideas to ML
○ Proof of work/stake/something else?
○ SGD deltas dissemination
○ What does a block represent?
○ Block validation
○ Concurrency control (longest chain wins?)

90



Topic 3: Blockchain Based Learning
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Key ideas

1. Store global model 
structure in blockchain

2. Peers verify updates to 
defend against malicious 
updates   M4

  M4
  M4

Blockchain

  M1   M2   M3

SGD with ε 
noise SGD with ε 

noise SGD with ε 
noise 

  



Topic 3: Blockchain Based Learning

92

It works But it’s slow



Review: For Those Who Just Woke Up

● Machine learning is becoming more decentralized, private
● These systems can be attacked and defended in many ways

a. Depends on the threat model (Public, private, anonymous)
b. Attacks: Poisoning, Information Leakage, Sybils
c. Defenses: DiffPriv, Secure Multi-Party Compute, 

Trusted Execution Environments (Secure Enclaves)
● Secure ML research at UBC

a. Anonymous onion routed federated learning
b. Sybil detection/rejection
c. Blockchain-based Secure P2P federated learning
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